Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋
dc.contributor.authorYun-Hsiu Lien
dc.contributor.author李昀修zh_TW
dc.date.accessioned2021-06-15T04:30:11Z-
dc.date.available2009-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation[1] C.H. Park, S.B. Zhang, S.-H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B 66 073202 (2002)
[2] E.C. Lee, Y.-S. Kim, Y.-G. Jin, K.H. Chang, “Compensation mechanism for N acceptors in ZnO”, Phys. Rev. B. 64 085120 (2002)
[3] M. Ritala and M. Leskela, “Atomic layer epitaxy—a valuable tool for nanotechnology?”, Nanotechnology 10 19 (1999)
[4] L. Niinistö*, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, “Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials” phys. stat. sol. (a) 201, 1443–1452 (2004)
[5] S. Y. Pung, K. L. Choy, X. G. Hou, “Preferential growth of ZnO thin films by the atomic layer deposition technique” , Nanotechnology 19 (2008)
[6] T. Aoki and Y. Hatanaka, “ZnO diode fabricated by excimer-laser doping”, Appl. Phys. Lett. 76 (22), 3257 (2000)
[7] D.C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng. B 80, 383 (2001)
[8] D.K. Hwang, S.H. Yang, J.H. Lim, E.J. Yang, J.Y. Oh, J.H. Tang, and S.J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett. 86, 222101 (2005)
[9] Ü. Özgür and H. Morkoç, “Optical Properties of ZnO and Related Alloys”, in “Zinc oxide bulk, thin films and nanostructures”, edited by C. Jagadish and S. Pearton, Elsevier (2006)
[10] N. A. Spaldin, “Search for ferromagnetism in transition-metal-doped piezoelectric ZnO”, Phys. Rev. B 69, 125201 (2004)
[11] A. Yamada, B. Sang, and M. Konagai, “Atomic layer deposition of ZnO transparent conducting oxides”, Appl. Surf. Sci. 112, 216 (1997)
[12] JH. Lee, KH. Ko, and BO. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol–gel method”, J. Cryst. Growth 247, 119 (2003)
[13] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01-12) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys. 85 2595 (1999)
[14] K. Eda, “Zinc oxide varistors”, IEEE Electr. Insul. Mag. 5 , 28 (1989)
[15] M. Ritala and M. Leskela, “Atomic Layer Deposition”, in “Handbook of thin film materials”, edited by H. S. Nalwa, Academic Press (2002)
[16] S. S. Kim, N. T. Gabriel, W. B. Song, and J. J. Talghader, “Encapsulation of low-refractive-index SiO2 nanorods by Al2O3 with atomic layer deposition”, Opt. Express 15 , 16285 (2007)
[17] J. W. Elam, C. A. Wilson, M. Schuisky, Z. A. Sechrist, and S. M. George, “Improved nucleation of TiN atomic layer deposition films on SiLK low-k polymer dielectric using an Al2O3 atomic layer deposition adhesion layer”, J. Vac. Sci. Technol. B 21, 1099 (2003)
[18] M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, and K. Nielsch, “Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin”, Nano Lett. 6, (2006)
[1] S. S. Lin, J.L. Huang, P. Sajgalik,” The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere”, Surface & Coatings Technology 185 254 (2004)
[2] D. C. Look, and B. Claflin, “P-type doping and devices based on ZnO”, phys. stat. sol. (b) 241, No. 3, 624 (2004)
[3] W. Tang, D.C. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited
by the sol-gel process”, Thin Solid Films 238 83 (1994)
[4] K.H. Kim, K.C. Park, D.Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81 (1997)
[1] S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO “, Phys. Rev. B 63, 075205 (2001)
[2] C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. 85, 1012 (2000)
[3] T. S. Jeong, M. S. Han, C. J. Youn, and Y. S. Park, “Raman scattering and photoluminescence of As ion-implanted ZnO single crystal” J. Appl. Phys. 96, 175 (2004)
[4] Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett. 83, 87 (2003)
[5] V. Vaithianathan, B. T. Lee, and S. S. Kim, “Preparation of As-doped p-type ZnO films using a Zn3As2 /ZnO target with pulsed laser deposition” Appl. Phys. Lett. 86, 062101(2005)
[6] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films”, J. Cryst. Growth 216, 330 (2000)
[7] Y. R. Ryu, W. J. Kim, and H. W. White, “Fabrication of homostructural ZnO p}n junctions”, J. Cryst. Growth 219, 419 (2000)
[8] D. K. Hwang, K. H. Bang, M. C. Jeong, and J. M. Myoung, ” Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction”, J. Cryst. Growth 254, 449 (2003)
[9] W. Lee, D. K. Hwang, M. C. Jeong, M. Lee, M. S. Oh, W. K. Choi, and J.M. Myoung, “Fabrication and properties of As-doped ZnO films grown on GaAs(001) substrates by radio frequency (rf) magnetron sputtering”, Appl. Surf. Sci. 221, 32 (2004)
[10] T. H. Moon, M. C. Jeong, W. Lee, and J. M. Myoung, “The fabrication and characterization of ZnO UV detector”, Appl. Surf. Sci. 240, 280 (2005)
[11] D. C. LOOK1,2,3, “Progress in ZnO Materials and Devices”, J. Electron. Mater., 35, (2006)
[12] D. C. Look, B. Claflin, “P-type doping and devices based on ZnO”, phys. stat. sol. (b) 241, 624 (2004)
[13] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C.W. Litton, G. Cantwells, W.C. Harsch, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett. 81, 1830 (2002)
[14] S. Limpijumnong, S.B. Zhang, S.-H. Wei, C.H. Park, “Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide”, Phys. Rev. Lett. 92, 155504 (2004)
[15] N. Xu, Y. Xu, L. Li, Y. Shen, T. Zhang, J. Wu, J. Sun, Z. Ying, “Arsenic doping for synthesis of nanocrystalline p-type ZnO thin films”, J. Vac. Sci. Technol. A 24, 517 (2006)
[16] J. C. Sun, H. W. Liang, J, Zhao, Q. J. Feng, Jiming Bian, Ziwen Zhao, Heqiu Zhang, Yingmin Luo, Lizhong Hu, Guotong Du, “Annealing effects on electrical and optical properties of ZnO films deposited on GaAs by metal organic chemical vapor deposition” , Appl. Surf. Sci. 254, 7482 (2008)
[17] Peng Wang, Nuofu Chen, Zhigang Yin, Fei Yang, Changtao Peng, Ruixuan Dai,and Yiming Bai, “As-doped p-type ZnO films by sputtering and thermal diffusion process” , J. Appl. Phys. 100, 043704 (2006)
[18] J.G. Lu a,*, S. Fujita a,*, T. Kawaharamura b, H. Nishinaka, “Roles of hydrogen and nitrogen in p-type doping of ZnO” , Chem. Phys. Lett. 441, 68 (2007)
[1] T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu, H. W. White, “Crystallinity-damage recovery and optical property of As-implanted Zno crystals by post-implantation annealing”, J. Cryst. Growth 275, 541 (2005)
[2] Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation”, Appl. Phys. Lett. 93, 253107 (2008)
[3] Veeramuthu Vaithianathan, Y. H. Lee, B. T. Lee, Shunichi Hishitab, S. S. Kim, “Doping of As, P and N in laser deposited ZnO films” J. Cryst. Growth 287, 119 (2006)
[4] Veeramuthu Vaithianathan, Shunichi Hishita, J. H. Moon, S. S. Kim, “Dependence of photoluminescence and electrical properties with rapid thermal annealing in nitrogen-implanted ZnO films”, Thin Solid Films 515, 6927 (2007)
[5] J. C. Sun, H. W. Liang, J. Z. Zhao, Q. J. Feng, J. I. Bian, Z. W. Zhao, H. Q. Zhang, Y. M. Luo, L. H. Hu, G. T. Du, “Annealing effects on electrical and optical properties of ZnO films deposited on GaAs by metal organic chemical vapor deposition”, Appl. Surf. Sci. 254, 7482 (2008)
[6] Y. R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H. M. Jeong, H. W. White, “Synthesis of p-type ZnO films”, J. Cryst. Growth 216, 330 (2000)
[7] Y. R. Ryu, S. Zhu, “Optical and structural properties of ZnO films deposited on GaAs
by pulsed laser deposition” , J. Appl. Phys. 88, 201 (2000)
[8] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett. 81, 1830 (2002)
[9] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, “Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE” , J. Cryst. Growth, 605, 184 (1998)
[10] Y. R. Ryu, T.S. Lee, H.W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett. 83, 87 (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45609-
dc.description.abstract本論文利用原子層沉積技術(Atomic Layer Deposition, ALD)成長高品質氧化鋅(Zinc Oxide, ZnO),並利用不同的摻雜(Doping)技術將雜質(Impurities)加入ZnO薄膜中,再加上後續的熱退火(Post-annealing)以製作p型之ZnO。
首先,本研究利用ALD技術在(0001)Al2O3基板上成長重度摻雜(Heavily Doping)達10%的氧化鋅鋁(ZnO:Al),以分散摻雜(Distributed Doping)的方式將鋁加入ZnO薄膜中。我們發現在退火環境氣氛(Ambient Gas)為N2:O2=1:1與退火溫度(Annealing Temperature)達800℃以上時,ZnO的電子濃度有顯著下降的趨勢,約比未退火前下降了三到四個數量級,並在低溫(14K)的光激發光(Photoluminescence, PL)量測中觀測到受子能階(Acceptor Level)的訊號,顯示電子濃度的下降是由於重度摻雜鋁之ZnO內形成受子能階所導致。
目前廣泛認為,摻雜V族元素進入ZnO中去填補氧空缺(Oxygen Vacancy, VO),產生受子能階以提供電洞(Hole),是製作p型ZnO相當被看好的一種方式。本研究利用ALD技術在半絕緣(Semi-insulating)之(100)砷化鎵(Gallium Arsenic, GaAs)基板上成長ZnO,再進一步地使用高溫爐做熱擴散(Thermal Diffusion),將砷擴散進入ZnO中形成如AsZn-2VZn等複合物(Complex),作為受子能階以提供電洞。接著以快速熱退火(Rapid Thermal Annealing, RTA)的方式修補晶格缺陷與活化受子能階,製作出品質良好的p型摻雜砷之ZnO。由霍爾效應(Hall Effect)量測得知其電洞濃度為1017~1019cm-3,載子遷移率(Mobility)在100~101 cm2V-1s-1這個範圍,並在低溫PL量測也觀測到位於約3.32eV明顯的受子能階之訊號。
最後,本研究利用離子佈植(Ion Implantation)的方式,將V族元素如氮(Nitrogen, N)、磷(Phosphorous, P)及砷摻雜於ZnO薄膜中,並使用後續的熱退火修補因離子束破壞所造成的缺陷以及活化受子能階。我們發現以能量70keV,劑量5x1015cm-2將砷打入ZnO薄膜中,再以溫度為750℃,全氧氣的環境下退火兩小時,可得到電性良好的p型摻雜砷之ZnO。霍爾效應量測顯示其電洞濃度約1016~1017cm-3,而低溫PL量測也可觀測得受子能階的訊號,可作為p型 ZnO的佐證。
zh_TW
dc.description.abstractIn this thesis, p-type zinc oxide (ZnO) was developed by atomic layer deposition (ALD), coupled with the introduction of impurities via various doping techniques and post-deposition annealing.
First of all, ZnO thin films were deposited on (0001) sapphire substates by atomic layer deposition with Al doping percentage up to 10%. The Al was incorporated into ZnO thin films by distributed layered doping. After the post-annealing at the temperatures greater than 800℃ in ambient gas of N2:O2=1:1, the Hall effect measurement indicated that the electron concentration in ZnO decreased about 3~4 orders of magnitude. Moreover, the low-temperature photoluminescence (PL) spectrum at 14K showed the spectral peak corresponding to the acceptor level, suggesting that the decrease of electron concentration was caused by the presence of the acceptors in the heavily Al-doped ZnO.
Generally speaking, incorporating group-V impurities such as N, P, As, Sb as dopants into ZnO is regarded as a promising method to fabricate p-type ZnO. As group-V elements occupy oxygen vacancies, they will act as acceptor states and thus contribute holes in ZnO.
In the second topic of this thesis, ZnO thin films were grown on semi-insulating, undoped (100) GaAs substrate by ALD. Then the ZnO thin films were treated by thermal diffusion using furnace. The As atoms diffused from GaAs into ZnO and the complex like AsZn-2VZn may be formed to act as the acceptor levels. Afterwards, the samples were annealed by rapid thermal annealing (RTA) to eliminate the defects and activate the acceptor states. Hall Effect measurement showed that the hole concentration was in the range of 1017~1019 cm-3, and carrie mobility was between 100 and 101 cm2V-1s-1. The low temperature PL measurement revealed the spectral peak at 3.32eV associated with the acceptor bound exciton.
Finally, impurities such as N, P, and As were doped into ZnO thin films via ion implantation. Post-implantation annealing was applied to eliminate the defects and damages cause by the ion beams and activate the acceptor levels. High-quality p-type As-doped ZnO was obtained by ion implantation with energy of 70keV, dose of 5x1015cm-2, and post-annealing at 750℃ in oxygen ambient gas for 2 hours. Hall Effect measurement revealed that the hole concentration was about 1016~1017cm-3. The acceptor bound exciton was also observed in the low temperature PL spectrum , indicating the p-type characteristics of ZnO.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:30:11Z (GMT). No. of bitstreams: 1
ntu-98-R96527061-1.pdf: 1615693 bytes, checksum: 5c8efa8d8d4c7648c24ec208fc71f085 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要(中文)…….…………………………………………..……….…...…..………………………..2
摘要(英文)…….…………………………………………..……….…...…..………………………..4
目錄………………………………………………………………………….…..…….......................6
圖目錄….………………………………………………………………………………………….....8
表目錄………………………………………………………………………………..........................10
第一章 – 序論………….…………….……………..…………………...………………………….11
1-1 – 研究動機.………………………………………………………….…..……………………....11
1-2 – 原子層沉積技術.……………………………………………….…..………………………....12
1-2-1 – 原子層沉積技術之原理與特性…………………………………………………....12
1-2-2 – 原子層沉積技術之製程……………………………………………………………14
1-2-3 – 原子層沉積技術之設備……………………………………………………………..18
1-3 – 論文導覽……………………………………………………………………………………..19
1-4 – 參考文獻……………………………………………………………………………………..20
第二章 – 利用原子層沉積技術成長重度摻雜鋁的氧化鋅薄膜之研究…….…………………...21
2-1 – 簡介.…………………………………………………………….....…...……...………………21
2-2 – 實驗方法..…………………………………………………………...………………………...23
2-3 – 結果與討論………………………………………………………..…...……………………...26
2-3-1 – 結構特徵分析..................................................................................................................26
2-3-2 – 電性量測………………………………………………………………………………..28
2-3-3 – 光學特性量測…………………………………………………………………………..30
2-4 – 結論……………………………………………………………………...…..………………..34
2-5 – 參考文獻………………………………………………………………………………………34
第三章 – 使用原子層沉積技術成長氧化鋅於砷化鎵基板上以製作p型氧化鋅之研究.………………...………………………………..…………………….........................35
3-1 – 簡介…......….........…...……...………………………………….…..………..……………….35
3-2 – 實驗方法…………………………………………………………...…..……………………..36
3-3 – 結果與討論……………………………………………………….…...........………………...39
3-3-1 – XRD pattern……………………………………………………………………………..39
3-3-2 – 電性量測………………………………………………………………………………..42
3-3-3 – 光學特性量測…………………………………………………………………………..50
3-4 – 結論………………………………………………………………….………………………..56
3-5 – 參考文獻……………………………………………………………………….......................56
第四章 – 使用原子層沉積技術成長氧化鋅於藍寶石基板上並以離子佈植製程技術製作p型氧化鋅之研究…..………………………..……..………………………………………….59
4-1 – 簡介…......….........…...……...………………………………….…..………..……………….59
4-2 – 實驗方法…………………………………………………………...…..……………………...60
4-3 – 結果與討論……………………………………………………….…...........…………………62
4-3-1 – XRD頻譜………………................................................................................................62
4-3-2 – 電性量測........................................................................................................................63
4-3-3 – 光學特性量測................................................................................................................65
4-4 – 結論………………………………………………………………….………………………...67
4-5 – 參考文獻………………………………………………………………………………………68
第五章 – 總結………………………………………………………...……...…...………………...70
dc.language.isozh-TW
dc.title利用原子層沉積技術成長p型氧化鋅之研究zh_TW
dc.titleStudy of p-type ZnO Deposited by Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,何志浩,陳建彰
dc.subject.keyword原子層沉積技術,氧化鋅,熱擴散,離子佈植,p型,zh_TW
dc.subject.keywordAtomic Layer Deposition,ZnO,Thermal Diffusion,Ion Implantation,p-type,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2009-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved