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中文摘要 

 

超穎介面是由一種經妥善排列後的人造次波長金屬結構所構成，並具有自然

界中不存在且特殊的光操控能力。超穎介面的光操控能力是由組成的奈米結構之

幾何參數與週期排列方式所決定，本論文利用此特性設計兩種不同形式的裂環共

振器超穎介面，並分析其光操控能力與暗場之應用。 

 

第一種是由直立式裂環共振器構成的超穎介面，比傳統的平面奈米柱超穎介

面多了一個維度可以進行操控。直立式裂環共振器超穎介面具有將光通訊波段的

入射光異常反射到特定角度的能力，藉由模擬分析，此超穎介面具有很高的指向

性與訊雜比。比起傳統奈米柱超穎介面，直立式裂環共振器超穎介面能解省將近

百分之五十的佔據表面積，提升超穎介面之積體光學元件的密度。 

 

第二種超穎介面是由非對稱裂環共振器陣列所構成，此超穎介面在暗場下擁

有陣列邊界發光的特性，藉由增加非對稱裂環共振器的週期，邊界發光特性會變

成全陣列的發光。此非對稱裂環共振器超穎介面是第一個設計在暗場下工作的超

穎介面，在未來能應用在暗場下的細胞捕獲器或暗場下的光陷阱。 

 

關鍵字: 電漿子超穎物質，超穎介面，直立式裂環共振器，非對稱裂環共振器。 
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Abstract 

Metasurface is a kind of artificial material constructed by metal nanostructure 

with well-designed patterned on its surfaces has shown to possess unusual abilities to 

manipulate light. In this dissertation, two types of split-ring resonators based 

metasurface have been designed and investigated. 

Recently, we have designed the 3D nanostructures, namely vertical split-ring 

resonators (VSRRs), which opens up another degree of freedom in the metasurface 

design. VSRR-based metasurface is able to anomalous steering reflection of a wide 

range of angles can be accomplished with high extinction ratio using the 

finite-difference-time-domain simulation. On the other hand, VSRR-based 

metasurface can be made with roughly half of the footprint compared to that of 

rods-based metasurface, enabling high density integration of metal nanostructures. 

At present, proposed functions of metasurface-based devices are mostly oriented 

to bright-field but not dark-field. We first propose and analyze an asymmetric 

split-ring-based metasurface with ability of edge-emission at visible region under 

dark-field environment. By changing periodic distance between two adjacent 

split-ring elements, the mode with edge-emission can be controlled. It can be 

observed under dark-field measurement with property of spectral-dependent spatial 

variation. The feasibility of proposed design has been demonstrated by the 

electromagnetic numerical simulation and dark-field measurement. The broadband 

phenomena of edge emission have been observed from 650 to 900 nm.  

 

Key words: Plasmonic Metamaterials, Metasurface, Vertical Split-Ring Resonators, 

Asymmetric Split-Ring Resonators 
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第一章、緒論 

 

1-1 前言 

 

人們一直以來都對於微小尺度下的光學現象感到興趣，在過去幾年中，拜製

程技術進步所賜，小尺寸結構能被實現。電漿子超穎物質(plasmonic metamaterials)

因此也成為熱門的研究題材，不同於一般自然界的物質其特性是由組成中的本質

特性所決定；超穎物質是由人造的次波長結構所組合而成，其光學特性也是由次

波長結構的幾何形狀、尺寸與排列所決定。藉由有組織的排列這些次波長結構，

超穎物質能產生一般自然界物質所沒有的特殊光學特性。 

 

本論文主要是設計兩種不同形式的裂環共振器超穎物質，並探討其表面電漿

子共振模態，進一步利用結構間的耦合來設計具有功能性的超穎介面。本文的架

構分別是；第一章主要介紹局域性表面電漿子共振超穎介面的特性，接著再介紹

電漿子間的耦合效應與廣義斯乃爾定律。第二章介紹本論文所使用的儀器與模擬

軟體。第三章介紹第一種超穎介面，介紹如何利用直立式裂環共振器設計具有高

指向性、高訊雜比與高密度的奈米光學天線。第四章是介紹第二種超穎介面，介

紹如何利用不同週期大小的非對稱的裂環共振器負結構來調控暗場下的散射圖

案，此超穎介面在未來能在暗場下應用於細胞捕獲器。 
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當實驗證實科學家可以藉由電漿子超穎材料來產生自然界不存在的光學現

象後，陸續有科學家提出藉由電漿子超穎物質達到電磁波的操控行為，從一開始

的負折射材料[12-14]到環形矩[15-21]、光學天線[22,23]、超薄透鏡[24-26]與超解

析透鏡[27-30]等都是自然界不存在的有趣光學特性。隨著製程技術的發展，電漿

子超穎物質的研究逐漸走向具有特定功能如具感測力(Sensing)[31]與調控力

(Tunable)[32]的超穎元件(meta-device)或超穎介面(meta-surface)。在 2012 年英國

南安普敦大學的 Nikolay I. Zheludev 教授首先提出超穎元件(Meta-device)的觀念，

其定義是該元件具有特殊的應用功能，而該功能可以藉由超穎物質的人在結構來

調控。示意圖如圖 1-8 所示。[33] 

 

 

圖 1-8: 超穎物質未來的走向示意圖。[33] 

 

1-3.2 裂環共振器介紹 

在眾多的超穎材料的結構中，裂環共振器(Split-ring resonator)是最受矚目且

最具代表性的一種，由於裂環共振器同時擁有電共振(electric resonance)與磁響應

(magnetic response)，因此被廣泛的應用在許多超穎物質的設計中。裂環共振器最
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振器而言，正

過裂環共振

環共振器的

對裂環共振

ndry 所設計

環共振器也發
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感應出磁偶共
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抑制變化，進
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的磁共振，就
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裂環共振器感

進而在結構表
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間，無法造成
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通量的變化
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用在微波波段

多相似的結構

共振器的磁響

如圖 1-9 所示

裂環共振器

行與(d)垂直

場穿過裂環共

感受到環境

表面產生感

激發磁共振
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析透鏡[34]。
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示意圖。(b)
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(b)所示[38

低入射光激
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型等[35,36]
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構表面感應出

 

)裂環共振器

光譜圖。[37

如圖 1-10(

會感應出一個

於平面式的裂

射光的磁場無

光的磁場來激

8]，讓磁場的

激發裂環共振

材料

。目

電場

出環

器陣

7] 

(a)所

個反

裂環

無法
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振器



 

的效

圖 1

[38]
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學的
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不同

所示
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才能
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效率。 

 

1-10: (a)入射

] 

隨著超穎

環共振器(A

的 Nikolay I

於結構表面

共振器互相

同，兩個結構

示)，兩個結

但電流方向

下才能被激
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的條件下才

射光磁場方

穎物質的功能

Asymmetric 

I. Zheludev

面感應出環型

相靠近時(如圖

構產生不同

結構的共振相

向卻是相反(如

激發。此反向

此共振模態
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方向穿越裂環

能需求，裂環

split ring re

教授所提出

型電流震盪

圖 1-11(a)所

同的共振相位

相位剛好相

如圖 1-(c)所

向共振的共振

態也被稱為束

模態，因此
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環共振器手

環共振器也

esonators)。

出，如上述所

盪並同時產生

所示)[39]，

位，在特定的

相差 180°，

所示)[39]，

振模態需要

為束縛模態(t

此束縛模態擁

手臂間之示意

也演變出各種

這種結構最

所說，裂環共

生磁偶極共

由於不同尺

的波長激發

此時兩個結

從圖 1-11(

要藉由破壞超

trapped mod

擁有較高的

意圖。(b)斜

種複合結構

最早是被英

共振器在特

共振，當兩個

尺寸對於入

發下(反射光

結構會擁有

c)可以發現

超穎物質幾

de)[40]，也

的品質係數(

斜向入射示意

構，例如非對

英國南安普敦

特定的偏振下

個尺寸不同的

入射光的感應

光譜如圖 1-1

有相似的電流

現只有在特定

幾何結構對稱

也因為只有在

(Q-factor)。

 

意圖。
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應力

11(b)
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1-11: 非對

流振盪。[39
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振器平躺在

二維裂環共

誘發磁偶共

方法也會讓

，我們設計

振器站在基

場與磁場激

此結構，因此

對稱裂環共振

9] 
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在基板上，如

共振器，並在

共振；若要使

讓磁場對結構

計了三維的直
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激發，圖 1-12
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振器之(a)示

部分對於裂環

如圖 1-12(a)

在結構表面產

使用入射光的

構的激發效

直立式裂環

中 L = 195 n

2(f) [41]是磁

裂環共振器比
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示意圖、(b)

環共振器的

)所示[41]。

面產生環形電

的磁場來激

效率減弱。為

環共振，結構
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磁場能量密

比平面式裂

)反射光譜圖

的研究僅限於

如之前所提

電流(圖 1-12

激發，就必須

為了增加入射

構設計如圖

式裂環共振器

密度分佈，由

裂環共振器擁

 

圖與(c)不同

於二維結構

提到的，入

2(b)) [41]，

須讓光傾斜

射光與裂環

圖 1-12(d) [4

器能同時被

由於電場與

擁有更高的

同頻率下的表
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入射光電場能

並在兩個手

斜入射，相對

環共振器間的

41]所示，裂

被正向入射光
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的磁場能量密

表面

裂環
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手臂

對地

的耦
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時激

密度。
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圖 1-13: 裂環共振器(a)正結構與(b)負結構之示意圖。[42] 

 

圖 1-14[42]是裂環共振器正結構與裂環共振器負結構的穿透、反射光譜圖。

其中圖 1-14(a)與(d)是正結構分別在 x 篇振與 y 偏振下的量測結果；圖 1-14(b)與

(c)是裂環共振器負結構分別在 y 篇振與 x 篇振下的量測結果。有趣的是，從圖

1-14(a)與(b)中可以觀察到正結構在 x 偏振下的穿透光譜與負結構在 y 偏振下的

反射光譜極為相似，而正結構的反射光譜與負結構的穿透光譜也具有相似的趨勢。

從圖 1-14(c)與(d)也能觀察到一樣的現象，這就是巴比內原理提到的光學特性互

補。此外，如果考慮兩個結構的吸收光譜(利用 1-穿透率-反射率=吸收率)，也可

以發現兩種結構的光譜幾乎一致，代表著這兩種結構在相同的波段下有相似的共

振行為。這個結果對於超穎材料的結構製作有很重大的意義，舉例來說，假如超

穎材料的正結構太複雜而不利於製作，我們便可以選擇製程較容易的負結構來製

作樣品，由於正負結構在相同波段下有相似的共振，因此要轉換結構也比較容易。

另一方面，負結構的局域表面電漿子共振需要考慮到狹縫與狹縫間的耦合，往往

會讓模態分析變得很複雜，此時我們也可以選擇改用容易探討共振模態的正結構

來進行數值分析與模擬。若善加利用結構與光譜的互補特性，可以簡化超穎物質

的設計與製作。 
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圖 1-14: 裂環共振器正結構在(a)x偏振與(d)y偏振下的量測光譜圖；負結構在(b)y

偏振與(c)x 偏振下的量測光譜圖。[42] 

 

1-3.4 電子混和模型與法諾共振 

 

就如前幾節所討論的，表面電漿子共振是在適當條件下，自由電子在次波長

尺寸的金屬微結構表面產生集體震盪，在前一節也提及某些特定結構存在著表面

電漿子共振的耦合。在 2003，美國萊斯大學的 Peter Nordlander 教授提出以古典

電磁理論描述表面電漿子的耦合行為，並發現有一些現象與量子系統中的電子耦

合非常相似，如電子耦合後產生的能階分裂。其中最著名的電漿子耦合模型如圖

1-15 所示。[43] 
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圖 1-15:描述金屬球殼上的表面電漿子交互作用所產生的能階分裂示意圖。[43] 

 

此電漿子耦合模型不僅成功解釋了單一結構間的電偶耦合，更可用於解釋多

層求殼結構表面上的電漿子共振所造成的能階分裂。除了上述不同形狀的金屬結

構能被成功解釋外，在 2015 年，Wu 團隊發現，電漿子混和模型也能成功解釋

不同尺寸間的金屬微結構耦合現象，如圖 1-16 所示[41]。當奈米結構之間的距離

夠接近時，結構表面的電漿子會進行交互作用，此時這兩個兼併態會在能階系統

中產生能階分裂如圖 1-16(a)所示，從穿透光譜中可以觀察到兩個明顯的共振訊

號。圖 1-16(b)為兩個共振訊號的表面電流密度模擬圖，裂環共振器中的藍色箭

頭為電流方向，首先可以發現短波長共振時的電流方向相同，此時兩個裂環共振

器之間所產生的磁偶與電偶皆為同向；另一方面，在長波長的共振波段下，兩個

裂環共振器之間的電流方向為反向，此時裂環共振器的磁偶與電偶皆為反向。根

據古典電磁學理論，我們知道兩個同向的電偶有著比反向電偶還要高的能量，然

而兩個反向的磁偶有著比兩個同向磁偶還要高的能量，在裂環共振器的系統裡，

電偶的能量較磁偶高，因此電偶能主導了兩個裂環共振器的共振波段。此研究結

果顯示，古典的電磁學理論能成功解釋電漿子的混和模型。 
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當入射光與散射體達到共振時，散射光具有極大的相位偏移量。隨著改變散射體

的尺寸結構或是折射率，便能有效的控制散射光的相位偏移，藉由有系統地排列

光學散射體，便能擁有相位非連續性，進而達到控制光波前的效果。最有名的例

子為 Cappaso 團隊在 2011 年所發表的超穎材料調控光波前之結果(示意圖如圖

1-18 所示)[51]。該團隊利用不同旋轉角度的”ㄑ”型光學散射體來調製透射光的相

位偏移，進一步讓透射光的相位偏移量有梯度變化，每個”ㄑ”型光學散射體在空

間中都可視為點波源，彼此干涉後便能形成光波前，此結構排列能在正向入射光

的條件下，讓透射光沿一特定角度出射。 

 

 

圖 1-18:超穎材料的光波前調製示意圖。[51] 

 

具有調控性的光學散射體空間分布必須滿足尺寸、厚度與間距皆為次波長尺

度。這些藉由共振特性來改變電磁波散射相位的結構陣列，我們稱為超穎介面，

超穎介面的相位非連續性特性為光學元件開啟一個新的設計自由度。因此，超穎

介面在近期有諸多的設計與應用，如奈米級光學天線、超薄透鏡與超穎全相片

等。 
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在此諸多功能的超穎介面中，本文將著重於如何利用光學散射體來設計具有

光學天線特性的超穎介面。當一道光入射超穎介面並與其中的金屬天線(光學散

射體)進行交互作用(電漿子共振)，此時金屬天線會產生具有相位變化的散射光，

根據廣義的斯乃爾定律，金屬天線的相位調製需要達到 2π才能完全調控電磁波

的波前。在固定入射光波長(λ)的條件下，當金屬天線的長度 L =λ/2 時，將會

產生共振，此時，天線表面被引發的電流與入射場同向，因此之間沒有相位差。

當金屬天線的長度改變漸漸遠離共振條件時，相較於入射場，表面電流的震盪方

向有領先或延遲的相位。藉由調控金屬天線的長度，我們將可以調控金屬天線的

相位。就單一個金屬天線而言，最大的相位調製能力是π (也就是表面電流震盪

與入射場呈反向) 因此無法達成完全調控光波前的條件 2π。近幾年，有三種方

法被提出讓金屬天線的相位調製達到 2π : (1)多重獨立共振  (Multiple 

Independent Resonances)，(2) 結構的幾何效應 (Geometric Effects)與(3) 天線的耦

合式共振(Coupled  Antenna  Resonances)。 

 

多重獨立共振主要是適當的排列具有對稱模態與反對稱模態的金屬天線，在

入射特定偏振光下，讓此兩種模態相互疊加，而產生 2π的相位調製效果。幾何

效應是藉由旋轉金屬天線，使的散射光產生像位延遲，達到2π的相位調製效果。

此方法具有各金屬天線的散射光強度相近的優點；欲使用此方法達到相位調製，

就必須使用圓偏振光來激發金屬天線。耦合式天線是最常被應用的方法，其中又

以金屬-介電質-金屬(MIM)多層結構最被廣泛利用(請參考圖 1-19)[52]。金屬-介

電質-金屬(MIM)多層結構是利用一層介電質分隔結構最底部的金屬反射鏡與最

上方的金屬天線。底部的金屬反射鏡具有兩個重要的功能，第一個功能是反射鏡

能與金屬天線進行耦合，當金屬天線受到入射光激發而產生表面電流時，底部的

金屬反射鏡能被感應出一個反向的電流，此時介於金屬與反射鏡間的介電質即會

產生磁耦振盪響應，擴展了像位的調製能力。第二個功能是反射所有的穿透光，
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能增加入射光與金屬天線的耦合，也減少了穿透光的損耗，使的超穎介面的效率

被大幅提升。 

 

圖 1-19: (a)超穎介面的單一結構示意圖，(b)超穎介面的光學影像圖。[52] 

 

1-4.2 廣義斯乃爾定律 

 

根據費馬定理(Fermat’s principle)的結果，光會挑選最短路徑進行傳遞，在兩

種不同的均勻介質中，可以表示成: 

                                                               (1.4.1) 

整理後可以得到角度與折射率的關係，這便是我們所熟知的斯奈爾定律(Snell’s 

law)關係式，可以表示成: 

                         sin( ) sin( )i i t tn nθ θ=                   (1.4.2) 

圖 1-20(a)是斯奈爾定律的折射式意圖，當外加一個超穎表面在兩均勻物質之介

面時，便能額外對入射光提供一個相位，因此費馬定律必須作修正，示意圖如圖

1-20(b)所示，公式如下: 

                0 0sin( ) ( ) sin( )i i t tk n dx d k n dxθ θ+ Φ + Φ = + Φ       (1.4.3) 

其中Φ是由超穎表面所額外提供的相位，而折射的廣義斯乃爾定律則表示成: 
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2t t i i
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dx
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 
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第二章、實驗製程與數值模擬計算 

 

2-1 前言 

 

本論文主要以聚焦離子束蝕刻(Focus ion beam milling, FIB)來製備奈米等級

金屬結構陣列。聚焦離子束蝕刻技術是乾式製程，擁有製成速度快、沒有光學繞

射極限限制、不用製作光罩等優點，是製作奈米結構絕佳的方法。聚焦離子束系

統通常以鎵金屬為離子源，鎵離子的質量約是電子的十二萬八千倍，在電場加速

後，鎵離子的速度可以達電子的三百六十分之一，因此鎵離子所具有的動能為電

子的三百六十倍，利用鎵離子的巨大動能對基板進行轟擊，由於此轟擊屬於物理

作用，因此聚焦離子束蝕刻能作用於大部分的機板。此外，在加速電壓 30kV 的

條件下，聚焦離子束蝕刻系統能刻繪出 10nm 線寬的圖案。本論文使用兩種商業

軟體進行數值模擬計算與分析，分別為 COMSOL Multiphysics 以及 Computer 

Simulation Technology (CST)，在本章將分別介紹這兩種軟體的特色。 

 

2-2 聚焦離子束蝕刻技術 

 

樣品的製備流程是先使用丙醇(acetone)、甲醇(methanol)、異丙醇(isopropyl 

alcohol)與去離子水(de-ionized water)各以超音波震洗五分鐘以去除玻璃基板表

面的汙染物，接著利用熱蒸鍍(thermal evaporator)系統在基板上蒸鍍一層 50nm 的

金膜，鍍膜時以石英振盪片膜厚計來確認金膜厚度。實驗中所使用的聚焦離子束

蝕刻機台為 FEI 公司的 Helios 660 NanoLab FESEM/FIB dual beams。圖 2-1(a)是

機台的外觀圖[1]，圖 2-1(b)是腔體內部的示意圖[2]，此機台同時具有聚焦離子束

系統、場發式電子顯微鏡與鉑金屬沉積系統。實驗中，聚焦離子束的加速電壓為

30 kV，依不同線寬所需，使用的電流從 1 到 29 pA 不等，除了調整電壓與電流
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(3) 離子/電子柱(ion/electron column) 

離子/電子柱是由眾多精密的透鏡與控制器所組成(請參考圖 2-2)[1]，主要的元件

是 

i.離子電子源(ion/electron source):提供離子或電子進入腔體中。 

    ii.透鏡系統(Lens system):所使用的透鏡為靜電透鏡，主要功能是進行聚焦。 

  iii.變流開關(Deflection system):量測離子束大小。 

  iv.聚焦透鏡(Final lens):調整離子束的焦點。 

  v.偵測站(Detection):偵測二次粒子訊號，了解切割狀況。 

 

圖 2-2: 離子/電子柱示意圖。[1] 

 

(4) 液態金屬離子源(liquid metal ion source): 

由於鎵離子具有熔點低(Tmp = 29.8°C)與揮發性低等優點，因此成為目前常見的

液態金屬離子源，此外鎵離子還具有低的表面自由能，可以促進與鎢鎵熱線的黏

性。良好的抗氧化性能使鎵離子在腔體中維持好品質並延長使用期限。 
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(5) 五軸電動載台(5-axes motorized stage): 

高精準度的電動載台除了可以進行 xyz 三軸平移外，還可以進行 54°的傾斜與

360°的旋轉。其中在 xy 軸方向可以移動 150 mm 的行動，z 軸方向可以移動 10 

mm。 

 

(6) 偵測器(Detection and CCD): 

偵測器除了可以分析二次粒子並形成影像外，此聚焦離子束蝕刻系統還設有一般

攝影機，可以隨時監控載台與離子柱的相對距離。 

 

聚焦離子束系統另一項優點是能快速地進行結構加工，透過高解析能力的場

發式電子顯微鏡(field-emission scanning electron microscopy)影像，使用者能立即

修正加工參數，大幅縮短樣品的製程時間。修正參數的過程就如圖 2-3 所示，圖

2-是利用聚焦離子束在厚度為 50 nm 的金屬薄膜上測試劑量的 SEM 影像圖，使

用的電流為 28 pA。當劑量為 4 mC/μm 2 時，從 SEM 影像圖可以觀察到大部分

的金膜皆未被完全蝕刻，因此結構表面還殘留著剩餘的金；隨著劑量向上提升，

結構表面殘留的金越來越少。當劑量提升到 10mC/μm 2 時，從 SEM 影像中觀察

到金膜被完全蝕刻，製作出完整的奈米柱負結構。藉由此測試可以快速地找到適

合製作超穎結構的參數，減少製成失誤的機會，因此在加工前的測試是製程中非

常重要的一環。 
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接著將金屬內部極化量P nex= −
 

帶入(2.4.2)後可以得到: 
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接著導入電位移與電場的關係試 0D E Pε= +
  

後，可以得到: 

                        
2

0 2
( ) (1 ) ( )pD t E t

i

ω
ε

ω γω
= −

+
 

                 (2.4.4) 

其中，
2

2

0
p

ne

m
ω

ε
= 為電漿頻率(plasma frequency)，因此可以得到自由電子的介電函

數: 

                     
2

1 22
( ) 1 ( ) ( )p i

i

ω
ε ω ε ω ε ω

ω γω
= − = +

+
             (2.4.5) 

上式即為杜德模型，其中實部與虛部分別表示成: 

                            
2

1 2 2
( ) 1 pω

ε ω
ω γ

= −
+

                    (2.4.6) 

                            
2

2 2 2
( )

( )
pω γ

ε ω
ω ω τ

=
+

                   (2.4.7) 

其中
1γ
τ

= 為自由電子的碰撞頻率(collision frequency)，而τ 為自由電子碰撞時間。

當入射光頻率小於電漿頻率時，金屬便保持著本身的金屬特性，當頻率接近電漿

頻率時，損耗項可以忽略不計，因此可以改寫成: 

                                
2

2
( ) 1 pω

ε ω
ω

= −                     (2.4.8) 

在很廣的電磁波頻率中，此模型對於鹼金屬的最高頻率適用可以擴展製紫外

光；而對貴金屬而言，在可見光波段存在著兩個不同能帶的躍遷，因此限制了此

模型的適用範圍。另一方面，杜德模型只描述金屬內部自由電子的運動狀態，而
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未考慮到金屬內部有束縛電子。為了修正此誤差，勞倫茲(Lorentz )項在此被引入

杜德模型中，及杜德勞倫茲模型(Drude-Lorentz model)[4]: 

                    
2 23

2 2 2
1

( ) 1 p m m

m m m

f

i i

ω ωε ω
ω γω ω ω γ ω=

= − +
+ − −            (2.4.9) 

其中
23

2 2
1

m m

m m m

f

i

ω
ω ω γ ω= − − 為勞倫茲項，與杜德模型做比較杜德勞倫茲模型多了束縛

力的貢獻。 

在本文的模擬計算中，金屬的介電系數是採用來描述，其中金的電漿頻率為

8.997 電子伏特[5]，而阻尼常數為 0.14 電子伏特[6]。 

 

2-4.2 有限元素法(Finite-Element method) 

 

有限元素法起源於 1941 年，當時首先用於航空工程與土木工程上[7,8]，有

限元素法的概念是任何的連續量都可用一個不連續的函數做近似表示，也就是將

連續性的物體分割成許多有限的網格(mesh)並利用網格進行計算，求解時需要讓

網格上的解進行收斂去近似整體的答案，因此網格的數目也決定了答案的真實性。

COMSOL Multiphysics 是建立於有限元素分析法的商用軟體[9]。在進行計算時，

軟體會將我們所設計的複雜幾何結構進行網格切割，如圖 2-6(a)[10]所示，網格

的邊界稱為節點(node)，每個節點都必須符合內插函數方程式(interpolation 

equation)，並求解所有網格的微分方程，其解必須為收斂，所得的解被稱為內插

近似解(interpolation approximation)，在本文中所用到的函數方程式是求解電磁波

用的三維全波馬克斯威爾方程式(Three-dimensional fullwave Maxwell’s equations)。

如前面所提到，由於有限元素分析法是利用近似法進行求解，因此網格的數目變

成了計算值是否符合實際值的關鍵，在 COMSOL 軟體中，如何設定網格大小與

密度變成了很重要的課題，過疏的網格往往會造成計算值與實際值差異過大，但
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確度，CST 軟體引進了完美邊界近似技術((Perfect Boundary Approximation)於計

算中，並保持卡笛耳座標系的計算優勢，同時在比較複雜的任意四面體計算中仍

然能維持準確性。在利用 CST 作運算時，我們使用週期性邊界，而入射波源是

平面波。 
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之間的耦合來

當介電質的

製；當介電質

穎介面的效率

m、L=170 nm

環共振器在

所示)，圖中

低，也代表

上一段有提

0 nm 時，在

射，讓超穎

共振器)是無

來達成 2π的

的厚度太厚時

質厚度太薄時

率跟著降低

 

m、H1=30 n

在不同手臂長

中反射光強

表更強的共振

提到在設計超

在入射光波長

穎介

無法

的相

時，

時，

低。 

nm、

長度

強度

振在

超穎

長為
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使的

讓金

的反

由於

合用

圖片

反射

 

入射

48 nm 的條件

的反射率降

金屬天線與

反射率逐漸

於介電質厚

用於設計超

片 3-6: 單一

射強度及反

本文所設

射光波段為

件下，相位

降低，這會讓

與金膜的耦合

漸增加，當介

厚度為 70 nm

超穎介面。 

一裂環共振器

反射光相位圖

設計的是能應

為 1548 nm 並

位調製可以達

讓超穎介面的

合漸弱，因此

介電質厚度

m 時同時擁

器在 y 偏振

圖。 

應用在光通

並將不同手
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達到 2π，但

的效率跟著

此可以從圖

度大於 70 nm

擁有 2π的相

振光下改變介

通訊波段之超

手臂長度條件

但由於金屬天

著降低。隨著

圖中觀察到

m 時，相位

相位調製與最

介電質(SiO

超穎介面，因

件下的反射

天線與金膜

著介電質厚

，單一直立

位調製已經無

最高的反射

O2)厚度與手

因此我們從

射強度與相位

膜的耦合太強

厚度逐漸增加

立式裂環共振

無法達到 2π

射率，因此最

手臂長度(H

從圖 3-6 中選

位整理成圖

強，

加，

振器

π，

最適

 

H2)的

選擇

圖 3-7，



 

從圖

設計

臂長
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圖片

後的

 

圖 3

入射

反射

共振

棒狀

直立

在波

圖中可以觀

計出來的超

長度，如圖中

0 nm，其相

片 3-7: 入射

的手臂長度

進一步分

3-8 (a) 是直

射光的激發

射鏡上誘發

振器的環型

狀結構的反

立式裂環共

波長為 1548

觀察到，所有

超穎表面能擁

中的紅色星

相位差皆約為

射光為 1548

度。 

分析當入射光

直立式裂環

發下，會誘發

發一個反向電

型電流在手臂

反向電流也能

共振器的相位

8 nm 的共振

有手臂長度的

擁有較高的

星星所示，挑

為 60 度，這

8 nm 下不同

光為 1548nm

環共振器(手臂

發一個環型電

電流。圖 3-

臂之間產生

能誘發一個

位調製能拓

振是一個磁
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的裂環共振

的反射率，另

挑選的手臂

這六個手臂

同手臂長度

m時，直式立

臂長度為 6

電流，而裂

8 (b)是 x 分

生一個磁偶共

個反向的磁偶

拓展到 2π。根

磁共振。 

振器之反射強

另外我們也特

臂長度分別為

臂長度能涵蓋

度之反射與相

立裂環共振

60nm)的電流

裂環共振器底

分量的磁場分

共振，而金反

偶共振，藉由

根據圖 3-8

強度都在 4

特別挑選了

為 0、30、6

蓋 2π的相位

相位圖，紅

振器單一結構

流密度圖，

底部棒狀結

分布圖，可

反射鏡與裂

由這兩個磁

的計算結果

40%以上，表

了六個不同的

60、90、12

位調製。 

 

紅色星星是挑

構之共振模

裂環共振器

結構亦會在金

可以觀察到裂

裂環共振器底

磁偶極的耦合

果，我們能

表示

的手

20、

挑選

模態，

器在

金屬

裂環

底部

合，

能說:
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圖片 3-8:手臂長度 H2 = 60nm 的直立式裂環共振器在入射光為 1548nm 下(a)電流

密度與(b)x 分量的磁場分布圖。 

 

圖 3-9 是我們所設計的直立式裂環共振器超穎表面之單位結構，此單位結構

由六種不同手臂長度共 18 個直立式裂環共振器所構成，由左到右的手臂長度分

別是 30、60、90、120、150、0 nm，每種手臂長度各有三個裂環共振器，整體

大小分別是 Lx=2160 nm、Ly=250 nm。此單位結構之動量守恆可以表示成: 

 

上式也被稱為廣義的斯乃爾定律，其中θi 是入射光角度，θr 是反射光的出射

角，其中 ξ是超穎介面提供的動量，經整理後可用θr 表示成: 

,  

又 k0=2π/λ，其中λ=1548 nm，LX是超穎介面單位結構的長度，進一步能推得: 

θr = sin−1(0.716) ≈ 46° 

若以反射角為θr = 90°的條件進行計算，我們亦可推得入射的極限角為θc ≈ 

16.5°。 

0 0sin sin ,r ik kθ θ ξ= +

1
0 = sin (sin / )r i kθ θ ξ− + 2 / XLξ π=



 

 

角θ

有六

所構

器組

組成

器的

從圖

製力

入射

根據廣義

θr，因此單

六種手臂長

構成。反射

組成，這樣

成(結構長度

的區域時，

圖中可以觀

力變弱。在這

射光的調製

圖 3-9: 

義的斯乃爾公

單位結構長度

長度，為了讓

射的相位分布

樣的設計能讓

度仍是 2160

金屬反射鏡

觀察到超穎介

這裡也可以

製能力會越好

直立式裂環

公式，超穎

度是決定出

讓結構長度

布示意圖如

讓超穎介面

0 nm)的單位

鏡會直接反

介面的相位

以設計更高階

好，但是相
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環共振器超

穎介面之單位

出射角的重要

度能達到 216

如圖 3-10 所示

面的效率提升

位結構，當

反射入射光

位調製不是梯

階數的超穎

相對的，在製

超穎介面之單

位結構長度

要參數，我

60 nm，每種

示，圖 3-1

升。圖 3-10

當入射光入射

，而反射光

梯度變化，這

穎介面，當階

製作上的難

單位結構 

度 LX能調製

我們設計的六

種長度須由

0 (a)是由 1

0 (b)是由 6

射在沒有直

光會有 180°的

這會造成超

階數越高，

難度也會跟著

 

製反射光的出

的六階超穎介

由三個相同結

18 個裂環共

個裂環共振

直立式裂環共

的相位變化

超穎介面的光

超穎介面對

著提升。 

出射

介面

結構

共振

振器

共振

化，

光調

對於
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圖 3-10: (a)18 個與(b)6 個直立式裂環共振器組成的單位結構之相位分佈示意圖 

 

圖 3-11 (a)是模擬的遠場散射圖，從圖中可以發現，當入射角度為 0°時

散射的出射角為 46°，此結果符合廣義的斯乃爾公式的預測，當入射角越來

越大時，可以觀察到反射角也越來越大。值得注意的是，在同一個入射角度

下，可以觀察到兩個遠場反射訊號，第一個微弱的反射訊號出現在小角度，

此反射訊號是來自於入射光未被超穎介面所調製的反射光，也就是鏡像反射

光，此反射光遵守傳統的斯乃爾定律；第二個強反射訊號出現在大角度的位

置，此訊號是由直立式電漿子超穎介面調控得到的異常反射光，其遵守廣義

斯乃爾定律。在入射角為 0°的例子中，經調製的反射訊號強度比未經調製

的反射訊號強度還要高 31 倍，這表示我們所設計的超穎介面具有很高的訊

雜比。為了進一步驗證數值模擬分析結果與廣義的斯乃爾公式的預測是否相

符，圖 3-11 (b)描繪了兩者的結果比較圖，在不同入射角度下，數值模擬分

析非常符合廣義的斯乃爾公式的預測。在圖 3-11 中還可以觀察到另一個有

趣的現象，那就是當入射角度為 20°時(此角度已經超過入射的極限角θc)，

從數值分析結果中並沒有觀察到異常反射訊號，因此我們推測在 20°的入射

角條件下，所有的平面波都被轉換成表面波並在結構表面上進行傳遞。 



 

圖 3

之示

 

光為

度為

°入

 

3-11: (a)超穎

示意圖，(b)

為了證實

為 0°時的電

為 20°時(圖

入射結果還擁

圖 3-

穎表面在不

)數值模擬分

實此推測，我

電場場型圖

圖 3-12(b))可

擁有更強的

-12:在入射角

不同入射光角

分析與廣義

我們繪製了

，從圖中可

可以觀察到

的電場，從此

角為(a) 0°與
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角度下的遠

義斯乃爾定律

了 y 方向偏振

可以看見反射

y 方向的電

此模擬結果

與(b) 20°時

遠場散射圖

律的計算結

振電場的場

射光的波前

電廠被侷限在

果也可以應證

時的 y 方向偏

，插圖為入

結果比較圖

場型圖，圖 3

前以 46°出射

在結構表面

證我們的推

偏振電場場

入射角與出射

。 

3-12(a)是入

射，而當入射

面，因此比起

推測。 

 

場型圖 

射角

入射

射角

起 0



 

通訊

由金

反射

金膜

唯一

據此

3-13

超穎

面所

式裂

穎介

圖 3

筆者也設

訊波段 1548

金屬-介電質

射鏡，其中金

膜的厚度為

一改變的參

此相位圖，

3 (c)是金屬

穎介面所占

所占的面積

裂環共振器

介面具有高

3-13: (a)金屬

設計的一個具

8nm 下工作

質-金屬構成

金屬棒的尺

為 130 nm，玻

參數是金屬棒

筆者挑選了

屬棒超穎介面

占的面積(foo

積是 250 nm×

器超穎介面縮

高密度的特性

屬棒超穎介

具有相同異

作。單一個金

成，由上而下

尺寸參數是 W

玻璃的厚度

棒長度 Lr。

了六個不同

面與直立式

otprint)是 4

×2160 nm

縮小了將近

性。 

介面之單一結
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異常反射功能

金屬棒的結

下分別是金

W=60 nm、H

度為 70 nm，

圖 3-13 (b)

同金屬棒長度

式裂環共振器

480 nm×216

，這意味著

近一半的面積

結構示意圖

能金屬棒超

結構如圖 3-

金屬棒，一層

H1=30 nm、P

，以上的結構

)是金屬棒在

度，組成六

器超穎介面

60 nm，而直

著比起傳統的

積，換句話說

圖，其中 W

超穎介面，此

13 (a)所示

層玻璃介電

Px=120 nm

構參數都是

在不同長度

六階金屬棒超

面的尺寸比較

直立式裂環

的金屬棒超

說，直立式

= 60 nm、H

此超穎介面能

，此結構也

電質與一層金

m、Py=480 n

是固定的，在

度下的相位

超穎介面。

較圖，金屬

環共振器超穎

超穎介面，直

式裂環共振器

 

H1 = 30 nm

能在

也是

金膜

nm；

在此

，根

圖

屬棒

穎介

直立

器超

m、G 
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= 70 nm、Px=120 nm、Py=480 nm，(b)不同長度的奈米棒在 1548 nm 入射光下之

相位圖，(c)直立式裂環共振器超穎介面與金屬棒超穎介面之尺寸比較圖。 

 

3-5 本章結論 

 

本章以設計全新型態的超穎介面為主軸，並將三維直立式裂環共振器引入超

穎介面系統中，增加 z 方向的調整參數，突破傳統超穎表面只能在二維平面調整

反射率與相位的限制，讓超穎介面能達到更小尺寸。經模擬計算後挑選六種不同

手臂長度的裂環共振器並組成六階的梯度式超穎介面，此超穎介面能在光通訊波

段 1548 nm 下工作，根據模擬結果，在正向入射光下，此超穎介面擁有很好的反

射光指向性與很高的訊雜比，能將正向反射光調製到反射角度是 45°。此外，超

穎介面還能在不同角度的入射光下工作，最大工作角度是 16.5°，當角度大於 16.5

°時，入射的平面波便會轉換成表面波並在結構表面傳遞。若與傳統的二維奈米

棒超穎介面做比較，由直立式裂環共振器所組成的超穎介面可以省下將近 50%

的表面積，讓超穎介面的密度提升兩倍，因此在未來，此類型的超穎介面所製成

的元件將具有高密度的特性。 
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第四章: 裂環共振器超穎介面之邊界發光效應探討與

應用 

 

4-1 前言 

 

近年來，在各個團隊的努力下，人造超穎材料發展出了許多種能調製光的特

性，這些特性在自然界中是沒有被發現的，如負折射(negative refraction)材料[1-3]、

光控制[4-15]與環形矩(toroidal)等[16-18]，超穎材料甚至能突破傳統繞射極限並

實現超解析(super-resolution)[19-22]的能力。超穎材料能有這些奇特的功能最主

要是歸功於材料表面的金屬微結構上有局域表面電漿子共振(localized surface 

plasmonic resonances)[23]。被入射光激發的局域表面電漿子共振具有調控入射光

的反射強度與相位偏移等能力，而超穎材料的奇特特性是藉由組合這些局域表面

電漿子共振而形成的，因此，了解局域表面電漿子共振與金屬微結構間的關係便

成了一個重要的議題。穿透、反射與吸收光譜等亮場(Bright-field)量測是最常用

來探討局域表面電漿子共振的方式，此外，由於暗場(Dark-field)量測沒有入射光

等背景訊號干擾，因此在近期也被用來分析局域表面電漿子共振的散射光，如圖

4-1 所示。 

 

圖 4-1: 不同形狀與尺寸的金屬微結構在暗場下的散射訊號。[23] 

 

隨著時間演進，人造超穎材料的光調製特性逐漸發展成具有應用性的元件，
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片等
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見光的紅光
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4- 4(a)所示
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階共振模態
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鏡影像圖(SE

與數值模擬
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的邊界是週期
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環共振器示

nm、P 為週

EM)其中，圖
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稱裂環共振
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正向入射光激
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示意圖，其中

週期尺寸。

圖中的藍色

振器光譜量測

偏振方向與

入射光為正

的法諾共振

當符合，此外

探討非對稱

場型分佈圖

相較於磁偶

激發，而此
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與結構的關係

正向入射。從
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外從模擬中
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模擬光譜，(
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暗場影像，與

素，最後將

的綠色框中取

波長的關係

可見光波段皆

因此在該波

 

(c)為(a)中紅

波長下的散射

與上圖(圖 4

將 1 × 

取出

係繪

皆是

波段

紅框

射光

4-9)



 

的取

中的

畫素

沿著

中皆

進行

 

圖 4

在不

 

暗場

形矩

取法一樣，我

的散射光強

素在不同波

著 y 方向平

皆可觀察到

行發光，邊
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矩形選取出來
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波段。 

之暗場影像

x方向在不同

矩陣圖案而

15 個裂環共

為 x3 × y3，
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，而矩陣中

舉行

× y3

，並

(d)

界在

方向

度。 

回”

中心



 

被移

外兩
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移除了 3 3 個

兩個邊界都
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器。圖 4-11(

光點都可以

限，因此從影

能調控裂環

4-11: (a)”回

的 SEM 圖與

的裂環共振

個裂環共振

都能觀察到散

5 × 15 個裂

(d)是圖 4-1

以對應到矩陣

影像上觀測

環共振器在遠

回”形結構矩

與其(d)暗場
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散射影像。

裂環共振器
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4-5 本章總結 

在本章中，我們利用裂環共振器結構設計一個可以在暗場下工作的超穎介面，

藉由改變裂環共振器的週期大小，我們可以調控裂環共振器的發光分佈，並利用

聚焦離子束蝕刻技術製備製作超穎介面。我們證實藉由改變裂環共振器的週期，

可以調控超穎介面在暗場下的發光區域，在週期為 300 nm 的超穎介面，只有結

構最外圍有散射光訊號；另一方面，整體的結構發光則可以在週期為 500 nm 的

超穎介面中被觀察到，在未來，能利用細胞有特定嗜好波長的特性[25]將此超穎

介面應用在暗場的光捕獲器上。 
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