請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46167
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成(Po-Cheng Kuo) | |
dc.contributor.author | Meng-Shiuan Wu | en |
dc.contributor.author | 巫孟軒 | zh_TW |
dc.date.accessioned | 2021-06-15T04:56:23Z | - |
dc.date.available | 2012-08-02 | |
dc.date.copyright | 2010-08-02 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | [ 1] T. Osaka, T. Asahi, and J. Kawaji, Elect. Acta. 50, 4576 (2005)
[ 2] 許仁華及孫安正,物理雙月刊,三十卷二期,152 (2008) [ 3] B. D. Cullity, “ INTRODUCTION TO MAGNETIC MATERIALS ”, Massachusetts : Addison-Wesley, 1972 [ 4] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998) [ 5] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997) [ 6] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999) [ 7] 楊志信,台灣資訊儲技術協會會刊,940403,1 (2005) [ 8] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977) [ 9] J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003) [ 10] M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005) [ 11] S. N. Piramanayagam, and K. Srinivasan, J. Magn. Magn. Mater., 321, 485 (2009) [ 12] J. D. Livingston, J. Appl. Phys., 52, 2544 (1981) [ 13] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn., 36, 10 (2000) [ 14] D. Weller and M. F. Doerner, Annu. Rev. Mater. Res., 30, 611 (2000) [ 15] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004) [ 16] J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett. 90, 042508 (2007) [ 17] C. C. Chiang, Chih-Huang Lai, and Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006) [ 18] D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn., 36, 10 (2000) [ 19] Thaddeus B. Massalski, The software of binary alloy of phase diagrams, 1990 [ 20] Y. Iijima, O. Taguchi, and K. Hirano, Trans. Japan Inst. Met., 21, 366 (1980) [ 21] Y. Yamada, W. P. Van Drent, E. N. Abarra, and T. Suzuki, J. Appl. Phys., 83, 6527 (1998) [ 22] R. A. MaCurrie and P. Gaunt, Philos. Mag., 13, 567 (1966) [ 23] Q. F. Xiao, E. Bruck, Z. D. Zhang, F. R. de Boer and K. H. J. Buschow, J. Appl. Phys. 91, 304 (2002) [ 24] P. W. Rooney, A. L. Shapiro, M. Q. Tran, and F. Hellman, Phys. Rev. Lett, 75,1843 (1995) [ 25] A. L. Shapiro, P. W. Rooney, M. Q. Tran, and F. Hellman, Phys. Rev. B 60,12 826 (1999) [ 26] M. Maret, M. C. Cadeville, R. Poinsot, A. Herr, E. Beaurepaire, C. Monier, J. Magn. Magn. Mater., 166, 45 (1997) [ 27] M. Maret, A. Maier, F. Treubel, B. Riedlinger, M.Albrecht, E. Beaurepaire, G. Schatz, J. Magn. Magn. Mater., 242-245, 420 (2002) [ 28] A. Maier, B. Riedlinger, F. Treubel, M. Maret, M.Albrecht, E. Beaurepaire, J. M. Tonnerre G. Schatz, J. Magn. Magn. Mater., 240, 377 (2002) [ 29] B. B. Maranville, and F. Hellman, Appl. Phys. Lett., 81, 4011 (2002) [ 30] B. B. Maranville,A. L. Shapiro, and F. Hellman, Appl. Phys. Lett., 81, 517 (2002) [ 31] J. A. Aboaf, S. R. Herd, and E. Klokholm, IEEE Trans. Magn., 19, 1514 (1983) [ 32] M. Ohkoshi, K. Tamari, S. Honda, IEEE Trans. Magn., 20, 788 (1984) [ 33] Shigeru Shiomo, Tomoki Nakakita, Tadashi Kobayashi, Jpn. J. Appl. Phys., 32, L1058 (1993) [ 34] Shigeru Shiomo, Hironori Okazawa, Tomoki Nakakita, Jpn. J. Appl. Phys., 32, L315 (1993) [ 35] Shigeru Shiomo, Tomoki Nakakita, Rika Tanaka, Jpn. J. Appl. Phys., 35, L213 (1996) [ 36] T. Shmatsu, H. Sato, J. Appl. Phys.,99, 08G908 (2006) [ 37] K. K. M. Pandey, J. S. Chen, G. M. Chow, B. C. Lim, J. Magn. Magn. Mater., 321, 3236 (2009) [ 38] H. Yuan, D. E. Laughlin, J. Appl. Phys., 105, 07A712 (2009) [ 39] M. Ghidini, A.Lodi-Rizzini, C.Pernechele, M.Solzi, R.Pellicelli, G.Zangari, P.Vavassori, J. Magn. Magn. Mater., 322, 1576 (2010) [ 40] E. Manios, V. Karanasos, D. Niarchos, and I. Panagiotopoulos, J. Magn. Magn. Mater., 272-276, 2169 (2004) [ 41] X.-H. Xu, Z.-G. Yang, and H.-S. Wu, J. Magn. Magn. Mater., 295, 106 (2005) [ 42] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater., 303, e246-e246 (2006) [ 43] F. T. Yuan, H. W. Chang, W. M. Liao, S. N. Hsiao, S. K. Chen, Y. D. Yao, and H. Y. Lee. J. Appl. Phys., 101, 09K526 (2007) [ 44] Zailin Yang, Lin Shi, Jun Ni, Thin Solid Films, 518, 4860 (2010) [ 45] M. Albrecht, M. Maret, A. Maier, F.Treuble, B Riedlinger, U. Mazur, G. Schatz, and S. Anders, J. Appl. Phys.,91, 8153 (2002) [ 46] D. Makarov, F. Klimenta, S. Fischer, F. Liscio, S. Schulze, M. Hietschold, M. Maret, and M. Albrecht J. Appl. Phys.,106, 114322 (2009) [ 47] X. H. Xu, Z. G. Yang, and H. S. Wu, J. Magn. Magn. Mater. 295 106-109 (2005) [ 48] E. P. Wohlfarth, “ FERROMAGNETIC MATERIALS ”, North-Holland Physics Publishing, 1988 [ 49] S. D. Willoughby, R. A. Stern, R. Duplessis, J. M. MacLaren, M. E. McHenry, and D. E. Laughlin, J. Appl. Phys., 93, 7145 (2003) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46167 | - |
dc.description.abstract | 本研究利用直流磁控濺鍍在玻璃基板上鍍製Co100-xPtx ( x = 20~70 )(25 nm)單層合金薄膜及Co100-xPtx ( x = 20~70 )(25 nm)/Ag(30~150 nm)雙層合金薄膜,觀察其顯微結構與磁性質之變化。
單層Co-rich CoPt薄膜在300℃退火後為hcp相,具有較大之磁滯曲線及較佳之垂直膜面磁性質;單層CoPt薄膜在700℃退火30分鐘後由低溫之fcc相轉為L10序化相,可以得到較佳之磁性質;單層Pt-rich CoPt薄膜在500℃退火30分鐘後為fcc相,具有較好之垂直膜面磁性質。 在300℃真空退火後,由於Co-rich CoPt/Ag(30~150 nm)發生由hcp轉為fcc之相變化使得磁性質較原本單層Co-rich CoPt薄膜不理想。在600℃真空退火後,CoPt/Ag(30~150 nm)雙層薄膜有序化之L10硬磁相出現並具有垂直膜面方向磁異向性,在引入Ag底層後序化溫度較CoPt單層薄膜降低約100℃。CoPt(25 nm)/Ag(30 nm)薄膜於700℃退火30分鐘後有較佳之垂直膜面方向磁性質,Hc⊥為16.6 kOe、Hc//為10.5 kOe,S⊥為0.87、S//為0.4。在700℃真空退火後,Pt-rich CoPt/Ag(150 nm)雙層合金薄膜具有垂直膜面磁異向性,Hc⊥為6.9 kOe、Hc//為5.4 kOe,S⊥為0.75、S//為0.48,這是由於具有相同晶體結構但不同晶格常數的Co-rich及Pt-rich CoPt微細晶粒偏析在Ag3Pt晶界上,晶格不匹配產生之應力破壞了立方晶的對稱性使其具有單軸磁異向性。 | zh_TW |
dc.description.abstract | The magnetic properties and microstructure of 25-nm-thick Co100-xPtx ( x = 20~70 ) alloy thin films grown on glass substrate as well as on 30~150 nm Ag under layer were investigated. These metal films were deposited by DC sputtering at a base pressure about 5×10-7 torr.
The Co-rich CoPt single-layer alloy thin film with hcp phase after annealing at 300℃ shows large hysteresis loop and better out-of-plane magnetic properties. CoPt single-layer alloy thin film with L10 phase after annealing at 700℃ shows better magnetic properties. For Pt-rich CoPt single-layer alloy thin film with fcc phase after annealing at 500℃ shows better magnetic properties. After 300℃ post vacuum annealing, the phase of Co-rich CoPt/Ag(30~150 nm) alloy thin film will change from hcp to fcc and magnetic properties become worse than Co-rich CoPt single-layer alloy thin film. After 600℃ post vacuum annealing, CoPt/Ag(30~150 nm) alloy thin film shows L10 hard magnetic phase and out-of-plane magnetic anisotropy. The ordering temperature is 100℃lower than that of CoPt single-layer alloy thin film after inducing Ag under layer. The 700℃ annealed CoPt(25 nm)/Ag(30 nm) thin film improves magnetic properties, Hc⊥ = 16.6 kOe, Hc// = 10.5 kOe, S⊥= 0.87, and S// = 0.4 . After 700℃ post vacuum annealing, Pt-rich CoPt/Ag alloy thin film shows out-of-plane magnetic anisotropy by segregation of small Co-rich and Pt-rich CoPt grains on the grain boundary of Ag3Pt, those have the same lattice structure but different lattice parameter, and the stress of lattice mismatch breaks the symmetry of the cubic phase, so, presenting uniaxial magnetic anisotropy . The magnetic properties of 700℃ annealed Pt-rich CoPt/Ag(150 nm) alloy thin film are Hc⊥= 6.8 kOe, Hc// = 5.3 kOe, S⊥ = 0.75, and S// = 0.48 . | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:56:23Z (GMT). No. of bitstreams: 1 ntu-99-R97527029-1.pdf: 64986280 bytes, checksum: 0a79544d10ab49f269f1200e6250ab40 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 論文審定書 I
誌謝 II 摘要 III Abstract IV 第一章 前言 1 第二章 理論基礎與文獻回顧 4 2-1理論基礎 4 2-1-1 磁記錄的原理與挑戰 4 2-1-2 垂直磁記錄 5 2-1-3 磁異向性 5 2-1-4 顆粒尺寸與矯頑磁力之關係 6 2-1-5 磁紀錄材料Co100-xPtx合金 7 2-2 文獻回顧 8 2-2-1 Co3Pt高磁異向性薄膜 8 2-2-2 CoPt高磁異向性薄膜 9 2-2-3 CoPt3高磁異向性薄膜 11 2-2-4 Co100-xPtx合金薄膜 12 2-3 研究方向 12 第三章 實驗方法 17 3-1 實驗流程 17 3-2 靶材選取 18 3-3基板選取與基板清洗 18 3-3-1 基板選取 18 3-3-2 基板清洗 18 3-4 實驗裝置及薄膜製備 19 3-4-1 實驗裝置 19 3-4-2 薄膜濺鍍 19 3-4-3 退火步驟 20 3-5 磁性質分析 21 3-6 薄膜之化學組成分析 21 3-6-1 EDS成份分析 22 3-6-2 EPMA電子探測微分析 22 3-7 AFM厚度及表面形貌分析 22 3-8 微結構分析 23 3-8-1 X光繞射分析 23 3-8-2 TEM微結構觀察 23 第四章 實驗結果與討論 33 4-1 Co100-xPtx單層薄膜 33 4-1-1 Co100-xPtx單層薄膜之製作 33 4-1-2退火溫度對Co100-xPtx單層薄膜之磁性質與微結構影響 33 4-2 Co100-xPtx/Ag雙層薄膜 37 4-2-1 Co100-xPtx/Ag雙層薄膜之製作 37 4-2-2退火溫度對Co100-xPtx/Ag(30 nm)雙層薄膜磁性質與微結構之影響 37 4-2-3退火溫度對Co100-xPtx/Ag(90 nm)雙層薄膜磁性質與微結構之影響 43 4-2-4退火溫度對Co100-xPtx/Ag(150 nm)雙層薄膜磁性質與微結構之影響 48 4-3 Ag底層厚度對Co100-xPtx /Ag雙層薄膜磁性質與微結構之影響 54 4-3-1 CoPt3/Ag薄膜 55 4-3-2 CoPt/Ag薄膜 56 4-3-3 Co3Pt/Ag薄膜 57 第五章 結論 131 第六章 參考文獻 132 | |
dc.language.iso | zh-TW | |
dc.title | Co100-xPtx單層薄膜與Co100-xPtx/Ag雙層薄膜之顯微結構與磁性質研究 | zh_TW |
dc.title | The study of microstructures and magnetic properties of Co100-xPtx and Co100-xPtx/Ag alloy thin films | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃暉理,陳勝吉 | |
dc.subject.keyword | Co-Pt,Ag,垂直磁紀錄, | zh_TW |
dc.subject.keyword | Co-Pt,Ag,magnetic properties and microstructure, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 63.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。