請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45532
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳學禮(Hsuen-Li Chen) | |
dc.contributor.author | Haw-Woei Liou | en |
dc.contributor.author | 劉浩偉 | zh_TW |
dc.date.accessioned | 2021-06-15T04:25:34Z | - |
dc.date.available | 2012-09-08 | |
dc.date.copyright | 2009-09-08 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-21 | |
dc.identifier.citation | [1] Lin Panga,Grace M. Hwang,Boris Slutsky and Yeshaiahu Fainman ”Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor” APPLIED PHYSICS LETTERS, 91, 123112, 2007
[2] Thomas H. Reilly III, Jao van de Lagemaat, Robert C. Tenent, Anthony J. Morfa, and Kathy L. Rowlen “Surface-plasmon enhanced transparent electrodes in organic photovoltaics” APPLIED PHYSICS LETTERS, 92, 243304, 2008 [3] J. Hetterich, G. Bastian, N. A. Gippius, S. G. Tikhodeev, G. von Plessen, and U. Lemmer ”Optimized Design of Plasmonic MSM Photodetector” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 10, OCTOBER 2007 [4] 吳民耀, 劉威志 ”表面電漿子理論與模擬” 物理雙月刊(廿八卷二期) 2006 年4 月 [5] C. Genet1 and T. W. Ebbesen ”Light in tiny holes” NATURE,Vol 445, 4 January 2007 [6] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio& P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays” NATURE ,VOL. 391 , 12 FEBRUARY 1998 [7] William L. Barnes1, Alain Dereux & Thomas W. Ebbesen “Surface plasmon subwavelength optics” NATURE ,VOL. 424, 14 AUGUST,2003 [8] H. F. Ghaemi, Tineke Thio, and D. E. GruppT. W. EbbesenH. J. LezecSurface plasmons enhance optical transmission through subwavelength holesPHYSICAL REVIEW BVOLUME 58, NUMBER 11 [9] A. Krishnan, T. Thio, T. Kim, J. H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal “Evanescently couplyed resonance in surface plasmon enhanced transmission” Opt.Commun. 200, 1, 2001 [10] G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli and M. Giersig “Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films” Nano Lett., Vol. 9, No. 1, 2009 [11] G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig “Optical Transmission through Hexagonal Arrays of Subwavelength Holes in Thin Metal Films” Nano Lett., Vol. 7, No. 9, 2007 [12] Tae Jin Kim and Tineke Thio,T. W. Ebbesen,D. E. Grupp,H. J. Lezec “Control of optical transmission through metals perforated with subwavelength hole arrays” OPTICS LETTERS, Vol. 24, No. 4, February 15, 1999 [13] H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz and T. W. Odom “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays” OPTICS EXPRESS, Vol. 17, No. 4, 16 February, 2009 [14] x.-f. ren,p. zhang,g.-p. guo,y.-f. huang, z.-w.wang,g.-c. guo “Polarization properties of subwavelength hole arrays consisting of rectangular holes” Appl. Phys. B 91, 601–604, 2008 [15] H. Iu, J. Li, H. C. Ong and Jones T. K.Wan “Surface plasmon resonance in two-dimensional nanobottle arrays” , OPTICS EXPRESS, Vol. 16, No. 14, 7 July 2008 [16]B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll and P. Johansson “Shape effects in the localized surface Plasmon resonance of single nanoholes in thin metal films” OPTICS EXPRESS, Vol. 16, No. 8, 5609, April 2008 [17] F. Przybilla, A. Degiron, C. Genet, T.W. Ebbesen, F. de L´eon-P´erez, J.Bravo-Abad, F. J.Garc´ıa-Vidal,L. Mart´ın-Moreno “Efficiency and finite size effects in enhanced transmission through subwavelength apertures” OPTICS EXPRESS, Vol. 16, No. 13 , 9571, June 2008 [18] Ruey-Lin Chern”Surface plasmon modes for periodic lattices of plasmonic hole waveguides” PHYSICAL REVIEW B ,77, 045409, 2008 [19] J. Li, H. Iu, J. T. K. Wan, and H. C. Onga ”The plasmonic properties of elliptical metallic hole arrays” APPLIED PHYSICS LETTERS, 94, 033101, 2009 [20] T Ganz , M Brehm, H G von Ribbeck, D W van der Weide and F Keilmann ”Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials” New Journal of Physics, 10, 123007, 2008 [21] Antoine Lesuffleur, Hyungsoon Im, Nathan C. Lindquist, and Sang-Hyun OhaPeriodic “nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors” APPLIED PHYSICS LETTERS, 90, 243110, 2007 [22] Fatemeh Eftekhari,Reuven Gordon “Enhanced Second Harmonic Generation From Noncentrosymmetric Nanohole Arrays in a Gold Film” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2008 [23] K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L.Kuipers ”Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes” PH YSICA L REVIEW LETTERS, VOLUME 92, NUMBER 18, 2004 [24] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T.W. Ebbesen “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays” PHYSICAL REVIEW LETTERSVOLUME, 86, NUMBER 65, FEBRUARY 2001 [25] F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz ”Full transmission through perfect-conductor subwavelength hole arrays” PHYSICAL REVIEW E, 72, 016608, 2005 [26] F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo and D.Sinton “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays” APPLIED PHYSICS LETTERS, 92, 253103, 2008 [27] Jian-Qiang Liu, Meng-Dong He, Xiang Zhai, Ling-Ling Wang, Shuangchun Wen, Li Chen, Zhe Shao, Qing Wan, B. S. Zou, and Jianquan Yao Tailoring “optical transmission via the arrangement of compound subwavelength hole arrays” OPTICS EXPRESS, Vol. 17, No. 3, 1859, 2 February 2009 [28] Je Hong Kim and Patrick J. Moyer ”Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films, OPTICS EXPRESS, Vol. 14, No. 15, 6595, 24 July 2006 [29] L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, and U. Welp, S.-H. Chang and S. K. GrayG. C. SchatzD. B. Brown and C. W. Kimball “Surface plasmons at single nanoholes in Au films” APPLIED PHYSICS LETTERS, VOLUME 85, NUMBER 3, 19 JULY 2004 [30] Evgeny Popov, Nicolas Bonod, Michel Nevière, Hervé Rigneault, Pierre-François Lenne, and Patrick Chaumet “Surface plasmon excitation on a single subwavelength hole in a metallic sheet” APPLIED OPTICS, Vol. 44, No. 12, 20 April 2005 [31] j. y. chu, t. j.wang, j. t. yeh, m. w. lin, y. c. chang, j. k.wang, “Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays” Appl. Phys. A 89, 387–390, 2007 [32]Wikipedia, “CIE 1931 color space” http://en.wikipedia.org/wiki/CIE_1931_color_space, 2009, [33]紀國鐘, 鄭晃忠 “液晶顯視器技術手冊” 台灣電子材料與元件協會, 2003年十月 [34] Horng-Show Koo, Mi Chen, Po-Chuan Pan “LCD-based color filter films fabricated by a pigment-based colorant photoresist inks and printing technology” Thin Solid Films, 515, 896–901, 2006 [35] Shinzo Koyama,Yuichi Inaba, Masahiro Kasano, and Takahiko MurataA Day and Night Vision MOS Imager With Robust “Photonic-Crystal-Based RGB-and-IR” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 3, MARCH 2008 [36] Qiong-Hua Wang, Da-Hai Li, Bao-Jian Peng, Yu-Hong Tao, and Wu-Xiang Zhao “Multilayer Dielectric Color Filters for Optically Written Display Using Up-Conversion of Near Infrared Light” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 4, NO. 2, JUNE 2008 [37] Hong-Shik Lee, Yeo-Taek Yoon, Sang-Shin Lee, Sang-Hoon Kim and Ki-Dong Lee “Color filter based on a subwavelength patterned metal grating” 12 November OPTICS EXPRESS ,Vol. 15, No. 23, 15457, 2007 [38] ERIC LAUX, CYRIAQUE GENET, TORBJORN SKAULI AND THOMAS W. EBBESEN “Plasmonic photon sorters for spectral and polarimetric imaging” nature photonics, VOL 2, MARCH 2008 [39] Nemanya Sedoglavich, John C. Sharpe, Rainer Künnemeyer, Sergey Rubanov “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry” OPTICS EXPRESS, Vol. 16, No. 8, 5832, 14 April 2008 [40] Carrie E. Hofmann, Ernst Jan R. Vesseur, Luke A. Sweatlock, Henri J. Lezec, F. Javier Garcı´a de Abajo, Albert Polman and Harry A. Atwater “Plasmonic Modes of Annular Nanoresonators Imaged by Spectrally Resolved Cathodoluminescence” Nano Lett., Vol. 7, No. 12, 2007 [41] k.l. shuford, m.a. ratner, s.k. gray, g.c. schatz “Finite-difference time-domain studies of light transmission through nanohole structures” Appl. Phys. B 84, 11–18, 2006 [42]Xiao Hu, Li Zhan, and Yuxing Xia “Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display” APPLIED OPTICS,Vol. 47, No. 23, 10 August 2008 [43] Tsutomu ISHI, Junichi FUJIKATA, Kikuo MAKITA, Toshio BABA and Keishi OHASHISi “Nano-Photodiode with a Surface Plasmon Antenna” Japanese Journal of Applied Physics Vol. 44, No. 12, pp. L 364–L 366, 2005 [44] Zongfu Yu, Georgios Veronis, and Shanhui Fan Mark L. Brongersma ”Design of midinfrared photodetectors enhanced by surface plasmons on grating structures” APPLIED PHYSICS LETTERS, 89, 151116, 2006 [45] Ravi D. R. Bhat, Nicolae C. Panoiu, Steven R. J. Brueck, and Richard M. Osgood, Jr. “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating” OPTICS EXPRESS, Vol. 16, No. 7 , 4588, 31 March 2008 [46] A. Degiron and H. J. Lezec W. L. Barnes T. W. Ebbesena “Effects of hole depth on enhanced light transmission through subwavelength hole arrays” APPLIED PHYSICS LETTERS, VOLUME 81, NUMBER 23, 2 DECEMBER 2002 [47] Sergio G. Rodrigo, F. J. García-Vidal and L. Martín-Moreno “Influence of material properties on extraordinary optical transmission through hole arrays” PHYSICAL REVIEW B, 77, 075401, 2008 [48] K. L. van der Molen, F. B. Segerink, and N. F. van Hulst L. Kuipers “Influence of hole size on the extraordinary transmission through subwavelength hole arrays” APPLIED PHYSICS LETTERS, VOLUME 85, NUMBER 19, 8 NOVEMBER 2004 [49] Domenico Pacifici, Henri J. Lezec, Luke A. Sweatlock, Robert J. Walters and Harry A. Atwater “Universal optical transmission features in periodic and quasiperiodic hole arrays” OPTICS EXPRESS, Vol. 16, No. 12 , 9222, June 2008 [50] Erwin Altewischer, Martin P. van Exter, and J. P. Woerdman “Analytic model of optical depolarization in square and hexagonal nanohole arrays” J. Opt. Soc. Am. B Vol. 22, No. 8,August 2005 [51] Henri J. Lezec and Tineke Thio “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays” OPTICS EXPRESS, Vol. 12, No. 16, 3629, 9 August 2004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45532 | - |
dc.description.abstract | 表面電漿,本身為一沿金屬與介電質接面傳遞的電漿波,在特定波段具有高穿透率是其最常被提及的特性。一般引發表面電漿波的方式除了以稜鏡耦合之消逝全反射法之外;便是製作一週期性結構使得入射光耦合成表面電漿波。表面電漿波在金屬與介電材料介面產生時,包含了電磁波與表面電荷震盪的特性。而表面電荷震盪的特性為由垂直於介面的電場所產生。此種電磁波與表面電荷震盪的特性使得能量在介面產生且在垂直方向呈指數次方遞減。
利用次波長結構週期可以控制表面電漿的異常穿透特性,此現象非常適合將表面電漿現象應用在次波長結構的生物感測器或光電元件上。本論文是利用表面電漿特性,應用在三原色RGB彩色濾波片,與全彩式光偵測器上,我們必須克服的困難是來自於週期結構的表面電漿,存在高階模態。這些非必要的波段的穿透光將影響其色度上的要求。 本論文模擬二維金屬結構的異常穿透峰值,利用調變孔洞大小、結構週期、金屬厚度等來控制異常穿透頻譜。另外,加上非晶矽吸收層的抑制高接模態的異常穿透,將非必要波段的異常穿透強度降低,消除其對色度要求上的影響。而設計出不論在色度與強度上皆符合國際規範的三原色RGB彩色濾波片與全彩式光偵測器結構。最後,透過實驗的解果,成功的將表面電漿之彩色濾波功能整合於全彩式光偵測器上。 | zh_TW |
dc.description.abstract | Surface plasmon (SP), an electromagnetic wave, propagates along the metal and dielectric surface. It’s well known that surface plasmon resonance (SPR) will induce an extraordinary transmission. Generally speaking, there are two ways to excite the surface plasmon wave. One is the prism-based attenuated total reflection (ATR) method, and the other is using a periodic structure to induce extra wave vector.
Extraordinary transmission of surface plasmon phenomenon can be controlled by periodical structures that can be developed for sensing and opto-electronic devices. In this thesis, the surface plasmon phenomenon is introduced for RGB color filters and full color photodetectors. However, the existence of high order of SPR based transmission at the undesired wavelength region would affect the purity of color filters..Therefore, we simulated various two-dimensional metal structures to control the peak of extraordinary transmission for RGB color filters. The transmission spectra of hole-arrays can be tuned by adjusting the hole size, period, and metal film thickness. Furthermore, an amorphous silicon film plays an absorbed layer to suppress the high order of extraordinary transmission. In this thesis, we have designed the RGB color filters, which meet the requirement of National Television System Committee (NTSC). And we also used the RGB color filters to fabricate a full color photodetector having the suitable color purity and transmission intensity. The experimental results successfully demonstrate the application of SPR phenomenon in a full color photodetector. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:25:34Z (GMT). No. of bitstreams: 1 ntu-98-R96527020-1.pdf: 3443843 bytes, checksum: 149bab250240af3d660b0300ec43c64f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
目錄 VII 圖目錄 IX 表目錄 XIV 第一章 序論 1 1-1前言 1 1-2 實驗動機 1 1-3 論文架構 2 第二章 文獻回顧 3 2-1 表面電漿理論 3 2-1.1 表面電漿現象 3 2-1.2 單一孔洞與周期性結構表面電漿的近場行為 7 2-2彩色濾波片基礎理論與介紹 12 2-2.1 CIE1931系統的介紹 12 2-2.2三原色RGB彩色濾波片的原理與常見的製程方式 18 2-2.3 表面電漿在三原色RGB彩色濾波片上的應用 21 2-3 表面電漿在光偵測器上的應用 24 第三章 週期性金屬孔洞表面電漿現象在三原色RGB彩色濾波片的應用模擬設計 30 3-1 週期性金屬孔洞表面電漿現象與模態 30 3-2 週期性金屬孔洞表面電漿現象與結構週期的影響 33 3-3 週期性金屬孔洞表面電漿現象與孔洞大小的影響 34 3-4 週期性金屬孔洞表面電漿現象與金屬膜厚的影響 36 3-5 非晶矽吸收層在短波段抑制穿透強度的效益 37 3-6 金屬材料特性對表面電漿應用在三原色RGB彩色濾波片的影響 40 3-7 孔洞排列型式對表面電漿應用在三原色RGB彩 色濾波片的影響 48 3-8 應用表面電漿現象於三原色RGB彩色濾波片之結論 61 第四章 週期性結構金屬表面電漿現象在全彩式光偵測器上的應用 63 4-1 全彩式光偵測器元件設計模擬 63 4-2 實驗設備與藥品 74 4-3實驗步驟與流程簡介 75 4-4 實驗結果與分析討論 83 4-5 應用表面電漿現象於全彩式光偵測器之結論 95 第五章 論文總結與未來展望 97 參考文獻 99 圖目錄 圖2-1 古典繞射理論中孔洞半徑與其穿透頻譜的關係[5] 3 圖2- 2 二維週期性結構之穿透頻譜[6] 4 圖2- 3 表面電漿特性。(A) 電磁波與金屬表面電荷交互作用。(B) 垂直界面方向的波向量為虛部,以漸逝波形式消散。(C)表面電漿的色散曲線。[7] 4 圖2- 4 週期性孔洞排列的金膜[9] 5 圖2-5 單一孔洞面對不同偏振與入射光方向的近場光學影像 (A)、(B)為垂直入射 (C)(D)則為傾斜小角度入射 (E) 實驗架構示意圖[29] 8 圖2-6金屬平板上的單一孔洞(半徑R / 平板厚度T)[30] 9 圖2-7 空間電場強度於孔洞上的分布情形[30] 9 圖2-8 不同形狀的單一孔洞對不同入射光偏極化的表面電漿現象[5] 10 圖2-9 橢圓孔洞對不同入射光偏極化的穿透頻譜圖[31] 11 圖2-10 橢圓孔洞對不同入射光偏極化的SNOM近場觀測圖[31] 12 圖2-11 配色實驗示意圖[32] 13 圖2-12 CIE 1931 RGB光譜三刺激值[32] 14 圖2-14 CIE 1931 (R,G)色度圖[32] 15 圖2-15 CIE 1931 XYZ光譜三刺激值[32] 16 圖2-16 CIE 1931 (X,Y)色度圖[32] 17 圖2-17 NTSC (NATIONAL TELEVISION SYSTEM COMMITTEE )三原色色度值規格[33] 19 圖2-18 顏料溶液對光穿透頻譜的影響[34] 20 圖2-19 多層薄膜(MULTILAYER)示意圖[35] 20 圖2-20 多層薄膜(MULTILAYER)三原色RGB彩色濾波片[36] 21 圖2-21 不同週期結構的(1,0)模態穿透頻譜[7] 21 圖2-22 金屬週期性結構紅光濾波片[37] 22 圖2-23 同週期牛眼(BULL´S EYE)結構的表面電漿異常穿透頻譜[38] 23 圖2-24 週期344NM的銀薄膜金屬光柵表面電漿異常穿透頻譜[42] 24 圖2-25 元件結構側視圖[43] 25 圖2-26 元件設計示意圖[43] 25 圖2-27 (A)暗電流曲線 (B) 光電流曲線[43] 26 圖2-28 (A)元件結構示意圖(B)近場光強度分佈圖[44] 27 圖2-29 (A)褶曲金屬膜表面(ANTENNA)週期7.15ΜN (B)摺曲金屬膜表面(ANTENNA)週期9.8ΜN [44] 27 圖2-30 元件結構示意圖[45] 28 圖2-31 週期數對吸收峰值的影響[45] 29 圖3-1 MH300P500 AL250的示意圖與穿透頻譜 31 圖3-2 MH300P500 AL250的不同INDEX MATCHING穿透頻譜與剖面示意圖 32 圖3-3 調變週期性金屬孔洞週期的穿透頻譜 33 圖3-4 調變週期性金屬孔洞大小的穿透頻譜 35 圖3-5 調變週期性金屬孔洞膜厚的穿透頻譜 36 圖3-6 非晶矽的折射率與消光係數 38 圖3-7 非晶矽膜厚變化的異常穿透模擬頻譜與剖面示意圖 39 圖3-8 矩陣型鋁膜孔洞三原色RGB彩色濾波片穿透模擬頻譜 41 圖3-9 表3-1最佳規格的CIE 1931(X,Y)色度圖 42 圖3-10 矩陣型銀膜孔洞三原色RGB彩色濾波片穿透模擬頻譜 44 圖3-11 (A)鋁膜的折射率與消光系數 (B)銀膜的折射率與消光系數 45 圖3-12 表3-3最佳規格的CIE 1931(X,Y)色度圖 47 圖3-13 最密堆積型與矩陣型排列改變孔洞直徑之穿透模擬頻譜 (A)矩陣型排列 (B)最密堆積型排列 49 圖3-14矩陣型與最密堆積型A(1,0)模態對應的週期數比較 51 圖3-15 矩陣型孔洞排列A(1,1)模態對應的週期 52 圖3-16 最密堆積型銀膜孔洞三原色RGB彩色濾波片穿透模擬頻譜 53 圖3-17 表3-5最佳規格的CIE 1931(X,Y)色度圖 54 圖3-18 藍光濾波片FDTD能量變化圖 55 圖3-19 (A)綠光與(B)紅光濾波片FDTD能量變化圖 56 圖3-20 (A)孔洞近場偵測器的位置 (B)藍光濾波片電場變化圖(C)綠光濾波片電場變化圖 (D)紅光濾波片電場變化圖 58 圖3-21 三原色RGB彩色濾波片在A(1,0)模態的電場共振位置(A)藍光濾波片 (B)綠光濾波片 (C)紅光濾波片 60 圖4-1 金屬電極厚度小於介電材料層厚度元件示意圖 64 圖4-2全彩式光偵測器穿透模擬頻譜 65 圖4-3 表4-1最佳規格的CIE 1931(X,Y)色度圖 66 圖4-4 藍光偵測器FDTD能量變化圖 68 圖4-5 (A)綠光與(B)紅光偵測器FDTD能量變化圖 69 圖4-6 (A)孔洞近場偵測器的位置 (B)藍光偵測器電場變化圖(C)綠光偵測器電場變化圖 (D)紅光偵測器電場變化圖 70 圖4-7全彩式光偵測器在A(1,0)模態的電場共振位置(A)藍光偵測器 (B)綠光偵測器 (C)紅光偵測器 73 圖4-8 綠光元件介電材料層SEM剖面圖 79 圖4-9 藍光元件CONTACT HOLE蝕刻後的OM圖 80 圖4-10 藍光元件METAL FINGER蝕刻後OM圖 81 圖4-11 藍光元件METAL HOLE ARRAYS蝕刻前後SEM圖(A)微影曝光後的孔洞大小 (B)蝕刻後的孔洞大小 82 圖4-12 紅光、綠光、藍光元件外觀 83 圖4-13 (A)紅光規格電阻曲線 (B)綠光規格電阻曲線 (C)藍光規格電阻曲線 84 圖4-14 藍光元件空乏區示意圖 85 圖4-15 (A)紅光元件介電材料層示意圖 (B)綠光元件介電材料層示意圖 (C)藍光元件介電材料層示意圖(D)各介電材料層薄膜模擬穿透頻譜 86 圖4-16 (A)紅光元件、(B)綠光元件、(C)藍光元件暗電流圖 87 圖4-17 紅、綠、藍光元件週期性金屬孔洞SEM上視圖 88 圖4-18 紅、綠、藍光元件週期性金屬孔洞SEM剖面圖 88 圖4-19 (A)紅光元件、(B)綠光元件、(C)藍光元件全波段量子轉換效率圖 90 圖4-20 (A)紅光元件、(B)綠光元件、(C)藍光元件量子轉換效率增益比例曲線圖 91 圖4-21 (A)綠光元件、(B)藍光元件全波段量子轉換效率變偏壓圖 92 圖4-22 (A)綠光元件、(B)藍光元件多峰值數據模擬圖;插入小圖示為其對應之沒結構元件多峰值數據模擬圖 93 圖4-23 (A)綠光元件、(B)藍光元件週期金屬結構量子轉換效率隨負偏壓變化模擬圖 95 圖4-24 修改後的藍光元件示意圖 96 表目錄 表2-1 NTSC(NATIONAL TELEVISION SYSTEM COMMITTEE )三原色座標[33] 19 表3-1 矩陣型鋁膜孔洞三原色RGB彩色濾波片之最佳規格 40 表3-2 CIE 1931(X,Y)色度圖作標位置 43 表3-3 矩陣型銀膜孔洞三原色RGB彩色濾波片之最佳規格 44 表3-4 CIE 1931(X,Y)色度圖作標位置 48 表3-5 最密堆積型銀膜孔洞三原色RGB彩色濾波片之最佳規格 53 表3-6 CIE 1931(X,Y)色度圖作標位置 54 表4-1全彩式光偵測器之最佳規格 65 表4-2 CIE 1931(X,Y)色度圖作標位置 67 | |
dc.language.iso | zh-TW | |
dc.title | 應用表面電漿現象於三原色彩色濾波片及全彩光偵測器之研究 | zh_TW |
dc.title | Application of suface plasmon phenomenon in RGB color filters and full color photodetectors | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳昇暉(Sheng-Hui Chen),王子建(Tzyy-Jiann Wang),賴宇紳(Yu-Shen Lai) | |
dc.subject.keyword | 濾波片,光偵測器, | zh_TW |
dc.subject.keyword | filters,photodetectors, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。