請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45780
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林招松(Chao-Sung Lin) | |
dc.contributor.author | Hsao Hsih | en |
dc.contributor.author | 施劭 | zh_TW |
dc.date.accessioned | 2021-06-15T04:46:01Z | - |
dc.date.available | 2013-08-12 | |
dc.date.copyright | 2010-08-12 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-05 | |
dc.identifier.citation | [1] K.U. Kainer, Magnesium – Alloys and Technologies, WILEY-VCH Verlag GmbH & Co. KGaA, 2003, p.1-22
[2] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd Ed., McGraw-Hill Inc., 1993, pp.537-549 [3] M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM International, 1999 [4] 陳中一,”鎂冶煉技術之演變過程”,產業評析,2009 [5] 王建義,”鎂合金之環保化”,工業材料,155期,2002年,pp.125-130 [6] 楊智超,”鎂合金材料特性及新製程發展”,工業材料,152期,1999年,pp.72 [7] 李威志,”AZ31鎂合金之磷酸鹽/錳酸鹽化成皮膜微結構與成長機制探討”,台灣大學碩士論文,94年7月 [8] 宋光玲,鎂合金腐蝕與防護,化學工業出版社,2006年6月 [9] E. Ghali, W. Dietzel, and K. Kainer, “General and Localized Corrosion of Magnesium Alloys: a Critical Review,” Journal of Materials Engineering and Performance, 13, 2004, pp.7-23 [10] H. P. Godard, W. B. Jepson, M. R. Bothwell, and R. L. Kane, The Corrosion of Light Metals, John Wiley & Sons, Inc, 1967, pp.259-311 [11] J. H. Nordlien, S. Ono, N. Masuko, and N. Nisancioglu, “Morphology and Structure of Oxide Films Formed on Magnesium by Exposure to Air and Water,” Journal of The Electrochemical Society, 142(10), 1995, pp.3320-3322 [12] J. H. Nordlien, N. Nisancioglu, S. Ono and N. Masuko, “Morphology and Structure of Oxide Films Formed on MgAl Alloys by Exposure to Air and Water,” Journal of The Electrochemical Society, 143(8), 1996, pp.2564-2571 [13] J. H. Nordlien, N. Nisancioglu, S. Ono and N. Masuko, “Morphology and Structure of Water-Formed Oxides on Ternary MgAl Alloys,” Journal of The Electrochemical Society, 144(2), 1997, pp.461-466 [14] A. F. Froats, T. Kr. Aune, D. Kawke, W. Unsworth, and J. Hillis, “Corrosion of Magnesium and Magnesium Alloys,” Metals Handbook, 9th Ed., Corrosion ASM International, 13, 1987, pp.740-754 [15] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, 1974 [16] G. D. Bengough, and L. Whitby, Trans. Inst. Chem. Eng., 11, 1933, pp.176-189 [17] J. J. Casey, and A. R. Maupin, “Outdoor Storage of Magnesium,” a talk presented to Am. Inst. Mining, /Met., and Pet. Eng., Feb., 1957 [18] W. A. Ferrando, “Review of Corrosion and Corrosion Control of Magnesium Alloys and Composites,” J. Mater. Eng., 11, 1989, pp.299-313 [19] G. L. Makar, and J. Kruger, “Corrosion of Magnesium,” International Materials Reviews, 38, No. 3, 1993, p.142 [20] J. D. Hanawalt, C. E. Nelson, and J. A. Peloubet, Trans. AIME, 147, 1942, pp.273-299 [21] G. Song, A. Atrens, X. Wu, and B. Zhang, “Corrosion behavior of AZ21, AZ501, and AZ91 in Sodium Chloride,” Corrosion Science, 140, 1998, pp.1769-1791 [22] 黃楊皓,”酸洗前處理對AZ91D鎂合金錫酸鹽化成皮膜微結構與性質的影響”,台灣大學碩士論文,98年7月 [23] 柯賢文,腐蝕及其防治,全華科技圖書股份有限公司,92年9月 [24] D. A. Jones, Principles and Prevention of Corrosion, 2nd Ed., Prentice Hall, 1996, pp.199-230 [25] J. E. Gray, and B, Luan, “Protective coatings on magnesium and it’s alloys – a critical review,” Journal of Alloys and Compounds, 336, 2002, pp.88-113 [26] 劉立德,”AZ31鎂合金環保型矽酸根鹼性陽極處理研究” ,台灣大學碩士論文,97年7月 [27] A. Brace, Transactions, 75, 1997, p.101 [28] 傅延俊,”鎂鋁合金陽極處理”,台灣大學碩士論文,94年7月 [29] P. L. Hagans, and C. M. Haas, “Chromate Conversión Coatings,” in ASM Handbook, 5, ASM International, 1994, p.405 [30] Biestek, and J. Weber, Electrolytic and Chemical Conversion Coatings, 1st Ed. Portculiss Press ltd., 1976, pp.208-210, 306-311 [31] 姜小霞、沈傳,化學鍍理論及實踐,國防工業出版社,2000年,pp.1-24 [32] N. Kanani, Electroplating – Basic Principles, Processes and Practice, Elsevier Ltd., 2004, pp.87-137 [33] 林士傑,”應用無電解與電泳技術於玻璃基板沉積研究”,中山大學碩士論文,95年7月 [34] 楊聰仁,”無電解電鍍鎳研究與應用現況”,工業材料,106期,1995年,pp.118-123 [35] 錢苗根,姚壽山,張少宗,現代表面技術,機械工業出版社,1994年,pp.60-69 [36] 方景禮,電鍍配合物-理論與應用,化學工業出版社,2007年,pp.219-234, 329-365 [37] M. Ohara, H. Okahara, Y. Takigawa, and K. Higashi, “Clarification of the Necessary Value of Surface Roughness for Developing Luster on an AZ31 Magnesium Alloy Surface with or without Acid Aqueous Solution Treatment.” Material Transactions, 49, 2008, pp.909-912 [38] 陳坤杰,”機械及化學拋光處理提升AZ31鎂合金光澤性及抗腐蝕性”,國科會大專生參與專題研究計畫,99年2月 [39] G. L. Song, and A. Atrens, “Corrosion Mechanisms of Magnesium Alloys.” Advanced Engineering Materials, 1, 2000, pp.11-33 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45780 | - |
dc.description.abstract | 本研究以AZ31、AZ91及LZ91鎂合金為基材,於5℃之0.2M硝酸/0.005M己二酸溶液中進行化學拋光,探討不同基材與製程時間對於光澤度提升之影響。研究中使用OM、SEM進行巨觀及微觀形貌觀察,搭配光澤度、粗糙度量測及ESCA、OCP、極化曲線等分析方法,探討化學拋光機制及基材顯微結構對光澤度提升之效應。
實驗結果顯示,AZ31於化學拋光後之光澤度大幅提升.,LZ91僅略為提升.,AZ91則反而下降。由SEM觀察結果發現,化學拋光後AZ31呈現完全平整之形貌;LZ91表面雖然平整但出現晶界腐蝕痕跡;AZ91則出現嚴重雙相效應,呈現alpha相向下陷落而beta相外露之崎嶇形貌。粗糙度之量測顯示,AZ31與LZ91間之粗糙度相去不遠,AZ91粗糙度則遠高於前述兩種基材。以alpha-stepper掃描之結果同時顯示AZ31及LZ91之拋光深度隨製程時間增加而線性增加,且表面形貌由多而淺之刮痕轉為少而起伏較大之形貌。此外,ESCA分析結果指出,化學拋光後三種基材表面生成一層以氧化物及氫氧化物為主之皮膜,其中AZ31及LZ91之表面皮膜厚度應介於100-200nm之間,AZ91則無法以此結果估計。ESCA縱深分析結果亦顯示表層有己二酸反應產物吸附之跡象。極化曲線量測結果顯示,該氧化物/氫氧化物皮膜無法提供確實之鈍化效果,其中AZ31及AZ91之皮膜能些許提升抗蝕性,LZ91經拋光後抗蝕性反而下降。 綜合以上結果可推論出鎂合金化學拋光之機制及己二酸於其中扮演之角色。鎂基材於接觸拋光液後迅速溶解釋出鎂離子並促使介面pH上升而產生氫氧化鎂沉積,此後皮膜之生成與再度溶解之間逐漸達到一動態平衡狀態。己二酸於拋光過程中吸附於表面突起處並促使該處加速溶解,進而達成整平效果,但未併入皮膜之中。 | zh_TW |
dc.description.abstract | In this research, the chemical polishing of AZ31, AZ91 and LZ91 magnesium alloys were studied for understanding the relationship of different matrix and gloss performance. The chemical polishing was performed at 5℃, in the solution composed of 0.2 M nitric acid and 0.005 M adipic acid with various time, and the mechanism of chemical polishing and the role of adipic acid were discussed by using OM, SEM, alpha-stepper, gloss meter, OCP, ESCA, and polarization curves.
Experimental results showed that the gloss of polished AZ31 increased significantly due to flatten surface. Gloss of AZ91 dropped dramatically because of very high roughness after chemical polishing due to severe partial dissolution of alpha phase. The surface of LZ91 was also flatten but with local corrosion at grain boundary, thus the gloss did not increase apparently. The results of alpha-stepper scanning indicated that both the depth of polished region and the roughness increased linearly with increasing time. The results of ESCA analysis demonstrated that a MgO/Mg(OH)2 surface film with a thickness of 100-200 nm formed after polishing, and the results of polarization curves indicated that such a film did not improve the corrosion resistance apparently. The ESCA depth profile analysis also indicates that adipic acid exists only at the surface of the film, suggesting the adsorption of adipic acid during chemical polishing From above experimental results, a mechanism was proposed. The adipic acid dissociated and adsorbed preferentially at the edge of surface scratches. The negative-charged C_4 〖〖H_8 (COO)〗_2〗^(2-) might attract positive H+ and thus facilitate the dissolution of adsorbed substrate. As a result, the scratches was removed and gloss of the substrate was greatly increased. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:46:01Z (GMT). No. of bitstreams: 1 ntu-99-R97527032-1.pdf: 5241337 bytes, checksum: ef5a01cf648489ad79bdd52a89c6e437 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 總目錄
摘要 i Abstract ii 總目錄 iv 圖目錄 viii 表目錄 xiii 第一章 緒論 1 第二章 文獻回顧 2 2.1 鎂合金簡介 2 2.1.1 鎂合金之性質及工程應用 2 2.1.2 鎂合金之分類 3 2.2 鎂合金的腐蝕行為 4 2.2.1 鎂的腐蝕行為概述 4 2.2.2 伽凡尼腐蝕 9 2.2.3 孔隙及間隙腐蝕 11 2.3 鎂合金的表面處理 12 2.3.1 陽極處理 12 2.3.2 化成處理 13 2.3.3 無電鍍 14 2.3.4 電鍍 15 2.3.5 化學拋光 18 第三章 實驗步驟與方法 24 3.1 實驗流程 24 3.2 試片前處理 24 3.3 化學拋光 25 3.4 開路電位量測 25 3.5 皮膜巨觀觀察 26 3.5.1 立體光學顯微鏡觀察 26 3.5.2 光澤度觀察 26 3.6 皮膜微結構觀察 27 3.6.1 SEM表面形貌觀察 27 3.7 皮膜性質量測 28 3.7.1 ESCA皮膜成分分析 28 3.7.2 alpha-stepper深度及粗糙度量測 28 3.7.3 極化曲線量測 28 第四章 實驗結果 30 4.1 皮膜巨觀觀察 30 4.1.1 立體光學顯微鏡觀察 30 4.1.2 光澤度觀察 32 4.2 皮膜微觀觀察 33 4.2.1 SEM表面形貌觀察 33 4.3 皮膜性質量測 39 4.3.1 開路電位量測 39 4.3.2 alpha-stepper深度及粗糙度量測 42 4.3.3 ESCA成分分析 45 4.3.3.1 AZ31經化學拋光後之表面ESCA分析 45 4.3.3.2 AZ91經化學拋光後之表面ESCA分析 50 4.3.3.3 LZ91經化學拋光後之表面ESCA分析 56 4.3.4 極化曲線量測 60 第五章 討論 63 5.1 基材微結構對化學拋光之效應 63 5.2 製程時間對於光澤度、粗糙度之效應 65 5.3 化學拋光成膜機制 66 5.3.1 化學拋光成膜機制 66 5.3.2 添加己二酸於化學拋光之效應 68 第六章 結論 70 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 鎂合金之硝酸/己二酸系統化學拋光 | zh_TW |
dc.title | Chemical Polishing of Magnesium Alloys in Nitric/Adipic Acid Solution | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林景崎(Jing-Chie Lin),黃清安(Ching-An Huang),葛明德(Ming-Der Ger),楊聰仁(Tsong-Jen Yang) | |
dc.subject.keyword | 鎂合金,AZ31,AZ91,LZ91,化學拋光,硝酸,己二酸,光澤度, | zh_TW |
dc.subject.keyword | Magnesium alloys,AZ31,AZ91,LZ91,chemical polishing,gloss,Nitric acid,Adipic acid, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。