請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4553完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Wei-Lun Hsu | en |
| dc.contributor.author | 許維綸 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:20Z | - |
| dc.date.available | 2021-02-02 | |
| dc.date.available | 2021-05-14T17:43:20Z | - |
| dc.date.copyright | 2016-02-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-07 | |
| dc.identifier.citation | 第一章、緒論
[1]圖片來源: photo by Andre Yakovlev. [2]圖片來源: Epoch Times (2013) [3] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [4] Seungchul Kim, Jonghan Jin, Young-Jin Kim, In-Yong Park, Yunseok Kim and Seung-Woo Kim, High-harmonic generation by resonant plasmon field enhancement, Nature 453, 757-760 (2008). [5] Andrea E. Schlather, Nicolas Large, Alexander S. Urban, Peter Nordlander, and Naomi J. Halas, Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers, Nano Lett. 13, 3281-3286 (2013) [6] W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A.-Q. Liu, D. P. Tsai, High-efficiency broadband meta-hologram with polarization-controlled dual images, Nano Letters 14 (1), 225-230 (2014). [7] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanosphere to nanoprisms, Science 294(5548), 1901–1903 (2001). [8] R. Ameling and H. Giessen, Microcavity plasmonics: strong coupling of photonic cavities and plasmons, Laser Photonics Rev. 1–29 (2012) [9] Shelby R A, Smith D R, Schultz S, Experimental Verification of a Negative Index of Refraction, Science 292, 77(2001) [10] Zheludev N I, A Roadmap for Metamaterials, Opt. & Photonics News 22, 30 (2011). [11] 圖片來源: Yao-Wei Huang [12] Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, Ultrafast laser induced parallel phase change nanolithography, Appl. Phys. Lett. 89(4), 041108 (2006). [12] Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10 509–514 (1968). [13] Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41-48 (2006). [14] Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials, Nat. Mater. 6, 946-950 (2007). [15] K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007). [16] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, Toroidal dipolar response in a metamaterial, Science 330(6010), 1510–1512 (2010). [17] Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, Design of plasmonic toroidal metamaterials at optical frequencies, Opt. Express 20(2), 1760–1768 (2012). [18] Ogut, B., Talebi, N., Vogelgesang, R., Sigle, W. & van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239–5244 (2012). [19] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013). [20] Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101, 144015 (2012). [21] V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B, 89, 205112 (2014) [22] Huang, Y. et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl. Phys. Lett. 104, 161106 (2014). [23] Hsu, W.-L. et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio, Scientific Reports 5, 11226 (2015). [24] Wan, X. Jiang, W. X., Ma, H. F. and Cui, T. J., A broadband transformation-optics metasurface lens. Appl. Phys. Lett. 104, 151601 (2014). [25] Yu, N. et al. Flat optics with designer metasurfaces. Nat. Mater. 13,139-150 (2014). [26] Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging, Nat. Mater. 11, 432-435 (2012) [27] Cheng, B. H., Lan, Y. C. and Tsai, D. P. Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 14898-14906 (2013). [28] Zhang, X. and Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435, (2008). [29] Cheng, B. H., Ho, Y. Z., Lan, Y. C. and Tsai, D. P. Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J. Sel. Top. Quant. Electron. 19, 4601305 (2013). [30] Cheng, B. H., Chang, K. J., Lan, Y.-C. and Tsai, D. P. Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures, Scientific Reports 5, 7996 (2015). [31] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers, Nat. Mater. 11, 69-75 (2012). [32] B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 3050-3054 (2013). [33] Nikolay I. Zheludev, Obtaining optical properties on demand, Science 348, 973 (2015) [34] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000). [35] S. M. Hein and H. Giessen, Tailoring magnetic dipole emission with plasmonic split-ring resonators, Phys. Rev. Lett. 111, 026803 (2013). [36] X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing, Nano Lett. 11(8), 3232–3238 (2011). [37] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Magnetic Metamaterials at Telecommunication and Visible Frequencies, Phys. Rev. Lett. 95, 203901 (2005). [38] N Liu, S Kaiser, H Giessen, Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules, Adv. Materials 20 (23), 4521-4525 (2008). [39] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry, Phys. Rev. Lett.99, 147401–1–4 (2007). [40] V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, Spectral collapse in ensembles of metamolecules, Phys. Rev. Lett. 104(22), 223901 (2010). [41] P. C. Wu, W.-L. Hsu, W. T. Chen, Y.-W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, D. P. Tsai, 'Plasmon coupling in vertical split-ring resonator metamolecules,' Scientific Reports 5, 9726 (2015). [42] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, and H. Giessen, Babinet’s principle for optical frequency metamaterials and nanoantennas, Phys. Rev. B, 76, 033407 (2007). [43] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, 'A hybridization model for the plasmon response of complex nanostructures,' Science 302, 419-422 (2003). [44] N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit, Nat. Mater. 8, 758-762 (2009). [45] N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Stereometamaterials, Nat. Photon. 3, 157-162 (2009). [46] W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, Switchable magnetic metamaterials using micromachining processes,' Adv. Mater. 23, 1792-1796 (2011). [47] J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, Plasmon-induced transparency in asymmetric T-shape single slit, Nano Lett. 12, 2494-2498 (2012). [48] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9, 707-715 (2010). [49] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys. 82, 2257-2298 (2010). [50] N. Meinzer, W. L. Barnes, and I. R. Hooper, Plasmonic meta-atoms and metasurfaces, Nat. Photon. 8, 889-898 (2014). [51] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333-337 (2011). [52] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater. 11, 426-431 (2012). [53] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, Broadband Light Bending with Plasmonic Nanoantennas, Science 335, 427 (2012). 第二章、實驗製程與數值模擬計算 [1] 圖片來源: Helios 660 NanoLab FESEM/FIB dual beams使用者手冊 [2] 圖片來源: http://www.2spi.com/catalog/grids/silicon-nitride.php [3] P. Drude, C. Riborg Mann, The Theory Of Optics, Longmans, Green, and Company (1902). [4] Aleksandar D. Rakic, Aleksandra B. Djurišic, Jovan M. Elazar, and Marian L., Majewski, Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Applied Optics 37( 22), 5271-5283(1998). [5] Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, 'Plasmonic nanoantenna arrays for the visible,' Metamaterials 2, 45-51 (2008). [6] P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [7] A. Hrennikoff, Solution of Problems of Elasticity by the Frame-Work Method, ASME J. Appl. Mech. 8, A619–A715 (1941). [8] Woon Siong Gan. Acoustical Imaging: Techniques and Applications for Engineers, John Wiley & Sons (2012). [9] 資料來源: COMSOL Multiphysics使用者手冊 [10] 圖片來源:皮托科技 [11]資料來源: CST GmbH, Germany. www.cst.de 第三章、直立式電漿子超穎介面 [1] Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41-48 (2006). [2] Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10 509–514 (1968). [3] Cheng, B. H. et al. Photonic Bloch oscillations in multi-layered fishnet structure. Plasmonics 7, 215-220 (2012). [4] Cheng, B. H. et al. Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 14898-14906 (2013). [5] Zhang, X. et al. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435, (2008). [6] Cheng, B. H. et al. Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J. Sel. Top. Quant. Electron. 19, 4601305 (2013). [7] Han, T. et al. Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials. Adv. Mater. 26, 1731-1734 (2014). [8] Pendry, J. B. et al. Controlling electromagnetic fields. Science 312, 1780 (2006). [9] Murray, W. A. et al. Plasmonic Materials. Adv. Mater. 19, 3771-3782 (2007). [10] Yu, N. et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 334, 333-337 (2011). [11] Sun, S. et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 12, 6223−6229 (2012). [12] Huang, Y. et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl. Phys. Lett. 104, 161106 (2014). [13] Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426-431 (2012). [14] Wan, X. et al. A broadband transformation-optics metasurface lens. Appl. Phys. Lett. 104, 151601 (2014). [15] Yu, N. et al. Flat optics with designer metasurfaces. Nat. Mater. 13,139-150 (2014). [16] Aieta, F. et al. Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities. Nano Lett. 12, 1702–1706 (2012). [17] Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 1-8 (2013). [18] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225-230 (2014) [19] Chen, W. T. et al. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Opt. Express 19, 12837-12842 (2011). [20] Wu, P. C. et al. Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics 1, 131-138 (2012). [21] Wu, P. C. et al. Vertical split-ring resonator based nanoplasmonic sensor. Appl. Phys. Lett. 105, 033105 (2014). [22] Hsu, W.-L. et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio, Scientific Reports 5, 11226 (2015). 第四章、非對稱裂環共振器超穎介面 [1] Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10 509–514 (1968). [2] Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41-48 (2006). [3] Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials, Nat. Mater. 6, 946-950 (2007). [4] Huang, Y. et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl. Phys. Lett. 104, 161106 (2014). [5] Hsu, W.-L. et al. Vertical split-ring resonator based anomalous beam steering with high extinction ratio, Scientific Reports 5, 11226 (2015). [6] Wan, X. Jiang, W. X., Ma, H. F. and Cui, T. J. A broadband transformation-optics metasurface lens. Appl. Phys. Lett. 104, 151601 (2014). [7] Yu, N. et al. Flat optics with designer metasurfaces. Nat. Mater. 13,139-150 (2014). [8] Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging, Nat. Mater. 11, 432-435 (2012) [9] Huang, Y.-W. et al. 'Aluminum Plasmonic Multicolor Meta-Hologram,' Nano Lett. 15(5), 3122-3127 (2015). [10] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225-230 (2014) [11] Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 1-8 (2013). [12] Ozaki, M., Kato, J.-i. and Kawata, S. Surface-Plasmon Holography with White-Light Illumination, Science 332, 218-220 (2011) [13] Chen, C.-C. et al. Uniaxial-isotropic metamaterials by three-dimensional split-ring resonators, Advanced Optical Materials 3(1), 44-48 (2015). [14] Stanca, S. E. et al. Magnetic apatite for structural insights on the plasma membrane, Nanotechnology 26, 3035601 (2015) [15] Wirth, J. et al. Plasmonically Enhanced Electron Escape from Gold Nanoparticles and Their Polarization-Dependent Excitation Transfer along DNA Nanowires, Nano Lett. 14, 3809-3816 (2016) [16] Kaelberer, T., Fedotov, V. A., Papasimakis, N., Tsai, D. P. and Zheludev, N. I. Toroidal dipolar response in a metamaterial. Science 330, 1510-1512 (2010). [17] Huang, Y.-W. et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20, 1760-1768 (2012). [18] Huang, Y. -W. et al. Toroidal lasing spaser, Scientific Reports 3, 1237 (2013). [19] Cheng, B. H., Lan, Y. C. and Tsai, D. P. Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 14898-14906 (2013). [20] Zhang, X. and Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435, (2008). [21] Cheng, B. H., Ho, Y. Z., Lan, Y. C. and Tsai, D. P. Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J. Sel. Top. Quant. Electron. 19, 4601305 (2013). [22] Cheng, B. H., Chang, K. J., Lan, Y.-C. and Tsai, D. P. Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures, Scientific Reports 5, 7996 (2015). [23] Murray, W. A. et al. Plasmonic Materials. Adv. Mater. 19, 3771-3782 (2007). [24] W. M. Zhu, Q. H. Song, L. B. Yan, W. Zhang, P. C. Wu, L. K. Chin, H. Cai, D. P. Tsai, Z. X. Shen, T. W. Deng, S. K. Ting, Y. D. Gu, D. L. Kwong, Z. C. Yang, R. Huang, A. Q. Liu and N. I. Zheludev, 'A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial,' Advanced Materials 27, 4739–4743 (2015). [25] J. –L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee,'Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,' Appl. Phys. Lett 97, 203702 (2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4553 | - |
| dc.description.abstract | 超穎介面是由一種經妥善排列後的人造次波長金屬結構所構成,並具有自然界中不存在且特殊的光操控能力。超穎介面的光操控能力是由組成的奈米結構之幾何參數與週期排列方式所決定,本論文利用此特性設計兩種不同形式的裂環共振器超穎介面,並分析其光操控能力與暗場之應用。
第一種是由直立式裂環共振器構成的超穎介面,比傳統的平面奈米柱超穎介面多了一個維度可以進行操控。直立式裂環共振器超穎介面具有將光通訊波段的入射光異常反射到特定角度的能力,藉由模擬分析,此超穎介面具有很高的指向性與訊雜比。比起傳統奈米柱超穎介面,直立式裂環共振器超穎介面能解省將近百分之五十的佔據表面積,提升超穎介面之積體光學元件的密度。 第二種超穎介面是由非對稱裂環共振器陣列所構成,此超穎介面在暗場下擁有陣列邊界發光的特性,藉由增加非對稱裂環共振器的週期,邊界發光特性會變成全陣列的發光。此非對稱裂環共振器超穎介面是第一個設計在暗場下工作的超穎介面,在未來能應用在暗場下的細胞捕獲器或暗場下的光陷阱。 | zh_TW |
| dc.description.abstract | Metasurface is a kind of artificial material constructed by metal nanostructure with well-designed patterned on its surfaces has shown to possess unusual abilities to manipulate light. In this dissertation, two types of split-ring resonators based metasurface have been designed and investigated.
Recently, we have designed the 3D nanostructures, namely vertical split-ring resonators (VSRRs), which opens up another degree of freedom in the metasurface design. VSRR-based metasurface is able to anomalous steering reflection of a wide range of angles can be accomplished with high extinction ratio using the finite-difference-time-domain simulation. On the other hand, VSRR-based metasurface can be made with roughly half of the footprint compared to that of rods-based metasurface, enabling high density integration of metal nanostructures. At present, proposed functions of metasurface-based devices are mostly oriented to bright-field but not dark-field. We first propose and analyze an asymmetric split-ring-based metasurface with ability of edge-emission at visible region under dark-field environment. By changing periodic distance between two adjacent split-ring elements, the mode with edge-emission can be controlled. It can be observed under dark-field measurement with property of spectral-dependent spatial variation. The feasibility of proposed design has been demonstrated by the electromagnetic numerical simulation and dark-field measurement. The broadband phenomena of edge emission have been observed from 650 to 900 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:20Z (GMT). No. of bitstreams: 1 ntu-104-D01222023-1.pdf: 4647117 bytes, checksum: 47d3d50fc6ca70cb05af76c550110da8 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄 I
圖目錄 III 中文摘 VI Abstract VII 第一章、緒論 1 1-1 前言 1 1-2 局域性表面電漿子共振介紹 2 1-3 電漿子超穎物質介紹 6 1-3.1超穎物質介紹 6 1-3.2裂環共振器介紹 7 1-3.3巴比內原理 11 1-3.4電子混和模型與法諾共振 13 1-4 電漿子超穎介面介紹 16 1-4.1簡介 16 1-4.2超廣義斯乃爾定律 19 1-5 參考資料 22 第二章、實驗製程與數值模擬計算 28 2-1 前言 28 2-2 聚焦離子束蝕刻技術 28 2-3 光學量測系統 32 2-4 數值模擬計算 34 2-4.1杜德-羅倫茲模型 34 2-4.2有限元素法 36 2-4.3有限積分法 37 2-5 參考資料 38 第三章、直立式電漿子超穎介面 39 3-1 前言 39 3-2 研究動機 40 3-3 結構設計 41 3-4 數值計算與分析 43 3-5 本章結論 51 3-6 參考資料 52 第四章、非對稱裂環共振器超穎介面 55 4-1 前言 55 4-2 研究動機 56 4-3 結構設計 56 4-4 數值計算與分析 58 4-5 本章結論 65 4-6 參考資料 65 附錄 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非對稱裂環共振器 | zh_TW |
| dc.subject | 電漿子超穎物質 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 直立式裂環共振器 | zh_TW |
| dc.subject | Metasurface | en |
| dc.subject | Asymmetric Split-Ring Resonators | en |
| dc.subject | Vertical Split-Ring Resonators | en |
| dc.subject | Plasmonic Metamaterials | en |
| dc.title | 裂環共振器超穎介面之光操控與應用 | zh_TW |
| dc.title | Split-ring resonator based metasurface: Light Manipulation and Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 任貽均,王智明,陳瑞琳,江海邦 | |
| dc.subject.keyword | 電漿子超穎物質,超穎介面,直立式裂環共振器,非對稱裂環共振器, | zh_TW |
| dc.subject.keyword | Plasmonic Metamaterials,Metasurface,Vertical Split-Ring Resonators,Asymmetric Split-Ring Resonators, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-12-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 4.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
