Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福(King-Fu Lin)
dc.contributor.authorPei-Yi Linen
dc.contributor.author林佩儀zh_TW
dc.date.accessioned2021-06-15T04:44:28Z-
dc.date.available2015-08-10
dc.date.copyright2010-08-10
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citation1. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25, 676 (1954).
2. M. A. Green et al. Prog. Photovolt: Res. Appl. 15, 1 (2007).
3. M. Grätzel, Nature 414, 338 (2001).
4. 黃建昇,工業材料雜誌 203,150 (2003).
5. http://cdnet.stpi.org.tw/techroom/market/energy/enerty022.htm,國家實驗研究院科技政策研究與資訊中心(Science & Technology Policy Research and Information Center,STPI).
6. M. Grätzel, Phil. Trans. R. Soc. A 365,993 (2007) .
7. M. Grätzel, J. Photoch. Photobio. C 4, 145 (2003).
8. W. West et al., Photogr. Sci. Eng. 18, 35(1874).
9. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 261, 402 (1976).
10. B. O’Regan, and M. Grätzel, Nature 353, 737 (1991).
11. Y. Chiba, A.Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, Jpn. J. Appl. Phys. 25, 638 (2006).
12. 姚品全,奈米材料與奈米結構,私立大葉大學,中華民國台灣 (2005).
13. 物理雙月刊(二十七卷五期),2005年10月.
14. N. G. Park, K. Kim, Phys. Stat. Sol. A 205, 1895 (2008).
15. A. Hagfeldt, M. Gratzel, Chem, Rev. 95, 49 (1995).
16. 工業材料,染料敏化太陽能電池發展現況,黃呈加, 192期 96-100.
17. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107, 8981 (2003).
18. J. R. Durrant, S. A. Haque, and E. Palomares, Chem. Rev. 248, 1247 (2004) .
19. Y. Liu, A. Hagfeldt, X.-R. Xiao, and S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 55, 267 (1998).
20. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeekuddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Grätzel, Adv. Mater. 18, 1202 (2006).
21. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer , and M. Grätzel, Nature 583, 395 (1998).
22. H. Usui, H. Matsui, N. Tanabe, S. Yanagida, J. Photochem. Photobio. A: Chem. 164﹐97 (2004).
23. D. W. Kima, Y. B. Jeong, S. H. Kima, D. Y. Lee , and J. S. Song﹐Chem. Commun., 2972 (2002).
24. R. Komiya, L. Han, R. Yamanaka, A. Islam, and T. Mitate, J. Photochem. Photobio. A: Chem 164 , 123 (2004).
25. T. Wantanbe, A. Nakajima, R. Wang, Thin Solid Films 351, 260 (1999).
26. S. Deki, Y. Aoi, Y. Asaoka, J. Mater. Chem. 7, 733 (1997).
27. T. Huang, P. H. Chang, J. S. Shie, J. Electrochem. Soc. 143, 2044 (1996).
28. K. Matyjaszewski, T. E. Patten, Acc. Chem. Res. 32, 895 (1999).
29. M. Kamigaito, T. Ando, M. Sawamoto, Chem.Rev. 101, 3689 (2001).
30. K. Matyjaszewski, and J. Xia, Chem. Rev. 101, 2921 (2001).
31. T. Pintauer, and K. Matyjaszewski, Chem. Soc. Rev. 37, 1087 (2008).
32. S. M. Zakeeruddin, and M. Grätzel, Adv. Funct. Mater. 19, 2187 (2009).
33. V. Pretorius, B. J. Hopkins, J. D. Schieke, J. Chromatogr. 23, 99 (1974).
34. F. H. Hurley, T. P. Wier, J. Electrochem. Soc. 98, 203 (1951).
35. H. L.Chum, K. V. Roch, L. L. Miller, R. A. Osteryoung, J. Am. Chem. Soc. 97, 3264 (1975).
36. J. Robinson, R. A. Osteryoung, J. Am. Chem. Soc. 101, 323 (1979).
37. J. S. Wilkes, J. A. Levisky, C. L. Hussey, Inorg. Chem. 21, 1263 (1982).
38. T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, P. D. Armitage, Inorg. Chem. 22, 2099 (1983).
39. T. M. Laher, C. L. Hussey, Inorg. Chem. 22, 3247 (1983).
40. T. B. Scheffler, C. L. Hussey, Inorg. Chem. 23, 1926 (1984).
41. P. B. Hitchcock, T. J. Mohammed, K. R. Seddon, J. A. Zora, C. L. Hussey, E. H. Ward, Inorg. Chim. Acta. 113, L25 (1986).
42. D. Appleby, C. L. Hussey, K. R. Seddon, J. E. Turp, Nature 323, 614 (1986).
43. J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 965 (1992).
44. J. Fuller, R. T. Carlin, H. C. De Long, D. Haworth, J. Chem. Soc., Chem. Commun., 299 (1994).
45. P. T. Anastas, J. B. Zimmerman, Environ. Sci. Technol. 37,94A (2003).
46. R. Sheldon, Chem. Commun., 2399 (2001).
47. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green Chemistry 3, 156 (2001).
48. T. Welton, Chem. Rev. 99, 2071 (1999).
49. Y. Ishida, H. Miyauchi, K. Saigo, Chem. Commun., 2240 (2002).
50. K. Qiao, Y. Deng, J. Mol. Catal. A 171, 81 (2001).
51. S. Park, R. J. Kazlauskas, Curr. Opin. Biotecnol. 14, 432 (2003).
52. J. G. Huddleston, H. D. Willauer, R. P. Swatloski,Ann E. Visser, R. D. Rogers, Chem. Commun., 1765 (1998).
53. C. E. Song, E. J. Roh, Chem. Commun., 837 (2000).
54. S. K. Poole, C. F. Poole, J. Chromatogr. 435, 17 (1988).
55. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Grätzel, J. Phys. Chem. B 107, 13280 (2003).
56. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, and M. Grätzel, Nature materials 7,626 (2008).
57. P. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel, Chem. Commun., 2972 (2002).
58. K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, S. Yanagida, C. R. Chim. 9, 611(2006).
59. S. Iijima, Nature 354, 56(1991).
60. H. Dai, Acc. Chem. Res. 35, 1035(2002).
61. M. Ouyang, J.Huang, and C. M. Leicer, Acc. Chem. Res. 35, 1018(2002).
62. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 382,54(1996).
63. P. Poncharal, Z. L. D. Wangarte and W. A. Heer, Science 283, 1513 (1999).
64. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, 1971 (1997).
65. M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, Science 287, 637 (2000).
66. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, Top. Curr. Chem. 199, 1 (1998).
67. M. A. Osman, D. Srivastava, Nanotechnolory 12, 21 (2001).
68. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B 101, 8839 (1997).
69. R. S. Ruoff, D. C. Lorents, Carbon 33, 925 (1995).
70. R. M. Lago, S. C. Tsang, M. L. H. Green, J. Chem. Soc. Chem. Commun 13, 1355 (1995).
71. H. Hiura, T. W. Ebbesen, K. Tanigaki, Adv. Mater. 7, 275 (1995).
72. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias,Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 280, 1253(1998).
73. C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules 38, 8634 (2005).
74. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 297, 593 (2002).
75. T. Wang, X. Hu, X. Qu, S. Dong, J. Phys. Chem B 110, 6631(2006).
76. R. J. Chen, Y. Zhang, D. Wang and H. Dai, J. Am. Chem. Soc. 123, 3838 (2001).
77. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, P. Avouris, Nano Lett. 3 , 1067 (2003).
78. K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, A. Mews, Nano Lett. 5, 507 (2005).
79. H. Zhu , J. Wei, K. Wang, D. Wu, Sol. Energy Mater. Sol. Cells 93, 1461 (2009).
80. A. Kay, and M. Grätzel, Sol. Energy Mater. Sol. Cells 44, 99 (1996).
81. P. Brown, K. Takechi, P. V. Kamat, J. Phys. Chem. C 112, 4776 (2008).
82. K. M. Lee, C. W. Hu, H. W. Chen, K. C. Ho, Sol. Energy Mater. Sol. Cells 92, 1628 (2008).
83. B. Fan, X. Mei, K. Sun, J. Ouyung, Appl. Phys. Lett. 93, 143103 (2008).
84. C. P. Lee, L. Y. Lin, P. Y. Chen, R. Vittal, and K. C. Ho, J. Mater. Chem. 20, 3619 (2010).
85. S. H. Seo, S. Y. Kim, B. K. Koo, S. I. Cha, and D. Y. Lee, Langmuir 26, 10341 (2010).
86. P. J. Britto, K. S. V. Santhanan, P. M. Ajayan, Bioelectrochem. Bioenergy. 41, 121 (1996).
87. H. Usui, H. Matsui, N. Tanabe, S. Yanagida, J. Photoch. Photobio. A 164, 97 (2004).
88. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science 27, 2072 (2003).
89. H. Kong, C. Gao, and D. Yan, J. Am. Chem. Soc. 126, 412 (2004).
90. S. Meuer, L. Braun, and R. Zentel, Chem. Commun., 3166 (2008).
91. C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules 38, 8634 (2005).
92. D. Kuang, C. Klein, Z. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin, and M. Grätzel, small 3, 2094 (2007).
93. M. Okamoto, T. Fujigaya, and N. Nakashima, small, 5, 735(2009).
94. G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 42, 1819 (2009).
95. M. Zistler, C. Schreiner, P. Wachter, P. Wasserscheid, D. Gerhard, and H. J. Gores, Int. J. Electrochem. Sci. 3, 236 (2008).
96. M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, A. Hinsch, R. Sastrawan, J. Gores. Electrochim. Acta 52, 161 (2006).
97. Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Grätzel, P. Wang, J. Phys. Chem. C 112, 13775 (2008) .
98. S. U. Lee, W. S. Choi, B. Hong, Sol. Energy Mater. Sol. Cells 94, 680 (2010).
99. P. Wachter, M. Zistler, C. Schreiner, M. Fieischmann, D. Gerhard, P. Wasserscheid, J. Barthel, H. J. Gores, J. Chem. Eng. Data 54, 491 (2009).
100. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, J. Electrochem. Soc. 153, A 2255 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45670-
dc.description.abstract本研究主要分為兩部份,第一部分合成出兩種帶有丙烯酸官能基的離子液體單體1-methyl-3- [2-[(1-oxo-2-propenyl)oxy]-ethyl]-imidazolium iodide (DIL)和1-methyl-3- [2-[(1-oxo-2-propenyl)oxy]-ethyl]-benzimidazolium iodide (BDIL),藉由原子轉移自由基聚合成離子液體高分子,透過液態超導核磁共振鑑定結構。再利用溴化碳管起始聚合離子液體單體,將離子液體聚合物-奈米碳管複合材料,透過高解析穿透式電子顯微鏡觀測型態,再利用熱重分析儀與X光光電子光譜進行材料鑑定。第二部份將複合材料以不同重量比例,加入1-methyl-3-propyl imidazolium iodide (PMII)離子液體電解質中做成太陽能電池元件,分析不同複合材料的光電轉換表現。再利用離子液體高分子配成膠態電解質,製備成元件探討其光電轉換效能。
第一部分研究結果發現帶有咪唑陽離子的離子液體,利用末端基分析純高分子的分子量與其奈米碳管複合物根據熱重分析數據計算所得分子量相同,可知DIL成功地利用溴化碳管起始聚合,產物稱之為MWNT-PDIL。而帶有苯駢咪唑陽離子的離子液體,因單體具有較強的共振結構,使其在利用溴化碳管起始聚合時,單體經由π-π stacking吸附到奈米碳管表面,造成熱重分析所得分子量僅有純高分子聚合的十分之ㄧ,產物稱之為MWNT-BDIL。而純碳管與單體BDIL在室溫下混合,由熱重分析與單體共振結構模擬數據計算,得知BDIL在奈米碳管表面形成單層吸附,混合產物稱之為MWNT(untreated)-BDIL。上述三種奈米碳管-離子液體複合物皆可在離子液體PMII中均勻分散。
第二部分太陽能電池元件測試部分,純PMII電解質測得效率約為5.00%,當加入0.05wt%的MWNT-PDIL可得到5.59%的轉換效率,加入0.5wt%的MWNT-BDIL得到效率為5.09%,而加入0.05wt%的MWNT(untreated)-BDIL所得效率為5.44%。因為我們所改質的奈米碳管,其分散良好,可以幫助電子傳導,提升電流,使得效率有所提升。在高分子膠態電解質系統中,當使用高Tg的PBDIL時,因其分子局部運動性太差,使得離子不易傳遞,造成太陽能電池效率差。而選用Tg較低的高分子PDIL,相較於PBDIL有較好的離子傳遞性,因此可以量得1.16%的效率,當我們添加不同改質奈米碳管複合物時,電流值皆有提升,尤以純碳管系統增加了1.5倍。當增加MWNT(untreated)-BDIL濃度至0.5wt%時,短路電流得到最高值8.51 mA/cm2,光電轉換效率高達3.55%。由此,外層包覆單層離子液體單體的純奈米碳管,可在高分子電解質中分散均勻,吸引負電的奈米碳管不僅幫助碘離子傳導,也提供了較短的路徑,因此對於太陽能電池的電流傳遞有相當好的助益。
zh_TW
dc.description.abstractThis research mainly focused on the fabrication and applications of new type ionic liquid polymers and their carbon nanotube composites on dye sensitized solar cell. There are two major parts in this research. For the first part, we synthesized two kinds of ionic liquid monomer carrying acrylic functional group , 1-methyl-3- [2-[(1-oxo-2-propenyl) oxy]-ethyl]- imidazolium iodide (DIL) and 1-methyl-3- [2-[(1-oxo-2-propenyl) oxy]-ethyl]- benzimidazolium iodide (BDIL), and polymerized them by atom transfer radical polymerization, and then used the brominated carbon nanotube to initiate polymerization under the same condition. All the nano-composites were characterized by high-resolution TEM、x-ray photoelectron spectroscopic and thermo-gravimetric analyzer. For the second part, we added different weight percentage of the nano-composite into ionic liquid electrolyte system for investigating the DSSC performance. Besides, we also used the polymerized ionic liquids to prepare the gel-type electrolyte system for the DSSC.
In the first part of the research, both ionic liquid monomers were successfully synthesized and characterized. For the DIL system, the molecular weight estimated from NMR for pure polymer (PDIL) was similar to that estimated from TGA for MWNT-PDIL nano-composite. But for the BDIL system, the molecular weight estimated from NMR for pure polymer (PDIL) was tenfold of that from TGA for MWNT-BDIL nano-composite. It is due to the fact that BDIL was adsorbed on carbon nanotube by π-π stacking resulting from its strong resonance structures. By directly mixing the untreated cabon nanotube with BDIL at room temperature, we found that the BDIL monomer also adsorbed on carbon nanotube in mono-layer on the basis of the TGA data and the simulation result for the resuitng MWNT(untreated)-BDIL nano-composite. All kinds of nano-composites were able to homogeneously disperse in PMII.
In the second part, the photon to electron power conversion efficiency of DSSCs with PMII ionic liquid electrolyte system was 5.00%.When adding the proper amouts of different nano-composites into ionic liquid electrolyte system, the efficiency were raised to 5.59%、5.09% and 5.44% for 0.05wt% MWNT-PDIL、0.5wt% MWNT-BDIL and 0.05wt% MWNT(untreated) -BDIL, respectivily. The higher efficiency mainly resulted from the higher photo current, implying that the carbon nanotube could enhance the charge transfer.
For the PBDIL-base gel electrolyte system, the high Tg of PBDIL impeded the ion diffusion leading to poor photovoltaic performance. For the PDIL-base system which has lower Tg than that of PBDIL, the power efficiency was 1.16%. On the other hand, adding nano-composite into the PDIL-base system further increased the photo current, implying that carbon nanotube provided a short path for charge transfer. The addition of 0.5wt% MWNT(untreated)-BDIL provided the best performance and the efficiency of fabricated DSSC could reach to 3.55%.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:44:28Z (GMT). No. of bitstreams: 1
ntu-99-R97527013-1.pdf: 6818459 bytes, checksum: 68e4d3380180d8f3e92bbd40ef8bb77f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 緒論………………………………………………………1
1-1 前言……………………………………………………………1
1-2 太陽能電池簡介………………………………………………2
1-3 染料敏化太陽能電池……………………………………………3
1-3-1染料敏化太陽能電池發展………………..……………3
1-3-2光伏參數…………………………………….…………5
1-3-3 工作原理…………………………………………………6
1-4 原子轉移自由基聚合法…………………………………………12
1-5 離子液體簡介……………………………………………………16
1-5-1離子液體的歷史………………………..………………17
1-5-2離子液體的特性………………………..………………18
1-5-3離子液體的應用……………………….……………….21
1-6 奈米碳管簡介……………………………………………………23
1-6-1奈米碳管的結構………………………..………….……24
1-6-2奈米碳管的特性.………………………..………….…26
1-6-3奈米碳管的純化與官能基改值….……………………..28
1-6-4奈米碳管近期在染料敏化太陽能電池上的應用….......32
1-7 本實驗的研究動機與架構………………………………………33
第二章 實驗設備與方法…………………………………….……36
2-1 化學藥品………………………………..………………………36
2-2 實驗設備………………………………..………………………37
2-3合成方法………………..………………………………….……38
2-3-1 Ionic liquid monomers的製備…………………………38
(A) 2-iodoethylacrylate的製備………………………38
(B) DIL和BDIL的合成……………………………..…39
2-3-2 Poly( Ionic liquid)的製備………….………………40
2-3-3 MWNT-Br的製備…………………………………..…....40
2-3-4 聚離子液體-奈米碳管複合材料的製備…………….….42
2-3-5 1-Methyl-3-propylimidazolium iodide(PMII)的製備42
2-3-6 二氧化鈦鍍液的製備………………………………….. 43
2-4 性質測試以與試片製備………………………………………. ..43
2-4-1 TEM測試條件與試片製備…………………………. .….43
2-4-2 NMR之樣品製備…………………………………. .. .….44
2-4-3 TGA測試條件…………………………………. ……..…44
2-5 薄膜電極製備…………………………………………………..44
2-5-1 導電玻璃之清洗……………………………………. ….44
2-5-2 二氧化鈦電極的製備…………………………………….45
2-5-3 白金對電極的製備……………………………………….45
2-6 電解質的製備…………………………………………………. ..46
2-6-1 液態電解質之製備……………………………………….46
2-6-2 高分子電解質之製備…………………………………….46
2-7 元件組裝………………………………………………………... 47
2-8 太陽能電池光電化學測試…………………………………….. .47
2-8-1 光電流-電壓特徵曲線………………………………….47
2-8-2 交流阻抗分析……………. ……………………………47

第三章 結果與討論…………………………………………………49
3-1 離子液體與其聚合物之結構鑑定…………………………….. 49
3-1-1 離子液體單體(DIL)與其聚合物的1H-NMR之測定......49
3-1-2離子液體單體(BDIL)與其聚合物的1H-NMR之測定...... 50
3-1-3離子液體(PMII)的1H-NMR之測定………………….......51
3-2 離子液體-奈米碳管複合材料之性質測定與探討…...……….51
3-2-1 HR-TEM之觀測…………………………………...…....51
3-2-2 X光光電子光譜之量測…………………………...…...52
3-2-3 TGA之測量…...…………………………………...…..52
3-2-4 奈米複合材料分散性測試………………...……...…..57
3-3 染料敏化太陽能電池光電轉換效率………………………….. 58
3-3-1 改變碘含量……………….………………………...….58
3-3-2 PMII-Base 電解質………………………………...…..60
(A) MWNT-PDIL……..…………………………...…....60
(B) MWNT-BDIL……..…………………………...…....62
(C) MWNT(untreated)-BDIL……..……………....…. 62
3-3-3 Polymer-Base膠態電解質………………………...…..65
(A) 不同複合物與高分子電解質……..…….…..…...65
(1) PBDIL-Base…………………………..........…66
(2) PDIL-Base……..…………………………...….66
(B) PDIL/MWNT(untreated)-BDIL……………….………67
第四章 結論…………………………………………………………70
第五章 參考文獻……………………………………………………72
附錄…………….………………………………………………………130
交流阻抗測試模擬對照圖………………………………………130
dc.language.isozh-TW
dc.subject原子轉移自由基聚合zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject離子液體zh_TW
dc.subject奈米碳管複合物zh_TW
dc.subject膠態電解質zh_TW
dc.subjectionic liquiden
dc.subjectatom transfer radical polymerizationen
dc.subjectgel-type electrolyteen
dc.subjectpolymer-carbon nanotube compositeen
dc.subjectdye-sensitized solar cellen
dc.title帶丙烯酸基離子液體聚合物及其奈米碳管複合物在染料敏化太陽能電池電解質上的應用zh_TW
dc.titleApplication of Polymerizable Ionic Liquid and Its Carbon Nano- tube Composites on Electrolytes for Dye-sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),王立義(Lee-Yih Wang)
dc.subject.keyword染料敏化太陽能電池,離子液體,奈米碳管複合物,膠態電解質,原子轉移自由基聚合,zh_TW
dc.subject.keyworddye-sensitized solar cell,ionic liquid,polymer-carbon nanotube composite,gel-type electrolyte,atom transfer radical polymerization,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2010-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
6.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved