請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞碧 | |
| dc.contributor.author | Ling-Lan Lien | en |
| dc.contributor.author | 連鈴嵐 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:54:34Z | - |
| dc.date.available | 2013-08-05 | |
| dc.date.copyright | 2010-08-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-29 | |
| dc.identifier.citation | 江啟銘:I、不同生長期及不同部位之豌豆植物之果膠酯酶同功酶之消長及其純
化、生理意義及應用性之研究,II、果膠酯酶反應機制之研究。國立台灣大 學農業化學研究所博士論文 (1996)。 吳祝和:果膠質及其在食品之應用。食品資訊 (1994)。97:32-35。 李靜雯:番茄及柳橙果膠酯酶所催化轉醯基反應之探討。台灣大學食品科技研究 所碩士論文 (2002)。 洪秀玲:不同酯化度之區段型與隨意型去酯化果膠之製備及物化性質比較。國立 台灣大學食品科技研究所博士論文 (1995)。 侯文琪:I、豌豆植物之果膠鍵結模式之研究,II、豌豆植物之果膠酯酶及果 膠酸甲基化酵素之分離及反應機制之研究。國立台灣大學農業化學研究所碩 士論文 (1994)。 柯文慶:果膠之凝膠與果醬製造。食品工業 (1985)。17(12):12-17。 張基郁:敏豆莢在烹煮過程中質地變化與果膠質化學變化之相關性及果膠分子間交互作用模式之研究。國立台灣大學食品科技研究所博士論文 (1990)。 楊秀美:大豆芽果膠酯酶之性質研究。台大食科所博士論文 (1991)。 賴盈璋:愛玉子果膠酯酶所催化轉醯基反應與愛玉子瘦果中所存在抑制劑之探 討。台大農化所碩士論文 (1998)。 賴麗絨:豌豆莢之烹煮特性及其中溫預煮硬化效應有關因素-果膠質與果膠酯酶之研究。台大農化所碩士論文 (1991)。 蕭文玲:豌豆莢之烹煮特性及其中溫預煮硬化效應有關因素— 果膠質與果膠酯酶 之研究。台大農化所碩士論文 (1995)。 鐘智育:豌豆莢果膠酯酶所催化轉醯基反應與其應用於仿製愛玉凍之可行性探 討。國立台灣大學農業化學研究所碩士論文 (1996)。 Aso, K.; Uemura, T.; Shiokawa, Y. Protease-catalyzed synthesed of oligo-L-glutamic acid from L-glutamic acid dieth-ylester. Agric. Biol. Chem. 1988, 52, 2443-2448. Axelos, M. A. V.; Thibault, J. F. The Chemistry of low-methoxyl pectin gelation. In “The Chemistry and Technology of Pectin ”. Ed. By Walter, R. H. Academic Press, New York. 1991, P.135-164. Balestrier, C.; Castaldo, D.; Giovane, A.; Quagliuolo, L.; Servillo, L. A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur. J. Biochem. 1990, 193, 183-187. Barnes, M. F.; Patchett, B. J. Cell wall degrading enzymes and the softening of senescent strawberry fruit. J Food Sci. 1976, 41, 1392-1397. Barrera, A. M.; Ramírez, J. J.; González-Cabriales, Vázquez, M. Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocoll. 2002, 16, 441-447. BeMiller, J. N. An Introduction to pectins:structure and properties. In “Chemistry and Function of Pectins”. Ed. By Fishman, M. L.; Jen, J. J. American Chemical Society press, Florida. 1986, 2-12. Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal Biochem. 1973, 54, 484-489. Bordenave, M.; Goldberg, R. Purification and characterization of pectin methylesterase from mung bean hypocotyl cell wall. Phytochem. 1993, 33, 999-1003. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254. Brady, C. J. The pectinesterase of the pulp of banana fruit. Aust. J. Plant Physiol. 1976, 3, 163-172. Brown, H. C.; Narasimhan, S.; Choi, Y. M. Selective reductions. 30. Effect of cation and solvent on the reactivity of saline borohydrides for reduction of carboxylic esters. Improved procedures for the conversion of esters to alcohols by metal borohydrides. J. Org. Chem. 1989, 47, 4702. Buchala, A. J.; Wilkie, K. C. B. Uronic acid residues in the total hemicelluloses of oats. Phytochem. 1973, 12, 655. Bulone, D.; Martorana, V.; Xiao, C.; San Biagio, P. L. Role of Sucrose in Pectin Gelation: Static and Dynamic Light Scattering Experiments. Macromolecules. 2002, 35, 8147-8151. Cameron, R. G.; Baker, R. A.; Grohmann, K. Multiple forms of pectinmethylesterase from citrus peel and their effects on juice cloud stability. J. Food Sci. 1998, 63, 253-256. Cameron, R. G.; Savary, B. J.; Hotchkiss, A. T.; Fishman, M. L.; Chau, H. K.; Baker, R. A.; Grohmann, K. Separation and characterization of a salt-dependent pectin methylesterase from Citrus sinensis var. Valencia fruit tissue. J. Agric. Food Chem. 2003, 51, 2070-2075. Castaldo, D.; Quagliuolo, L.; Servillo, L.; Balestrieri, C.; Giovane, A. Isolation and characterization of pectin methylesterase from apple fruit. J. Food Sci. 1989, 54, 653-655. Castro, S. M.; Van Loey, A.; Saraiva, J. A.; Smout, C.; Hendrickx, M. Activity and process stability of purified green pepper (Capsicum annuum) pectin methylesterase. J. Agric. Food Chem. 2004, 52, 5724-5729. Chang, K. C.; Miyamoto, A. Gelling characteristics of pectin from sunflower head residues. J. Food Sci. 1992, 57, 1435-1438, 1443. Chang, L. W. S.; Norita, L. L.; Yamamato, H. Y. Papaya pectinesterase inhibition by sucrose. J. Food Sci. 1965, 30, 218-225. Christensen, S. H. Pectins. In ”Food Hydrocolloids”. Ed. Glicksman M. CRC Press, Inc. Florida. 1986, P.205. Christensen, S. H.; Mathiesen, H. P.; Hansen, K. M. Pectin for heat stable bakery jams. US Patent 0166465A1. 2008. Christina, K.; Munz, M.; Schieber, Andreas.; Carle, R. Determination of the fruit content of apricot and strawberry jams and spreads and apricot and peach fruit preparations by gravimetric quantification of hemicellulose. Food Chem. 2008, 109, 447-454. Collins, J. L. Pectin methyl esterase activity in southern pears (Vigna sinensis). J. Food Sci. 1970, 35, 1-4. Dahodwala, S.; Humphery, A.; Weibel, M. Pectic enzymes:Individual and concerted kinetic behavior of pectinesterase and pectinase. J. Food Sci. 1974, 39, 920-926. Delincée, H.; Radola, B. J. Some size and charge properties of tomato pectinmethylesterase. Biochem. Biophys. Acta. 1970, 214, 178-189. Delincée, H. Thin-layer isoelectric focusing of multiple forms of tomato pectinesterase. Phytochem. 1976, 15, 903-906. Deuel, H.; Stutz, E. Pectic substances and pectic enzymes. Adv. Enzymol. 1985, 20, 341-346. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Reber, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956, 28, 350-356. Fogarty, W. M.; Kelly, C. T. Pectic enzymes. In ”Microbial Enzymes and Biotechnology”. Ed. By Fogarty WM. Applied Science Publisher, London. 1983, P.131. Furda, I. Interaction of pectinaceous dietary fietary fiber with somemetals and lipids. In“Dietary Fibers: Chemistry and Nutrition”. Inglett, GE. Academic Prass, Inc. New York. 1979. Giovane, A.; Quagliuolo, L.; Castaldo, D.; Servillo, L.; Balestrieri, C. Pectin methylesterase from Actinidia chinensis fruits. Phytochem. 1990, 29, 2821-2823. Glicksman, M. Pectins. In ”Gum Technology in the Food Industry”. Ed. By Glicksman, M. Academic Press, New York. 1969, P.159-190. Goldberg, R. Changes in the properties of cell wall pectin methylesterase along the Vigna radiata hypocotyl. Physiol. Plant. 1984, 61, 58-63. Goldberg, R.; Pierron, M.; Durand, L.; Mutaftschiev, S. In vitro and in sity properties of cell wall pectin methylesterase from mung bean hypocotyls. J. Exp. Bot. 1992, 43, 41-46. Guilherme, M. R.; Moia, T. A.; Reis, A. V.; Paulino, A. T.; Rubira, A. F.; Mattoso, L. H. C.; Muniz, E. C.; Tambourgi, E. B. Synthesis and water absorption transport mechanism of a pH-sensitive polymer network structured on vinyl - functionalized pectin. Biomacromol. 2009, 10, 190-196. Homandberg, G. A.; Mattis, J. A.; laskowski, M. J. Synthesis of peptide bonds by proteinase. Addition of organic solvents shifts peptide bond equilibria toward synthesis. Biochem. 1978, 17, 5220-5225. Hou, W. C.; Chang, W. H.; Jiang, C. M. Qualitative distinction of carboxyl group distributions in pectins with ruthenium red. Bot. Bull. Acad. Sin. 1999, 40, 115-119. Hsu, C. P.; Deshpande, S. N.; Desrosier, N. W. Role of pectin methylesterase in firmness of canned tomatoes. J. Food Sci. 1965, 30, 483-488. Hultin, H. O.; Levine, A. S. On the occurrence of multiple molecular forms of pectinesterase. Arch. Biochem. Biophys. 1963, 101, 396-402. Hwang, J. Y.; Lee, C. W.; Wu, M. C.; Chang, H. M. Transacylation and de-esterification reactions of pectin as catalyzed by pectinesterases from tomato and citrus. J. Agric. Food Chem. 2003, 51, 6287-6292. Jiang, C. M.; Lai, Y. J.; Lee, B. H.; Chang, W. H.; Chang, H. M. De-esterification and transacylation reactions of pectinesterase from jelly fig (Ficus awkeotsang Makino) achenes. J. Food Sci. 2001a, 66, 1-6. Jiang, C. M.; Wu, M. C.; Chang, W. H.; Chang, H. M. 2001b. Change in particle size of pectin reacted with pectinesterase isozymes from pea (Pisum sativum L.) sprout. J. Agric. Food Chem. 2001b, 49, 4383-4387. Jansen, E. F.; Jang, R.; Bonner, J. Binding of enzymes to avena coleoptile cell wall. Plant Physiol. 1960, 35, 567-581. Keggstra, K.; Talmadge, K. W.; Bauer, W. D.; Albersheim, B. The structure of plant cell walls. Plant Physiol. 1973, 51, 188-197. Kertesz, Z. I. Pectic enzymes. In “Methods in Enzymology”. Academic Press, Inc. New York. 1951, 158. Kim, W. J.; Rao, V. N. M.; Smit, C. J. B. Effect of chemical composition on compressive mechanical properties of low ester pectin gel. J. Food Sci. 1978, 43, 572-557. Kim, W. J.; Smit, C. J. B.; Rao, V. N. M. Demethylation of pectin using acid and ammonia. J. Food Sci. 1978, 43, 74-78. Klavons, J. A.; Bennett, R. D. Determination of methanol using alcohol oxidase and its application to methylester content of pectins. J. Agric. Food Chem. 1986, 34, 597. Kohn, R.; Furda, I.; Kopec, Z. Distribution of free carboxyl groups in the pectin molecule after treatment with pectin esterase. Collect. Czech. Chem. Commun. 1968, 33, 264-269. Kohn, R.; Markovic, O.; Machova, E. Deesterification mode of pectin by pectin esterase of Aspergillus foetidus , tomatoes and alfalfa. Collect. Czech. Chem. Commun. 1983, 48, 790-797. Komae, K.; Sone, Y.; Kakuta, M.; Misaki, A. Purification and characterization of pectinesterase from Ficus awkeotsang. Agric. Biol. Chem. 1990, 54, 1469-1476. Korner, B.; Zimmermann, G.; Berk, Z. Orange pectinesterase : Purification, properties and effect on cloud stability. J. Food Sci. 1980, 45, 1203-1206. Kopjar, M.; Pilizota, V.; Tiban, N. N.; Subaric, D.; Babic, J.; Ackar, D.; Sajdl, M. Strawberry jams: influence of different pectins on colour and textural properties. Czech. J. Food Sci. 2009, 27, 20-28. Kulp, K. Carbohydrate. In “Enzymes in Food Processing”. Reed, G, editor. Academic Press, Inc. New York. 1975, 107-112. Lam, T. B. T.; Ilyama, K.; Stone, B. A. Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochem. 1992, 31, 1179. Lee, C. W.; Wu, M. C.; Lee, B. H.; Jiang, C. M.; Chang, H. M. Changes in molecular weight of transacylated pectin catalyzed by tomato and citrus pectinesterases as determined by gel permeation chromatography. J. Agric. Food Chem. 2003, 51, 5455-5461. Lee, M.; MacMillan, J. D. Mode of action of pectin enzymes. Ⅰ. Purification and certain properties of tomato pectinesterase. Biochem. 1968, 7, 4005-4010. Li, D. Y.; Borkman, R. F.; Wang, R. H.; Dillon, J. Mechnisms of photochemically produced turbidity in lens protein solutions. Experimental Eye. Res. 1990, 51, 663-670. Liao, M. L.; Lam, B. T.; Evans, J.; Lambrides, C.; Bacic, A. Low-methoxy pectin of sunflower biomass. 14th Australian sunflower association conference proceedings. 2003. (on line) Lin, T. P.; Liu, C. C.; Huang, R. S.; Wang, W. Y.; Feng, T. Y. Induction of pectin methylesterase in the pericarp of achenes of the jelly-fig Ficus awkeotsang Makino. Plant Cell Physiol. 1990, 31, 533-537. Lin, T. P.; Liu, C. C.; Wang, W. Y. Purification and characterization of pectin methylesterase from Ficus awkeotsang Makino achenes. Plant Physio. 1989, 91, 1445-1453. Linewaver, H.; Ballon, G. A. The effect of cations on the activity of alfalfa pectinesterase (pectase). Arch. Biochem. Biophys. 1945, 6, 373-387. Lourenco, E. J.; Catutani, A. T. Purification and properties of pectinesterase from papaya. J. Sci. Food Agric. 1984, 35, 1120-1127. MacDinnell, R.; Jang, R.; Jansen, E. F.; Lineweaver, H. The specificity of pectonesterase from severl source with come notes on purification of orange pectinesterase. Arch. Biochem. 1950, 28, 260-273. MacDonald, H. M.; Evans, R.; Spencer, W. J. Purification and properties of the major pectinesterase in lemon fruits (Citrus limon). J. Sci. Food Agric. 1993, 62, 163-168. MacDonnell, L. R.; Jansen, E. F.; Lineweaver, H. The properties of orange pectinesterase. Arch. Biochem. Biophys. 1945, 6, 389-401. Manabe, M. Purification and properties of citrus natsudaidai pectinesterase. Agric. Biol. Chem. 1973, 37, 1487-1492. Markovic, O.; Heinrichova, K.; Lenkey, B. Pectolytic enzymes from banana. Collect. Czech. Chem. Commun. 1975, 40, 769-774. Markovic, O.; Jornvall, H. Pectinesterase. The primary structure of the tomato enzyme. Eur. J. Biochem. 1986, 158, 455-462. Markovic, O. Pectinesterase from carrot (Daucus carrota L.). Experientia. 1978, 34, 561-562. Markovic, O.; Patocka, J. Action of iodine on the tomato pectinesterase. Experientia. 1977, 33, 711-713. Markovic, O.; Slezarik, A. Isolation and partial characterization of pectinesterase from tomatoes. Collect. Czech. Chem. Commun. 1969, 34, 3820-3825. Maness, N. O.; Ryan, J. D.; Mort, A. J. Determination of the degree of methyl esterification of pectins in small samples by selective reduction of eserified galacturonic acid to galactose. Anal. Biochem. 1990, 185, 346. McCready, R. M.; Seegmiller, C. G. Action of pectic enzymes on oligogalacturonic acids and some of their derivatives. Arch Biochem Biophy. 1954, 50, 440-450. Mesbahi, G.; Jamalian, J.; Farahnaky, A. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocoll. 2005, 19, 731-738. Morris, G. A.; Foster, T. J.; Harding, S. E. The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocoll. 2000, 14, 227-235. Moustacas, A.; Nari, J.; Diamantidis, G.; Noat, G.; Grasnier, M.; Borel, M.; Ricard, J. 1. Electrostatic effects and the dynamics of enzyme reactions at the source of plant cell wall. 2. The role of pectin methyl esterase in the modul action of electrosatic effects in soybean cell walls. Eur. J. Biochem. 1986, 155, 191-197. Nari, J.; Noat, G.; Richard, J. Pectinmethylesterase, metal ions, and plant cell-wall extension. Biochem. J. 1991, 279, 343-350. Nakagawa, H.; Yanagawa, Y.; Takehana, H. Studies on the pectolytic enzyme. Part V. Some properties of the purified tomato pectin methylesterase. Agric. Biol. Chem. 1970, 34, 998-1003. Norsker, M.; Jensen, M.; Adler-Nissen, J. Enzymatic gelation of sugar beet pectin in food products. Food Hydrocoll. 2000, 14, 237-243. Northcote, D. H. Chemistry of the plant cell wall. Ann. Rev. Plant Physiol. 1972, 23, 113-132. Oakenfull, D.; Scott, A. Hydrophobic interaction in the gelation of high methoxyl pectin. J. Food Sci. 1984, 49, 1093-1098. Rexova-Benkovaq, L.; Markovic, O. Pectic enzymes. In “Advancesin Carbohydrate Chemistry and Biochemistry”. Tipson RS, Horton RS, editor. Academic Press, Inc. New York. 1976. Rillo, L.; Castaldo, D.; Giovane, A.; Servillo, L.; Balestrieri, C.; Quagliuolo, L. Purification and properties of pectin methylesterase from Mandarin orange fruit. J. Agric. Food Chem. 1992, 40, 591-593. Pilnik, W.; Voragen, A. G. J. Gelling agents (pectins) from plants for the food industry, in Advances in Plant Cell Biochemistry and Biotechnology, ed. by Morrison IM. JAI Press, London. 1992. 219-270. Rinaudo, M. Effect of chemical structure of pectins on their interactions with calcium. In “Plant Cell Wall Polymers Biogenesis and Biodegradation”. Ed. By Lewis, N. G.; Paice, M. ACS Symposum Series 339. Washington, DC. 1989, P.330. Roe, B.; Bruemmer, J. H. Change in pectic substances and enzymes during ripening and storage of “Keitt” mangoes. J. Food Sci. 1981, 46, 186-189. Rouse, A. H.; Atkins, C. D.; Moore, E. L. Seasonal changes occurring in the pectinesterase activity and pectin constituents of the component parts of citrus fruits. I. Valencia oranges. J. Food Sci. 1962, 48, 419. Schmelter, T.; Wientjes, R.; Vreeker, R.; Klaffke, W. Enzymatic modifications of pectins and the impact on their rheological properties. Carbohydr. Polym. 2002, 47, 99-108. Seymour, T. A.; Preston, J. F.; Wicker, L.; Lindsay, J. A.; Wei, C. I.; Marshall, M. R. Stability of pectinesterases of marsh white grapefruit pulp. J. Agric. Food Chem. 1991, 39, 1075-1079. Solms, J.; Deuel, H. Uber den Mechanismus der enzymatischen Verseifung von Pektinstoffen. Helv Chim Acta. 1955, 38, 321-329. Taylor, A. J. Intramolecular distribution of carboxyl groups in low methoxyl pectins-a review. Carbohydr. polym. 1982, 2, 9-13. Theron, T.; DE, Villier. O. T.; Schmidt, A. A. Purification of methylesterase from santa rosa plums. Agrochemophysica. 1977a, 9, 7-15. Theron, T.; DE, Villier. O. T.; Schmidt, A. A. Isolation and purification of pectin methylesterase from marvel tomatoes. Agrochemophysica. 1977b, 9, 93-97. Towle, G. A.; Christensen, O. Pectin. In “Industrial gums” Ed. Whistler, R. L.; BeMiller, J. N. Academic Press, New York. 1973, 429-461. Tsoga, A.; Richardson, R. K.; Morris, E. R. Role of cosolutes in gelation of high-methoxy pectin. Part 1. Comparison of sugars and polyols. Food Hydrocoll .2004, 18, 907-919. Tucker, G. A.; Robertson, N. G.; Grierson, D. Purification and changes in activities of tomato pectinesterase isozymes. J. Sc.i Food Agric. 1982, 33, 396-400. Uemura, T.; Fujimori, M.; Le, H. H.; Ikeda, S.; Aso, K. Polyethylene glycol-modified papain catalyzed oligopeptide synthesis from the esters of L-aspartic and L-glutamic acids in benzene. Agric. Biol. Chem. 1990, 54, 2277-2282. Versteeg, C.; Rombouts, F. M.; Pilnik, W. Purification and some characteristics of two pectinesterase isozymes from orange. Lebensm. Wiss. Technol. 1978, 11, 267. Vilarino, C.; Delgiorgio, J. F.; Hours, R. A.; Cascone, O. Spectrophotometric method for fungal pectinesterase activity determination. Lebensm. Wiss. Technol. 1993, 26, 107-110. Walkinshaw, M. D.; Arnott, S. Conformations and interactions of pectins. I. X-ray diffraction analysis of sodium pectate in neutral and acidified forms. J. Mol. Biol. 1981b, 153, 1055. Walkinshaw, M. D.; Arnott, S. Conformations and interactions of pectins. II. Models for junction zones in pectins acid and calcium pectate gels. J. Mol. Biol. 1981a, 153, 1075-1085. Wegrzyn, T. F.; MacRae, E. A. Pectinesterase, polygalacturinase and β-galactosidase during softening ofethy len-treated kiwifruit. Hortic. Sci. 1992, 27, 900-902. Wood, P. J.; Siddiqui, I. R. Determination of methanol and its application to measurement of pectin ester content and pectin methylesterase activity. Anal. Biochem. 1971, 39, 418-428. Wu, M. C.; Chen, Y. W.; Hwang, J. Y.; Lee, B. H.; Chang, H. M. Transacylation of citrus pectin as catalyzed by pectinesterase from tendril shoots of chayote [Sechium edule (Jacq.) Swartz]. Food Res. Int. 2004, 37, 759-765. Yao, L. H.; Su, C. G.; Qi, L.; Liu, C.; Hu, Y.; Zhao, H. The substituent structures and characteristic infrared spectra of alpha-furan esters. Spectroscopy Spectral Anal. 1999, 19, 32-34. Yokotsuka, K.; Singleton, V. L. Interactive precipitation between phenolic fraction and peptides in wine-like model solution : turbidity, particle size, and residual content as influenced by pH, temperature and peptide concentration. Am. J. Enol. Vitic. 1995, 46, 329-338. Yoo, S. H.; Fishman, M. L.; Savary, B. J.; Hotchkiss, Jr, A. T. Monovalent salt - induced gelation of enzymatically deesterified pectin. J. Agric. Food Chem. 2003, 51, 7410-7417. Yoo, Y. H.; Lee, S.; Kim, Y.; Kim, K. O.; Kim, Y. S.; Yoo, S. H. Functional characterization of the gels prepared with pectin methylesterase (PME)-treated pectins. Int. J. Biol. Macromol. 2009, 45, 226-230. Zimmerman, R. E. A rapid assay for pectinesterase activity which can be used as a prescreen for pectinesterase inhibitors. Anal. Biochem. 1978, 85, 219-223. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46119 | - |
| dc.description.abstract | 果膠是許多植物細胞壁中重要的一種多醣體,也是食品工業中常見的成膠劑,廣泛地應用於生產果醬、果凍等製品。前人研究指出果膠酯酶除可降解果膠甲氧基酯鍵外,亦可催化轉醯化反應 (transacylation)可使果膠分子間產生新的非甲氧基酯鍵,使果膠的分子量變大,促進果膠溶液黏度增加。故本研究擬利用果膠酯酶催化果膠分子間之轉醯基反應,以達到降低果醬之需糖量。並在含有NaCl之模式系統下,以濁度、黏度及凝膠特性變化之偵測來探討添加PME、Ca3(PO4)2、 EDTA 及檸檬酸與否對果膠酯酶轉醯化反應之影響,及低糖果醬製作之可行性。
研究發現,PME-pectin-EDTA solution比 pectin solution有較高之黏度,此外PME-pectin solutions在添加 EDTA 或檸檬酸後,果膠溶液中金屬離子被螯合,其濁度值增加,得知此時果膠酯酶較傾向催化轉醯化反應。利用PME 修飾之果膠製作含糖 30% 之果醬,其黏度範圍相當於與柑橘果膠溶液 (未添加PME,含糖量55% ~ 60%) 及市售果醬 (含糖量58% ~ 92%)。 FT-IR 非甲氧基酯鍵之生成研究結果顯示柳橙 PME 具催化轉醯化反應之能力;利用經 PME 修飾後的果膠製作含糖量30%的低糖果醬,其黏度可達市售果醬的黏度範圍,即利用經轉醯化後的果膠製做果醬可達到低糖低熱量果醬之目的。 | zh_TW |
| dc.description.abstract | Transacylation between pectin molecules may increase the viscosity of pectin solution. The present study was to investigate the feasibility of using pectin methyl esterase (PME) catalyzed transacylation reaction between pectin molecules to reduce the demand of sugar in jam making. Model solutions of citrus pectin added with NaCl, with and without PME, Ca3(PO4)2, EDTA and citric acid, were prepared and incubated for the enzymatic reaction to proceed.
Higher viscosity in PME-pectin-EDTA solution as compared with the pectin solution indicates the occurrence of PME-catalyzed transacylation. The turbidity readings of the PME-pectin solutions were increased after the addition of EDTA or citric acid, indicating that the chelation of metal ions promotes more transacylation than deesterification and reconfirming the occurrence of transacylation in the system. Jam prepared from PME-modified citrus pectin at 300 g L-1 sucrose content was found to be in the same range of viscosity as the jam from untreated citrus pectin at 550~600 g L-1 sucrose content and commercial fruit jams at 580~920 g L-1 sugar content. We conclude that it is technically feasible to use transacylated pectin in the making of a jam with reduced sugar content. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:54:34Z (GMT). No. of bitstreams: 1 ntu-99-R97641022-1.pdf: 6087321 bytes, checksum: ffe949ff0e44c0a660167e7cd267940e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………….. I
英文摘要………………………………………………………………………….. II 目錄……………………………………………………………………………….. Ⅲ 圖次……………………………………………………………………………….. VⅢ 表次……………………………………………………………………………….. Х 第一章、前言……………………………………………………………………… 1 第二章、文獻整理………………………………………………………………… 2 壹、果膠酯酶………………………………………............................................ 2 一、果膠酯酶及其作用…………………………………………………........ 2 二、果膠酯酶作用方式及基質專一性..…...................................................... 4 1. PME之作用方式................................................................................. 4 2.基質專一性........................................................................................... 8 貳、果膠酯酶的理化性質.................................................................................... 8 一、分子量和等電點........................................................................................ 8 二、果膠酯酶之化學組成................................................................................ 10 參、果膠酯酶活性測定及影響PE活性之因素.................................................. 10 一、果膠酯酶(PME)活性的測定方式............................................................. 10 1.酸鹼滴定法 (acid-base titration).......................................................... 10 2.比色法 (colorimetry)............................................................................ 10 3.呈色法 (color identification test)......................................................... 11 4.氣相層析法........................................................................................... 11 二、影響果膠酯酶活性的因子探討................................................................. 11 1.pH........................................................................................................... 11 2.溫度........................................................................................................ 12 3.金屬離子之種類和濃度........................................................................ 12 4.產物抑制作用........................................................................................ 12 5.糖類........................................................................................................ 14 6.其他抑制劑............................................................................................ 14 肆、果膠(物)質...................................................................................................... 15 一、果膠的理化特性......................................................................................... 15 1.化學性質................................................................................................ 15 2.物理性質................................................................................................ 15 二、果膠質之化學組成及分子結構................................................................. 15 1.果膠質之化學組成................................................................................ 15 2.酯化度.................................................................................................... 18 3.果膠之凝膠性........................................................................................ 18 (1)高甲氧基果膠之凝膠原理.............................................................. 18 (2)低甲氧基果膠之凝膠原理.............................................................. 20 4.果膠之分子結構.................................................................................... 23 三、果膠在食品上之應用................................................................................. 24 第三章、材料與方法................................................................................................. 25 壹、實驗材料......................................................................................................... 25 一、萃取果膠酯酶原料..................................................................................... 25 二、市售果醬..................................................................................................... 25 貳、試藥................................................................................................................. 25 參、儀器設備......................................................................................................... 26 肆、實驗架構......................................................................................................... 28 伍、實驗方法......................................................................................................... 29 一、柳橙PME之萃取....................................................................................... 29 1.PME粗酵素液之萃取........................................................................... 29 2.硫酸銨劃分............................................................................................ 29 二、PME活性測定方法.................................................................................... 29 1.酸鹼滴定法............................................................................................ 29 三、蛋白質定量法............................................................................................ 30 1.標準分析法............................................................................................ 30 2.微量分析法………………………………………………………….... 30 四、柳橙PME催化轉醯化 (transacylation) 反應條件之探討...................... 31 1.濁度測定…………………………………………………………….... 31 2.黏度測定................................................................................................ 31 五、PME修飾果膠之製備........………………………................................... 35 六、膠強度之測定…………………………………………………………..... 35 七、膠體離水性 (Syneresis) 之測定………………………..............……..... 35 八、質地分析 (Texture profile analysis;TPA)…………………………….... 37 九、果膠酯化程度 (degree of esterification;DE) 之測定.............................. 37 十、果膠中總酯鍵之測定及非甲酯鍵之計算................................................. 38 1.果膠中總酯鍵 (Total ester linkage) 含量之測定................................ 38 2.果膠中非甲酯鍵 (Non-methoxy ester linkage) 之計算...................... 39 3.計算公式................................................................................................ 39 十一、紅外線光譜分析 (Fourier transform-infrared;FT-IR)............................. 39 十二、粒徑分析 (Particle Size Analysis)............................................................. 40 十三、市售果膠的特性分析................................................................................. 40 1.黏度........................................................................................................ 40 2.果膠含量................................................................................................ 40 3.可滴定酸................................................................................................ 41 4.總糖含量................................................................................................ 41 5.總可溶性固形物.................................................................................... 41 陸、資料處理及數據分析.................................................................................... 42 一、統計分析..................................................................................................... 42 二、繪圖............................................................................................................ 42 第四章、結果與討論................................................................................................ 43 壹、柳橙果膠酯酶之萃取及純化........................................................................ 43 一、市售果醬成分分析.................................................................................... 43 二、柳橙果膠酯酶之萃取與純化.................................................................... 46 1.柳橙粗果膠酯酶之萃取........................................................................ 46 2.硫酸銨沉澱化分.................................................................................... 46 貳、柳橙果膠酯酶轉醯化反應之探討................................................................ 48 一、以分光光度計偵測濁度變化判定轉醯化反應........................................ 48 1.EDTA與檸檬酸對轉醯化反應之影響................................................. 48 2.鹽濃度對轉醯化反應之影響................................................................ 51 二、以黏度變化判定轉醯化反應.................................................................... 55 1.EDTA與檸檬酸對轉醯化反應之影響................................................. 55 2.EDTA與磷酸鈣對轉醯化反應之影響................................................. 58 3.不同蔗糖濃度於PME酵素作用果膠溶液黏度之影響...................... 62 4.添加EDTA及磷酸鈣在不同溫度下對果膠溶液黏度之影響............ 64 參、PME 修飾果膠應用於低糖果醬製作之探討............................................. 67 一、PME 修飾果膠之製備............................................................................. 68 二、PME 修飾果膠之物化分析....................................................................... 69 1. FT-IR 分析 (Fourier transform-infrared)............................................. 69 2.總酯鍵含量之分析及非甲基酯鍵之變化............................................ 72 3.粒徑分析 (Particle size analysis).......................................................... 77 三、PME 修飾果膠之應用與果醬品質探討.................................................. 79 1.檸檬酸濃度對利用PME修飾果膠製成果醬黏度之影響.................. 79 2.蔗糖濃度對利用PME修飾果膠製成果醬黏度之影響...................... 81 3.蔗糖濃度對利用PME修飾果膠製成果醬離水性之影響.................. 83 4.蔗糖濃度對利用PME修飾果膠製成果醬膠強度之影響.................. 86 5.利用PME修飾果膠製成果醬之膠體性質.......................................... 88 第五章、結論............................................................................................................ 91 第六章、參考文獻.................................................................................................... 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 糖含量 | zh_TW |
| dc.subject | 果膠 | zh_TW |
| dc.subject | 果膠果醬 | zh_TW |
| dc.subject | 糖含量 | zh_TW |
| dc.subject | 果醬 | zh_TW |
| dc.subject | 果膠酯酶 | zh_TW |
| dc.subject | 轉醯化反應 | zh_TW |
| dc.subject | jam | en |
| dc.subject | sugar content | en |
| dc.subject | pectin | en |
| dc.subject | pectin methyl esterase | en |
| dc.subject | transacylation | en |
| dc.title | 以果膠酯酶催化轉醯基反應之果膠製造低糖果醬之研究 | zh_TW |
| dc.title | Use of pectin methyl esterase-catalyzed transacylated pectin in the making of low-sugar jam | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳雪娥,吳明昌,王裕泰,賴盈璋 | |
| dc.subject.keyword | 果醬,糖含量,果膠果醬,糖含量,果膠,果膠酯酶,轉醯化反應, | zh_TW |
| dc.subject.keyword | jam,sugar content,pectin,pectin methyl esterase,transacylation, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
