請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳錫侃(Shyi-Kaan Wu) | |
| dc.contributor.author | Shih-Ting Lin | en |
| dc.contributor.author | 林世庭 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:11:24Z | - |
| dc.date.available | 2010-07-26 | |
| dc.date.copyright | 2010-07-26 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | 1. L. C. Chang and T. A. Read, Trans. AIME., 189 (1951) 47.
2. T. Tadaki, K. Otsuka and K. Shimizu, Ann. Rev. Mater. Sci., 18 (1988) 25. 3. Miyazaki, S., Ohmi, Y., Otsuka, K. and Suzuki, Y., Journal de Physique, colloque C4, supplement au no12, Tome, 43, decembre (1982), C4-225. 4. P. Thamburaja, H. Pan, and F.S. Chau, Acta Materialia, 53 (2005) 3821. 5. J. A. Shaw and S. Kyriakides, J. Mech. Phys. Solids, 43 (1995) 1243. 6. T. A. Schroder and C. M. Wayman, Scripta Metall., 11 (1977) 225. 7. J. Perkins and R. O. Sponholz, Met. Trans., 15A (1984) 313. 8. L. Delaey and J. Thienel, in: Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, 1975, p.341. 9. K. Takezawa and S. Sato, Trans. JIM (Supplement) 17 (1976) 233. 10. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1293. 11. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1299. 12. M. Nishida and C.M. Wayman, Scripta Metall., 18 (1984) 1389. 13. M. Nishida and T. Honma, ICOMAT-82, 43 (1982) C4-225. 14. K. Otsuka and K. Shimizu, Int. Met. Rev., 31 (1986) 93. 15. T. Honma, Proc, Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin, China, (1986) 709. 16. T. Honma, ICOMAT-86 (1986) 709. 17. G.B. Olson and M. Cohen, J. Less Common Metals, 28 (1972) 107. 18. L. Delaey et al., J. Mater. Sci., 9 (1974) 1545. 19. K. Otsuka, H. Sakamoto and K. Shimizu, Acta Metall., 27 (1979) 583. 20. K. N. Melton and O. Mercier, Acta Metall., 29 (1981) 393. 21. S. Miyazaki and K. Otsuka, Metall. Trans., 17A (1986) 53 22. S. Miyazaki and K. Otsuka, Phil. Mag., 50 (1984) 39. 23. C. S. Zhang et al., Proc. 1st Int’l Conf. on Shape Memory and Superelastic Technologies, California, 1994, p.383. 24. T. Tadaki and C.M. Wayman, Scripta Metall., 14 (1980) 911. 25. Y. F. Zheng et al., Mater. Sci. Eng. A, 279 (2000) 25. 26. K. Otsuka and K. Shimizu, Int’l Metals Reviews, 31 (1986) 93-114. 27. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, editors. Binary alloy phase diagrams, 2nd edition, vol. 3. Materials Park, OH: ASM International, (1990) 2874. 28. K. Otsuka, T. Kakeshita, MRS Bulletin, 27 (2002) 91. 29. T. V. Philip, P. A. Beck, Trans AIME, 209 (1957) 1269. 30. D. Koskimaki, M. J. Marcinkowski, A. S. Sastri, Trans AIME, 245 (1969) 1883. 31. T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Trans JIM, 27 (1986) 731. 32. M. Nishida, C. M Wayman, R. Kainuma, T. Honma, Scripta Metall, 20 (1986) 899. 33. T. Saburi, S. Nenno, T. Fukuda, J Less-Comm Metals, 125 (1986) 157. 34. K. Otsuka, S. Sawamura and K. Shimizu, Phys. Stat. Sol., 5 (1971) 457. 35. O. Matsumoto, S. Miyazaki, K. Otsuka and H. Tamura, Acta Mater., 35 (1987) 2137. 36. K.M. Knowls and K.A. Smith, Acta Mater., 29 (1981) 101. 37. D. P. Dautovich and G. R. Purdy, Can.Metall., 6 (1972) 115. 38. D. Bradley, J. Acoust., Soc. Am., 37 (1965) 700. 39. C. M. Wayman and I. Cornelis, Scripta Metall., 6 (1972) 115. 40. H. C. Lin and R. Kaplow, Metall. Trans., 11A (1980) 77. 41. D. P. Dautovich and G. R. Purdy, Can. Metal. Quart, 4 (1965) 129. 42. F. E. Wang, B. F. Desavage and W. I. Buehler, J. Appl. Phys., 39 (1968) 2166. 43. G. D. Sandrock, A. J. Perkin and R. F. Hechemann, Met. Trans., 2 (1971) 2769. 44. O. Mercier and K. N. Melten, Acta Met., 27 (1979) 1467. 45. W. Tan, B. Sundmann, R. Sandstrom, C. Quiu, Acta Mater. 47 (1999) 3457. 46. H. C. Lin and R. Kaplow, Metall. Trans., 12A (1981) 2101. 47. E. Goo and R. Sinclair, Acta Met., 33 (1985) 1717. 48. S. K. Wu and H. C. Lin, Scripta Met., 25 (1991) 1529. 49. C. M. Hwang, M. Meichle, M. B. Salamon and C. M. Wayman. Phys. Mag., 47A (1983) 31. 50. K. H. Eckelmeyer, Scripta Mater., 10 (1076) 677. 51. J. E. Hanlon, S. R. Butler, and R. J. Wasilewski, Trans. Metall. Soc. AIME, 239 (1967) 1323. 52. T. Saburi, T. Tatsumi and S. Nenno, J. de Physique (Supp.) 43 (1982) C4-261. 53. T. Tadaki, Y. Nakata and K. Shimizu., Trans. JIM., 28 (1987) 883. 54. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275. 55. M. Nishida and C. M. Wayman, Metallography, 21 (1988) 275. 56. G. Airoldi, G. Bellini and C.D. Franceso, J. Phys. F, 14 (1984) 1983. 57. H. C. Lin, S. K. Wu, T. S. Chou and H. P. Kuo, Acta Metall. Mater., 39 (1991) 2069. 58. S. Miyazaki, K. Otsuka, Y. Suzuki, Scripta Metall, 15 (1981), 287. 59. S. Miyazaki, T. Imai, K Otsuka, Y. Suzuki, Scripta Metall, 15 (1981), 853. 60. J. Shaw, S. Kyriakides, Acta Mater, 45 (1997) 683. 61. M. Nishida, S. Ii, K. Kitamura, T. Furukawa, A. Chiba, T. Hara, K. Hiraga, Scripta Mater, 19 (1998) 1749. 62. T. Saburi, Shape Memory Materials. Editors: K. Otsuka and C. M. Wayman, Cambridge University Press, (1998) 58. 63. T. Saburi, and Nenno, Proc. Int’1. Conf. on Solid-Solid Phase Transf., Pittsburgh (1981) 1455. 64. S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, Scripta Metall. 18 (1984) 883. 65. T. Saburi, M. Yoshida, S. Nenno, Scripta Metall. 18 (1984) 363. 66. T. Saburi, Proc. MRS Int’1. Meeting on Adv. Mater., Tokyo, Vol. 9 (Shape Memory Mater.) (1989) 77. 67. X. Ren, N. Miura, K. Taniwaki, K. Otsuka, T. Suzuki and K. Tanaka, Mater. Sci. Eng. A, 90 (1990) 273. 68. M. C. Carroll, Ch. Somsen, G. Eggeler, Scripta Metall. Mater., 50 (2004) 187. 69. L. Bataillard, R. Gotthardt, J Phys IV, C8 (1995) 647. 70. L. Bataillard, J. E. Bidaux, R. Gotthardt, Philos Mag, 78 (1998) 327. 71. J. Khalil-Allafi, X. Ren, G. Eggeler, Acta Mater, 50 (2002) 793. 72. M. C. Carroll, Ch. Somsen, G. Eggeler, Scripta Metall. Mater., 50 (2004) 187. 73. J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Mater, 50 (2002) 4225. 74. A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos Mag, 83 (2003) 339. 75. G. Fan, W. Chen, S. Yang, J. Zhu., X. Ren, K. Otsuka, Acta Mater, 52 (2004) 4351. 76. J. Michutta, Ch. Somsen, A. Yawny, A. Dlouhy, G. Eggeler Acta Mater., 54 (2006) 3525. 77. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Metall Trans A, 17 (1986) 115-20. 78. H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier and Y. Chumlyakov, Acta Mater. 48 (2000) 3311–3326. 79. I. Karaman, G.G. Yapici, Y.I. Chumlyakov and I.V. Kireev, Mater. Sci. Eng. A 410-411 (2005) 243–247. 80. S. Miyazaki, and K. Otsuka: Bulletin of the Japan Inst. Met., 22 (1983) 33. 81. K. N. Melton and O. Mercier: Acta Metall., 27 (1979) 137. 82. A. L. McKelvey and R. O. Ritchie, Metall. Mater. Trans. A 32 (2001) 731–743. 83. B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Mater. Sci. Eng. A, 202 (1995) 148. 84. S. K. Wu and H. C. Lin, Scripta Met., 25 (1991) 1529. 85. B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Mater. Sci. Eng. A, 203 (1995) 187. 86. Huseyin Sehitoglu, Robert Anderson, Ibrahim Karaman, Ken Gall, Yuriy Chumlyakov, Mater. Sci. Eng. A, 314 (2001) 67. 87. K. Gall, H. J. Maier, Acta Mater., 50 (2002) 4643. 88. H. C. Lin and S. K. Wu, Acta Mater, 42 (1994) 1623. 89. 林耿華,國立台灣大學材料科學與工程學研究所碩士論文,2009 90. M. Nishida, H. Ohgi, I. Itai, A. Chiba and K. Yamauchi, Acta Metall. Mater., 43 (1995) 1219. 91. M. Krishnan and J.B. Singh, Acta Mater., 48 (2000) 1325. 92. Y. Liu, Z. L. Xie, J. Van Humbeeck and L. Delaey, Acta Mater., 47 (1999) 645. 93. J. I. Kim and S. Miyazaki, Acta Mater., 53 (2005) 4545. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46483 | - |
| dc.description.abstract | Ti49.3Ni50.7與Ti50Ni50 SMAs之PE、SME與超彈性應力應變循環等性能之提升作一系列的探討。Ti49.3Ni50.7合金經由300℃與400℃時效處理後,300℃ 者雖需較長時間才能達到最大硬度,但其硬度相較於400℃者大上許多,也因此300℃時效者具有較優異的PE、SME與超彈性應力應變循環性能。Ti50Ni50合金若未經任何熱機處理強化,其PE、SME與超彈性應力應變循環等性質都是表現最差的;但若經一定程度之冷軋延與低溫退火後其拉伸性質會大幅提升,甚至較Ti49.3Ni50.7 經400℃最大時效硬化者來的優異。冷加工量對TiNi合金的超彈性應力應變循環性能也有很大的影響,將Ti50Ni50合金施予0%、10%、20%、30%及40%之冷軋延後,發現冷軋延量小於20%者隨著循環次數的增加而逐漸轉變成線性超彈性,經過拉伸循環訓練後其儲能效率高但可儲存之能量小;冷軋延量大於20%者則不隨著循環次數的增加而有太大的改變,儲能效率稍差,但可儲存較大之能量;而冷軋延後之退火時間越長,材料的拉伸強度及應力應變循環表現越差,最好的條件為1 min退火;而退火時間太長者經應力應變循環時產生的差排累積,阻礙了相變態之發生,特別是R相變態的壓抑最為明顯。拉伸時之最大應變越大,材料的殘留應變越多,SIM逆變態越為困難,故超彈性在工程應用上其應變量不宜超過7%。在應變速率2.5×10-4s-1~1.0×10-2s-1的範圍內,於越快的應變速率下作超彈性之應力應變循環,循環對SIM之順變態的助益越明顯,但對SIM逆變態的影響則越有限;反之,若應變速率越慢,對SIM逆變態之助益則大於順變態者。 | zh_TW |
| dc.description.abstract | In this study, the property improvement of shape memory effect (SME), pseudoelasticity (PE) and stress-strain (σ-ε) cycling of Ti49.3Ni50.7 and Ti50Ni50 shape memory alloys (SMAs) is investigated. Ti49.3Ni50.7 SMA aged at 300℃×100h and 400℃×8h can reach the maximal precipitation-hardening with the hardness of the former being higher than that of the latter. Tensile test indicates that the specimen aged at 300℃×100h has better SME/PE and σ-ε cycling properties than that aged at 400℃×8h. Cold-rolling effect on the property improvement is studied on Ti50Ni50 SMA. Experimental results show that the degree of cold-rolling lower than 20% is insufficient to strengthen the SMAs to improve their properties, such as the σ-ε cycling stability and the recoverable storage energy in σ-ε curve. If the annealing of cold-rolled specimen is over, the SMAs’ properties can also be deteriorated. At the same time, the σ-ε cycling test indicates that, after 20th cycles, both R-phase and B19’ martensitic transformations are depressed due to the dislocations pile-up during the cycling, and the B2→R transformation is more depressed than R→B19’ one. In this study, the maximal PE strain induced by stress-induced martensite (SIM) is found to be lower than ~7% and the plasticity deformation occurs if the strain is higher than 7% which will deteriorate the SMAs’ PE property. For the strain rate (ε ̇) effect on the property improvement of Ti50Ni50 SMA, in the ε ̇ range of 2.5×10-4s-1~1.0×10-2s-1, the σ-ε cycling with higher ε ̇ will be more beneficial to the forward SIM transformation, instead of the reverse SIM transformation during the cycling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:11:24Z (GMT). No. of bitstreams: 1 ntu-99-R97527041-1.pdf: 13738678 bytes, checksum: 5db0fb3e6f81730ba6cfda7ebdcc5a7f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 第一章 前言 1 第二章 文獻回顧 3 2.1形狀記憶合金簡介 3 2.1.1 形狀記憶效應 3 2.1.1.1 熱彈性麻田散體變態 4 2.1.1.2形狀記憶效應之機制 6 2.1.2 超彈性 7 2.2 TiNi基形狀記憶合金 9 2.2.1 TiNi合金的相與結構 9 2.2.2 TiNi合金的力學行為 11 2.2.2.1 T>Af之拉伸行為 11 2.2.2.2 T<Ms之拉伸行為 11 2.2.2.3 MS<T<Rf之拉伸行為 12 2.2.4 織構(Texture)對拉伸行為之影響 12 2.3 富鎳Ti-Ni形狀記憶合金之時效與多階相變態行為 12 2.4 超彈性應力應變循環 14 2.4.1 應力應變循環對超彈性性質之影響 14 2.4.2 熱機處理對應力應變循環之影響 15 2.4.3 能量的消耗與儲存 17 第三章 實驗方法 35 3.1 合金之製備 35 3.2 冷熱軋延 35 3.2.1 熱軋延 35 3.2.2冷軋延 36 3.3 時效、退火處理 36 3.4 硬度實驗 37 3.5 DSC量測 37 3.6 拉伸實驗 37 第四章 結果與討論 51 4.1 DSC結果 51 4.1.1 Ti49.3Ni50.7 SMA之DSC結果 51 4.1.2 Ti50Ni50 SMA之DSC結果 51 4.2 Ti49.3Ni50.7硬度實驗 52 4.3 Ti50Ni50與Ti49.3Ni50.7 之SME/PE拉伸實驗 52 4.3.1 SME實驗結果與討論 53 4.3.1.1 SME實驗之結果 54 4.3.1.2 SME結果之討論 55 4.3.2 PE實驗結果與討論 56 4.3.2.1 PE實驗結果 56 4.3.2.2 PE結果之討論 58 4.3.3時效溫度對Ti49.3Ni50.7 SME/PE性質之影響 59 4.4拉伸超彈性應力應變循環結果之討論 61 4.4.1不同冷軋延量的影響 61 4.4.2不同退火時間的影響 66 4.4.3不同最大應變量之比較 69 4.4.4 不同拉伸應變速率之比較 70 4.4.5 Ti49.3Ni50.7經不同熱機處理之比較 72 4.5不同強化方式對TiNi SMAs性能提升之綜合討論 74 第五章 結論 109 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 性能改進 | zh_TW |
| dc.subject | TiNi形狀記憶合金 | zh_TW |
| dc.subject | 形狀記憶效應 | zh_TW |
| dc.subject | 超彈性 | zh_TW |
| dc.subject | 應力應變循環 | zh_TW |
| dc.subject | TiNi shape memory alloys | en |
| dc.subject | properties improvement | en |
| dc.subject | stress-strain cycling | en |
| dc.subject | pseudoelasticity | en |
| dc.subject | shape memory effect | en |
| dc.title | Ti50Ni50及Ti49.3Ni50.7鈦鎳形狀記憶合金變態及機械性能之研究 | zh_TW |
| dc.title | Transformation Behavior and Mechanical Properties of Ti50Ni50 and Ti49.3Ni50.7 Shape Memory Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林新智(Hsin-Chih Lin),胡塵滌(Chen-Ti Hu),周棟勝(Tung-Sheng Chou),張世航(Shih-Hang Chang) | |
| dc.subject.keyword | TiNi形狀記憶合金,形狀記憶效應,超彈性,應力應變循環,性能改進, | zh_TW |
| dc.subject.keyword | TiNi shape memory alloys,shape memory effect,pseudoelasticity,stress-strain cycling,properties improvement, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 13.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
