請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
| dc.contributor.author | Hsin-An Chen | en |
| dc.contributor.author | 陳信安 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:03:29Z | - |
| dc.date.available | 2012-07-30 | |
| dc.date.copyright | 2010-07-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | 1. Becquerel, A.E., C. R. Acad. Sci., 1839. 9: p. 145.
2. Becquerel, A.E., C. R. Acad. Sci., 1839. 9: p. 561. 3. Fritts, C.E., A New Form of Selenium Cell. Am. J. Sci., 1883. 26: p. 465. 4. Fritts, C.E., On a New Form of Selenium Photocell. Proc. Am. Assoc. Adv. Sci., 1883. 33: p. 97. 5. Green, M.A., et al., Solar Cell Efficiency Tables (version 35). Progress in Photovoltaics: Research and Applications, 2010. 18(2): p. 144-150. 6. Tang, C.W., Two-layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): p. 183-185. 7. Yu, G., et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791. 8. Thomas, L.H., The Calculation of Atomic Fields. Proceedings of the Cambridge Philosophical Society, 1927. 23: p. 542-548. 9. Fermi, E., Un Metodo Statistico per la Determinazione di alcune Priorieta dell'Atome. Rend. Accad. Naz. Lincei, 1927. 6: p. 602-607. 10. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review B, 1964. 136(3B): p. B864-&. 11. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. 1133-&. 12. Dirac, P.A.M., The Quantum Theory of the Electron. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1928. 117(778): p. 610-624. 13. Born, M. and R. Oppenheimer, Quantum Theory of Molecules. Annalen Der Physik, 1927. 84(20): p. 0457-0484. 14. Perdew, J.P., et al., Prescription for the Design and Selection of Density Functional Approximations: More constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics, 2005. 123(6): p. 062201. 15. Langreth, D.C. and J.P. Perdew, Theory of Nonuniform Electronic Systems .1. Analysis of the Gradient Approximation and a Generalization That Works. Physical Review B, 1980. 21(12): p. 5469-5493. 16. Langreth, D.C. and M.J. Mehl, Beyond the Local-Density Approximation in Calculations of Ground-State Electronic-Properties. Physical Review B, 1983. 28(4): p. 1809-1834. 17. Perdew, J.P. and W. Yue, Accurate and Simple Density Functional for the Electronic Exchange Energy - Generalized Gradient Approximation. Physical Review B, 1986. 33(12): p. 8800-8802. 18. Payne, M.C., et al., Iterative Minimization Techniques for Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097. 19. Hellmann, H., A new approximation method in the problem of many electrons. Journal of Chemical Physics, 1935. 3(1): p. 61-61. 20. Hellmann, H. and W. Kassatotschkin, Metallic binding according to the combined approximation procedure. Journal of Chemical Physics, 1936. 4(5): p. 324-325. 21. Bloch, F., Uber die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift fur Physik A Hadrons and Nuclei, 1929. 52(7): p. 555-600. 22. Ceperley, D.M. and B.J. Alder, Ground-State of the Electron-Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566-569. 23. Perdew, J.P. and A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 1981. 23(10): p. 5048-5079. 24. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868. 25. Hammer, B., L.B. Hansen, and J.K. Norskov, Improved Adsorption Energetics within Density-functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B, 1999. 59(11): p. 7413-7421. 26. Perdew, J.P., et al., Atoms, Molecules, Solids, and Surfaces - Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B, 1992. 46(11): p. 6671-6687. 27. Wu, Z.G. and R.E. Cohen, More Accurate Generalized Gradient Approximation for Solids. Physical Review B, 2006. 73(23): p. -. 28. Perdew, J.P., et al., Restoring the Density-gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 2008. 100(13): p. -. 29. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 2005. 220(5-6): p. 567-570. 30. Kanai, Y. and J.C. Grossman, Role of Semiconducting and Metallic Tubes in P3HT/carbon-nanotube Photovoltaic Heterojunctions: Density Functional Theory Calculations. Nano Letters, 2008. 8(3): p. 908-912. 31. Kanai, Y. and J.C. Grossman, Insights on Interfacial Charge Transfer across P3HT/fullerene Photovoltaic Heterojunction from Ab Initio Calculations. Nano Letters, 2007. 7(7): p. 1967-1972. 32. Giovannetti, G., et al., Doping Graphene with Metal Contacts. Physical Review Letters, 2008. 101(2): p. 026803. 33. Sofo, J.O., A.S. Chaudhari, and G.D. Barber, Graphane: A two-dimensional hydrocarbon. Physical Review B, 2007. 75(15): p. -. 34. Mkhoyan, K.A., et al., Atomic and Electronic Structure of Graphene-Oxide. Nano Letters, 2009. 9(3): p. 1058-1063. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46321 | - |
| dc.description.abstract | 在本論文中,根據第一原理,採用CASTEP 程式碼計算並討論不同混掺系統的介面性質,尤其關注混掺系統的電荷轉移行為與能帶排列。在此,我們選定聚噻吩/奈米碳管、聚噻吩/石墨烯與金/石墨烯做為我們研究的對象。電子結構有經過幾何結構最佳化調整,並列出不同系統的束縛能與分子間距資訊。根據計算結果,我們提出了一些影響混掺系統電荷轉移行為與能帶排列的重要因素,提供實驗上設計元件的參考。對於金屬/半導體的混掺系統,我們有列出其蕭特基能障之值。 | zh_TW |
| dc.description.abstract | In this thesis, we employed the first-principle calculations to investigate the interface properties of several hybrid systems using CASTEP code. We focus on the charge transfer behavior and the band alignment of each system. The hybrid systems we used including polythiophene/carbon nanotube, polythiophene/graphene and gold/graphene systems. The electronic structures, such as the binding energy and the intermolecular distance, were investigated and full-optimized. We suggest some factors may influence the charge transfer behavior and the band alignment of different hybrid systems. According to these details, we give some advices on designing devices. The Schottky barrier heights of different metal/semiconductor hybrid systems were also calculated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:03:29Z (GMT). No. of bitstreams: 1 ntu-99-R97527027-1.pdf: 13745616 bytes, checksum: 72f7bc94730a131b8bdf2fd042abbd92 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書
致謝 i 摘要 iii Abstract iv Table of Contents v Figures viii Tables xi Chapter 1 Introduction 1 Chapter 2 Theory 9 2.1 Origin 9 2.2 Overview of Density Functional Theory 9 2.3 Thomas-Fermi Model 11 2.4 Hohenberg-Kohn Theorem 11 2.5 Born-Oppenheimer Approximation 13 2.6 Kohn–Sham Equations 13 2.7 Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) 15 2.8 Self-Consistent Calculations 16 2.9 Cambridge Serial Total Energy Package (CASTEP) 17 2.10 Band Structure 18 2.11 Density of States (DOS) 19 2.12 Electron Density Difference 21 Chapter 3 Modeling and Calculation Method 25 3.1 Polythiophene and CNT 25 3.2 Maximum-Binding-Energy Method 28 3.3 Calculation Details 29 Chapter 4 P3ET/CNT Hybrid System 30 4.1 P3ET/Pristine CNT System 30 4.1.1 Modeling 30 4.1.2 Results and Discussions 31 4.1.3 Summary 33 4.2 P3ET/Surface-Modified CNT System 34 4.2.1 Modeling 34 4.2.2 Results and Discussions 35 4.2.3 Summary 44 4.3 P3ET/Acyl Chloride-Modified CNT System 45 4.3.1 Modeling 45 4.3.2 Results and Discussions 46 4.3.3 Summary 49 4.4 C60/ P3ET/Surface-Modified CNT System 50 4.4.1 Modeling 50 4.4.2 Results and Discussions 51 4.4.3 Summary 59 Chapter 5 P3ET/Graphene System 60 5.1 P3ET/Surfaced-Modified Graphene System 60 5.1.1 Modeling 60 5.1.2 Results and Discussions 62 5.1.3 Summary 64 5.2 P3ET/Doped Graphene System 65 5.2.1 Modeling 65 5.2.2 Results and Discussions 67 5.2.3 Summary 75 Chapter 6 Gold/Graphene System 77 6.1 Gold/Doped Graphene System 77 6.1.1 Modeling 77 6.1.2 Results and Discussions 79 6.1.3 Schottky Barrier Height 80 6.1.4 Summary 86 6.2 Gold/Graphane and Gold/Graphene Oxide System 88 6.2.1 Modeling 88 6.2.2 Results and Discussions 90 6.2.3 Schottky Barrier Height 92 6.2.4 Summary 97 Chapter 7 Conclusions 98 Reference 102 | |
| dc.language.iso | en | |
| dc.subject | 系統 | zh_TW |
| dc.subject | 蕭特基能障 | zh_TW |
| dc.subject | 吩 | zh_TW |
| dc.subject | 聚噻 | zh_TW |
| dc.subject | 能帶排列 | zh_TW |
| dc.subject | 混掺 | zh_TW |
| dc.subject | 電荷轉移行為 | zh_TW |
| dc.title | 以第一原理計算高分子/碳奈米混掺材料之介面電荷轉移行為 | zh_TW |
| dc.title | Interfacial Charge Transfer of Polymer/Nanocarbon Hybrids by First Principles Calculation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭錦龍,黃慶怡,李明憲,彭爭之 | |
| dc.subject.keyword | 混掺,系統,電荷轉移行為,能帶排列,聚噻,吩,蕭特基能障, | zh_TW |
| dc.subject.keyword | hybrid system,charge transfer behavior,band alignment,polythiophene,Schottky barrier, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 13.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
