Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳學禮
dc.contributor.authorShang-Yu Chuangen
dc.contributor.author莊尚餘zh_TW
dc.date.accessioned2021-06-15T04:21:13Z-
dc.date.available2013-10-28
dc.date.copyright2009-10-28
dc.date.issued2009
dc.date.submitted2009-10-20
dc.identifier.citationCh1: 1.5 Reference:
1.World Cell Production in 2006, in PV News 26, 10 (2007).
2.G. P. Willeke, In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 383 (2004).
3.R. W. Miles, G. Zoppi, I. Forbes, Materialstoday 10, 20 (2007).
4.S.R. Forrest, Nature, 428, 911 (2004).
5.T. B. Singh, N. S. Sariciftci, Annu. Rev. of Mat. Research 36, 199 (2006).
6.G. Malliaras, R. Friend, Phys. Today 58 (2005).
7.S. E. Shaheen, D.S. Ginley, G. E. Jabbour, Organic-based photovoltaics. Toward low-cost power generation. MRS Bulletin 20.
8.S. E. Gledhill, B. Scott, B. A. Gregg., J. Mat. Res. 20 3167 (2005).
9.H. Hoppe, N. S. Sariciftci., J. Mat. Res. 19, 1924 (2004).
10.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005).
11.W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Func. Mat, 15 1617 (2005).
12.J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mat. 17, 66 (2005).
13.ISI Web of Science search on March 6, (2007).
14.P. A. Hal, S. C. J. Meskers, R. A., J. Janssen, Appl. Phys. A 79, 41 (2004).
15.Y. X. Liu, M. A. Summers, S. R. Scully, M. D. McGehee, J. Appl. Phys. 99, 093521 (2006).
16.B. C. Thompson, J. M. J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).
17.P. M. Allemand, A. Koch, F. Wudl, J. Am. Chem. Soc. 113, 1050 (1991).
18.E. Kretschmann, H. Raether, Naturforsch. A 23, 2135 (1968).
19.A. Z. Otto, Phys. 216, 398 (1968).
20.B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996).
21.H. Ditlbacher, Appl. Phys. Lett. 80, 404 (2002).
22.R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968).
23.H. Raether, Surface Plasmons, Springer, Berlin (1988).
24.J. Moreland, A. Adams, P. K. Hansma, Phys. Rev. B 25, 2297 (1982).
25.P. T. Worthing, W. L. Barnes, Appl. Phys. Lett. 79, 3035 (2001).
26.T. W. Ebbssen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Nature 391 667 (1998).
27.J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Science 305, 847 (2004).
28.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
29.A. Krishnan, Opt. Commun. 200, 1 (2001).
30.A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002).
31.A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, M. Inoue, Optic Express 15, 6612 (2007).
32.R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamn, Phys. Rev. Lett. 21, 1530 (1968).
33.L. Martin-Moreno, Phys. Rev. Lett. 86, 1114 (2001).
34.E. Altewischer, M. P. Exter, J. P. Woerdman, Nature 418, 304 (2002).
35.N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, Opt. Express 11, 482 (2003).
36.Avrutsky, Y. Zhao, V. Kochergin, Opt. Lett. 25, 595 (2005).
37.Z. M. Zhu, and T. G. Brown, J. Opt. Soc. Am. A 17, 1798 (2000).
38.S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
39.B. F. Bai, L. F. Li, and L. J. Zeng, Opt. Lett. 30, 2360 (2005).
40.K. Zweibel, and P. Hersch, Basic Photovoltaic Principles and Methods, New York.
41.E. Yabkibivucg, J. Opt. Soc. Am. 72, 899 (1982).
42.L. Hu, G. Chen, Nano Lett. 7, 3249 (2007).
43.Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, Nat. Nanotechnol. 2, 770 (2007).
44.Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, Nano Lett. 8, 1501 (2008).
45.T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, J. P. Spatz, Nano Lett. 8, 1429 (2008).
46.Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, Nano Lett. 8, 446 (2008).
47.ITRS International Technology Roadmap for Semiconductors, URL:http://public.itrs.net/
48.H. Schift, J. Vac. Sci. Technol. B 26, 458 (2008).
49.S. Y. Chou, C. Keimel, J. Gu, Nature 417, 835 (2002).
50.H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).
51.M. C. Cheng, C. K. Sung, W. H. Wang, J. Mater. Pro. Tech. 191, 326 (2007).
52.X. D. Huang, L. R. Bao, A. F. Yee, J. Vac. Sci. Technol. B 20, 2872 (2002).
53.J.Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, Nano Lett. 3, 1223 (2003).
54.A. S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996).
55.Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, Nano Lett. 3, 913 (2003).
56.C. Peng, B. L. Cardozo, S. W. Pang, J. Vac. Sci. Tech. B 26, 632 (2008).
57.J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. van Duyne, J. Phys. Chem. B 103, 3854 (1999).
58. J. H. Moon, S. G. Jang, J. M. Lim, S. M. Yang, Adv. Mater. 17, 2559 (2005).
59.Z. Huang, H. Fang, and J. Zhu, Adv. Mater. 19, 744 (2007).
Ch2: 2.6 Reference:
1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (2005).
2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
3. H. W. Gao, J. Henzie, T. W. Odom, Nano Lett. 6, 2104 (2006).
4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, Opt. Express 11, 482 (2003)
5. I. Avrutsky, Y. Zhao, and V. Kochergin, Opt. Lett. 25, 595 (2005).
6. Z. M. Zhu, and T. G. Brown, J. Opt. Soc. Am. A 17, 1798 (2000).
7. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
8. B. F. Bai, L. F. Li, and L. J. Zeng, Opt. Lett. 30, 2360 (2005).
9. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, Microelectron. Eng. 83, 893 (2006).
10. M. T. Li, L. Chen, and S. Y. Chou, Appl. Phys. Lett. 78, 3322 (2001).
11. D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, Appl. Phys. Lett. 88, 071120 (2006).
12. T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, Nano Lett. 4, 699 (2004).
13. B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, Macromolecules 40, 2968 (2007).
14. V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, Opt. Express 15, 7190 (2007)
15. H. Yoshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003).
16. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, Nano Lett. 7, 2784 (2007).
17. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, J. Opt. Commun. 200, 1 (2001).
18. H. A. Macleod, Thin Film Optical Filters, Institute of Physics (2001).
19. R. W. Wood, Rhys. Rev. B 48, 928 (1935)
20. Tineko Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999)
Ch3: 3.6 Reference:
1 Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Nature 391, 667 (1998).
2 Pendry, J. B.; Martyn-Moreno, L.; Garcia-Vidal, F. J. Science 305, 847 (2004).
3 Gao, H.; Joel Henzie, J.; Odom, T. Nano Lett. 6, 2104 (2006).
4 Liu, W. C. Opt. Express 13, 9766 (2005).
5 Andrew, P.; Barnes, W. L. Science 306, 1002 (2004).
6 Brockman, J. M.; Nelson, B. P.; Corn, R. M. Annu. Rev. Phys. Chem. 51, 41 (2000).
7 Homola, J. Surface Plasmon Resonance Based Sensors (Springer, 2006)
8 Reilly, T. H.; van de Lage, J; Tenent, R. C.; Morfa, A. J.; and Rowlen, K. L., Appl. phys. Lett. 92, 243304 (2008).
9 Orbons, S. M. ; Roberts, A. Opt. Express 14, 12623 (2006).
10 Bonod, N.; Enoch, S,; Li, L.; Popov, E.; Neviere, M. Opt. Express 11, 482 (2003).
11 Bai, B. F.; Li, L. F. ; Zeng, L. J. Opt. Lett. 30, 2360 (2005).
12 Wedge, S.; Hooper, I. R.; I.; Sage, I.; Barnes, W. L. Phys. Rev. B 69, 245418 (2004).
13 Zhu, Z. M.; Brown, T. G. J. Opt. Soc. Am. A 17, 1798 (2000).
14 Avrutsky, I.; Zhao, Y.; Kochergin, V. Opt. Lett. 25, 595 (2005).
15 Chuang, S. Y.; Chen, H. L.; Kuo, S. S.; Lai, Y. H.; Lee, C. C. Opt. Express 16, 2415 (2008).
16 Suh, D.; Rhee, J.; Lee, H. H. Nanotechnology 15, 1103 (2004).
17 Kim, J. W.; Yang, K.Y.; Hong S. H.; Lee, H., Appl. Surf. Sci. 254, 5607 (2008).
18 Zaumseil, J.; Meitl, A.; Hsu, J. W. P.; Acharya, B.R.; Baldwin, K.W.; Loo, Y. L.; Rogers, J.A. Nano Lett. 3, 1223 (2003).
19 Loo, Y. L.; Lang, D. V.; Rogers, J. A.; Hsu, J. W. P. Nano Lett. 3, 913 (2003).
20 Peng, C.; Cardozo, B. L.; Pang S. W., J. Vac. Sci. Tech. B 26, 632 (2008).
21 Ma, J. Y.; Liu, S. Y.; Zhang, D. W.; Yao, J. K.; Xu, C.; Shao, J. D.; Jin, Y. X.; Fan, Z. X. J. Opt. A 10, 035002 (2008).
22 Iu, H.; Li, J.; Ong, H. C.; Wan, J. T. K. Opt. Express 16, 10294 (2008).
23 E. D. Palik, Handbook of optical constants of solids (Academic, 1985).
24 Marie-Luce Theye, Phys. Rev. B 2, 3060-3078 (1970).
Ch4: 4.7 Reference:
1. M.W. Rowell, M. A. Topinka, M. D. McGehee, Appl. Phys. Lett. 88, 233506 (2006).
2. A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Appl. Phys. Lett. 87, 203511 (2005).
3. J. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, Appl. Phys. Lett. 88, 233503 (2006).
4. Y. Feng, X. Ju, W. Feng, H. Zhang, Y. Cheng, J. Liu, A. Fujii, M. Ozaki, K. Yoshino, Appl. Phys. Lett. 94, 123302 (2009).
5. J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T. J. Marks, Nano. Lett. 6, 2472 (2006).
6. B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Appl. Phys. 99, 124505 (2006).
7. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, Vacuum, 66, 365 (2002).
8. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 68, 2606 (1996).
9. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films 394, 201 (2001).
10. S. R. Forrest, Nature 428, 911 (2004).
11. M. A. Topinka, M. W. Rowell, D. Goldhaber-Gordon, M. D. McGehee, D. S. Hecht, G. Gruner, Nano. Lett. 9, 1866 (2009).
12. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, J. L. Blackburn, Adv. Mater. 21, 1 (2009).
13. G. Fanchini, S. Miller, B. B. Parekh, M. Chhowalla, Nano. Lett. 8, 2176 (2008).
14. M. Kaempgen, G. S. Duesberg, S. Roth, Appl. Sur. Sci. 252, 425 (2005).
15. T. M. Barnes, J. L. Blackburn, J. van de Lagemaat, T. J. Coutts, M. J. Heben, ACS. Nano 2, 1968 (2008).
16. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Adv. Func. Mater. 18, 2548 (2008).
17. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang, Nano. Lett. 9, 1949 (2009).
18. E. C. W. Ou, L. Hu, G. C. R. Raymond, O. K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P. Drzaic, G. Gruner, ACS Nan, 3, 2258 (2009).
19. M.G. Kang, M.S. Kim, J. Kim, L.J Guo, Adv. Mater. 20, 4408 (2008).
20. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. J. Coleman, ACS Nano 3, 1767 (2009).
21. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano. Lett. 8, 689 (2008).
22. S. B. Quint, C. Pacholski, J. Mater. Chem. 19, 5906 (2009).
23. W. L. Min, P. Jiang, B. Jiang, Nanotechnology 19, 475604 (2008).
24. T. H. Reilly III, J. van de Laggemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, Appl. Phys. Lett. 92, 243304 (2008).
Ch5: 5.8 Reference
1. I. M. Dharmadasa, Sol. Energ. Mat. Sol. C 85, 293 (2005).
2. M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Prog. Photovoltaics 11, 39 (2003).
3. S. Siebentritt, Thin Solid Films 404, 1 (2002).
4. E. D. Palik, in Handbook of Optical Constants of Solids, Academic Press (1998).
5. H. A. Macleod, in Thin-Film Optical Filters, 2nd Ed., Adam Hilger Ltd. (1986).
6. B. Kumar, T. B. Pandian, E. Sreekiran, S. Narayanan, in Proceedings of IEEE Conference on Photovoltaic Specialists, 1205 (2005).
7. W. Sonphao, S. Chaisirikul, IEEE International Symposium 3, 2049 (2001).
8. J. D. Hylton, A. R. Burger, W. C. Sinke, J. Electrochem. Soc. 151, 408 (2004).
9. R. Bilyalov, L. Stalmans, J. Poortmans, J. Electrochem. Soc. 150, 216 (2003).
10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, H. Nakano, Opt. Lett. 26, 1642 (2001).
11. Z. Yu, H. Gao, W. Wu, H. Ge, S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
12. S. H. Zaidi, D. S. Ruby, J. M. Gee, Electron Devices, IEEE Transactions 48, 1200 (2001).
13. J. Zhao, A. Wang, M. A. Green, Appl. Phys. Lett. 78, 1991 (1998)
14. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
15. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, A. Tünnermann, Opt. Express 15, 779 (2007).
16. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh W. H. Chang, Microelectron. Eng. 83, 1798 (2006).
17. A. K. Wong, The International Society for Optical Engineering (SPIE) (2001).
18. S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, H. K. Yu, Small 2, 458 (2006).
19. J. H. Moon, S. G. Jang, J. M. Lim, S. M. Yang, Adv. Mater. 17, 2559 (2005).
20. A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Small 1, 439 (2005)
21. D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, A. Blaaderen, Nano Lett. 5, 1175 (2005).
22. Y. Zhao, J. Wang, G. Mao, Opt. Lett. 30, 1885 (2005).
23. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall Inc. (2001).
Ch6: 6.7 Reference:
1. C. G. Wu, C. W. Hsieh, D. C. Chen, S. J. Chang, K. Y. Chen, Synth. Metals 155, 618 (2005).
2. P. Liu, X. Wang, Y. Zhang, X. Zhou, W. Deng, Synth. Metals 155, 565 (2005).
3. S. Geetha, S. C.Trivedi, Synth. Metals 155, 232 (2005).
4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 258, 1474 (1992).
5. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 376, 498 (1995).
6. M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Sol. Energy Mater. Sol. Cells 85, 13 (2005).
7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4 , 864 (2005).
8. H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, H. Schaeffler, A. Hinsch, M. Ch. Lux-Steiner, N. S. Sariciftci, N. S., Thin Solid Films 511, 587 (2006).
9. R. De Bettignies, J. Leroy, M. Firon, C. Sentein, Synth. Metals 156, 510 (2006).
10. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano. Lett. 5, 579 (2005).
11. D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, V., Nanotechnology 15, 1317 (2004).
12. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004).
13. X. Yang, J. K. J. Duren, R. A. J. Janssen, M. A. J. Michels,J. Loos, Macromolecules 37, 2151 (2004)
14. H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
15. X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 5, 579 (2005).
16. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
17. A. Swinnen, I. Haeldermans, M. vande Ven, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger, J. Manca, Adv. Funct. Mater. 16, 760, (2006).
18. W. L. Ma, C. Y. Yang, Gong, A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
19. G. Li, Y. Yao, H. Yang, V. Shrotriya, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
20. T. Erb, S. Raleva, U. Zhokhavets, G. Gobsch, B. Stuihn, M. Spode, O. Ambacher, Thin Solid Films 450, 97 (2004).
21. L. A. Pettersson, L. S. Roman, O. Inganäs, J. Appl. Phys. 86, 487 (1999).
22. N. K. Persson, O. Inganäs, Organic Photovoltaics: Mechanisms,Materials and Devices, 99, 107 (2005).
23. A. J. Moulé, J. B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503 (2006).
24. L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 90, 143506 (2007).
25. D. W. Sievers, V. Shrotriya, Y. J. Yang, Appl. Phys. 100, 114509 (2006).
26. N. K. Persson, M. Schubert, O. Inganäs, Sol. Energy Mater. Sol. Cells 83, 169 (2004).
27. N. K. Persson, O. Inganäs, Sol. Energy Mater. Sol. Cells 90, 3491 (2006)
28. L. A. A. Pettersson, L. S. Roman, O. Inganäs, J. Appl. Phys. 89, 5564 (2001).
29. D. P. Gruber, G. Meinhardt, W. Papousek, Sol. Energy Mater. Sol. Cells 79, 697 (2005).
30. H. Hoppe, N. Arnold, D. Meissner, N. S. Sariciftci, Thin Solid Films 451, 589 (2004).
31. V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006).
32. M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller, C. Bracec, Adv. Funct. Mater. 17, 3274 (2007).
33. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Nature Mater. 5, 197 (2006).
Ch7: 7.6 Reference:
1. K. M. Coakley, M. D. McGehee, Chem. Mater. 16, 4533 (2004).
2. B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt. Res. 15, 659 (2007).
3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heegar, Science, 317, 222 (2007).
4. J. U. Lee, A. Cirpan, T. Emrick, T. P. Russell, W. H. Jo, J. Mater. Chem. 19, 1483 (2009).
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
6. G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 21, 1323 (2009).
7. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1 (2009).
8. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nature Mater. 7, 158 (2008).
9. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
10. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature. Mater. 4, 864 (2005).
11. J.S. Huang, Y. Yang, Adv. Mater. 20, 415 (2008).
12. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, J. Mater. Chem. 19, 5442 (2009).
13. M. Al-brahim, H. K. Roth, S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004).
14. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nature Mater. 5, 197 (2006).
15. G. Li, Y. Yao, H. Yang, V, Shrotriya, G. Yang, Y.Yang, Adv. Func. Mater. 17, 1636 (2007).
16. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Func. Mater. 16, 699 (2006).
17. A. Saeki, S. Seki, Y. Koizumi, T. Sunagawa, K. Ushida, S. Tagawa, J. Phys. Chem. B 20, 109 (2005).
18. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Adv. Func. Mater. 19,1227 (2009).
19. B. Y. Yu, A. Tsai, S. P. Tsai, K. T. Wong, Y. Yang, C. W. Chu, J. J. Shyue, Nanotechnology 19, 255202 (2008).
20. J. JO, S. I. Na, S. S. Kim, T. W. Lee, Y. Chung, S. J. Kang, D. Vak, D. Y. Kim, Adv. Func. Maater. 19, 2398 (2009).
21. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, A. Sharifi, Renewable and Sustainable Ene. Rev. 13, 1800 (2009).
22. D. Comoretto, R. Tubino, G. Dellepiane, G. F. Musso, A. Borghesi, A. Piaggi, G. Lanzani, Phys. Rev. B 41, 3534 (1990).
23. M. Tarmmer, A. P. Monkman, Adv.Mater. 14, 210 (2002).
24. C. M. Ramsdale, N. C. Greenham, Adv. Mater. 14, 212 (2002).
25. J. M. Winfield, C. L. Donley, J. S. Kim, J. Appl. Phys. 102, 063505 (2007).
26. U. Zhokhavets, G. Gobsch, H. Hoppe, N. S. Sariciftci, Synth. Met. 143, 113 (2004).
27. C. Soci, D. Comoretto, F. Marabelli, D. Moses, Phys. Rev. B 75, 075204 (2007).
28. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Nature Mater., 5, 197 (2006).
29. S. Y. Chuang, H. L. Chen, W. H. Lee, Y. C. Huang, W. F. Su, W. M. Jen, C. W. Chen, 19, 5554 (2009).
30. E. D. Palik, Handbook of optical constants of solids (Academic, 1985)
31. T. Q. Nguyen, J. Wu, S. H. Tolbert, B. J. Schwartz, Adv. Mater. 13, 609 (2001)
32. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Goh, Y. Liu, M. D. McGehee, Adv. Funct. Mater. 15, 1927 (2005).
33. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Optics Express 15, 14793 (2007).
34. P. Lalanne, and G. M. Morris, Nanotechnology 8, 53 (1997).
35. C.H. Sun, B. Ho, J. B. Jiang, and P. Jiang, Opt. Lett. 33, 2224 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45457-
dc.description.abstractThis thesis aims to study the improvement of light harvesting in various kinds of solarcells. Three parts in photovoltaic devices are needed to be considered for increasing light harvesting: (i) electrode transmission (Chapter 2, 3, 4); (ii) device surface and interface reflection (Chapter 5, 7); (iii) active layer absorption (Chapter 6, 7). In this study, several advanced lithography technologies have been achieved successfully for efficient light harvesting in solar cells: nanoimprint in metal(NIM), reversal imprint of metal(RIM), and colloidal lithography(CL). Two dimension(2D) and three dimension (3D) of periodic structures can be fabricated by NIM, RIM and CL, including nanomesh, corrugated metal films, 3D metal caters, metal pyramids and moth-eye structures.
In the nature, metals possess intrinsically excellent conductivity and applicable flexibility. However, metals demonstrate low transmittance that can not satisfy the requirements of being a good transparent electrode. We fabricated the nano-architectures on metal film to reduce the absorption of light in metal and further increase the transmittance. Besides, nano-architectures of metal film have potential on transparent electrode due to the extraordinary transmission, (EOT) which arises from surface plasmons resonance (SPR) on the metal surface. The EOT of nano-architectures of metal were discussed in Chapter 2 to 4.The electric field propagating through corrugated metal films exhibits localized maxima at the tips of the corrugations. Moreover, a strong cavity effect that enhances light transmission was displayed in 3D metal craters. Furthermore, by coupling with a destructive interference antireflection coating, the metal nanomesh structure performed a maximum transmittance of ca. 75% in the visible regime and ca. 60% in near infrared ray regime whereas maintained a low sheet resistance maintains of 8.74 Ω/□, which was about 0.05 to 0.3 times of that for ITO- or single walled carbon nanotubes (SWNT)-based electrodes.
To reduce the device interface reflection, nano-architecturing technology of CL and directly imprinting on flexible film were developed to fabricate optimized moth eye
antireflection structures. By performing a refractive index gradient between two optical media, we were able to achieve low reflection (~1%) with such graded index of moth eye structures.
To know external quantum efficiency (EQE) in organic solar cells well, we discussed optical properties of active layer based on P3HT:PCBM hybrid films in Chapter 6, 7. When a flexible solar cell was bent or illuminated under large incident angle of light, the optical anisotropy of P3HT:PCBM and interface reflection led to EQE loss. It was noticeable that a bent organic solar cell would experience incoming light of various incident angles. We have characterized the optical anisotropy of high- and low-RR P3HT/PCBM hybrid films before and after their thermal annealing. After annealing to 120°C, the degrees of anisotropy of the 90.2%- and 96.7%-RR P3HT:PCBM blends were represented by values of k‖/k⊥ of 1.09 and 1.59, respectively. The results indicated that when the incident TM-mode light propagated into a severely bent solar cell with large incident angles, its oscillating direction
of electric field became perpendicular to the main chain of P3HT and resulted in a low light absorption because of the low k⊥ in the active layer. The TE-mode light would be reflected at substrate/air interface at oblique incident angle. Both two factors of optical anisotropy in P3HT:PCBM and interface reflection strongly influenced device efficiency when the device was under bending operation. We used nanoimprint technique to fabricate antireflection structure on PC substrates, and effectively decreased the reflectance of TE-mode light from 40% to below 10% at the incident angle of 70° and successfully reduced the light loss for a bent solar cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:21:13Z (GMT). No. of bitstreams: 1
ntu-98-D94527016-1.pdf: 15501121 bytes, checksum: 2d2fd7496550a528b8874aa6bcdf3c4d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 I
中文摘要 IV
Abstract VI
List of Figures IV
List of Tables XI
Chapter 1 introduction 1
1.1 Overview 2
1.2 Solar Cells 5
1.3 Enhancing Light Harvesting in Solar Cells 10
1.4 Advanced Lithography 21
1.5 Reference 27
Chapter 2 Using Direct Nanoimprint to Constuct Textured Metal Film for Inducing Extraordinary Transmission 32
2.1 Introduction 33
2.2 Experimental Details and Simulations 36
2.3 Processing Conditions and Results of NIM 39
2.4 EOT Phenomena on Various Textured Metal Film 44
2.5 Summary 56
2.6 Reference 57
Chapter 3 Using Reversal Imprint of Metal to Construct 3D Metal Structures for enhancing Extraordinary Transmittance 59
3.1 Introduction 60
3.2 Experimental Details and Simulations 62
3.3 The Mechanism of Nanotransfer Patterning for
Various Metal Structures 64
3.4 Extraordinary Transmission on 2D and 3D Metal
Structures 70
3.5 Summary 79
3.6 Reference 80
Chapter 4 Using Colloidal lithography to fabricate gold nanomesh as flexible transparent electrodes 82
4.1 Introduction 83
4.2 Experimental Details 86
4.3 Test of Resistance and Mechanical Flexibility 87
4.4 Transparent Electrodes based on Flat Metal
Film 89
4.5 Transparent Electrodes based on Nanomesh
Network 93
4.6 Summary 108
4.7 Reference 109
Chapter 5 Using Colloidal Lithography to Fabricate Sub-Wavelength Antireflection Structures 112
5.1 Introduction 113
5.2 Experimental Details and Simulations 116
5.3 Antireflective Ability of Various Antireflection
Structures 119
5.4 Sub-wavelength Structures Fabricated by Colloidal
lithography 123
5.5 Testing of Antireflective Ability of Various Sub-
wavelength Structures 125
5.6 Testing of Antireflective Ability at Large
Incident Angles 129
5.7 Summary 140
5.8 Reference 142
Chapter 6 Optical Properties of P3HT:PCBM blend solar
cells 145
6.1 Introduction 146
6.2 Experimental Details 150
6.3 Optical Constants of P3HT:PCBM Blend in OPV 152
6.4 Absorption of P3HT:PCBM Blend in Multilayer
Structure 158
6.5 Optical Anisotropy of P3HT:PCBM blend under
Various RR value 161
6.6 Summary 175
6.7 Reference 177
Chapter 7 The Study of optical anisotropy effect in flexible solar cells based on P3HT:PCBM blend 179
7.1 Introduction 180
7.2 Experimental Details 184
7.3 The Loss of External Quantum Efficiency form Bent
OPV 186
7.4 Improvement of the Degraded Efficiency for Bent
OPV 196
7.5 Summary 202
7.6 Reference 202
Chapter 8 Conclusion 205
Publication of Shang-Yu Chuang 209
A. Journal Papers 209
B. Conference Papers 211
C. Patents 213
D. 國內期刊 213
dc.language.isoen
dc.subject抗反射層zh_TW
dc.subject奈米壓印技術zh_TW
dc.subject表面電漿共振zh_TW
dc.subject太陽能電池zh_TW
dc.subjectsolar cellen
dc.subjectantireflective layeren
dc.subjectnanoimprint lithographyen
dc.subjectsurface plasmons resonanceen
dc.title利用先進微影技術奈米結構化太陽能電池在光收成增益上之研究zh_TW
dc.titleUsing advanced lithography to construct nanostructures for enhancing light harvesting in solar cellsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee林唯芳,王子建,李君浩,林俊宏,葛祖榮,劉旻忠
dc.subject.keyword奈米壓印技術,表面電漿共振,太陽能電池,抗反射層,zh_TW
dc.subject.keywordnanoimprint lithography,surface plasmons resonance,solar cell,antireflective layer,en
dc.relation.page213
dc.rights.note有償授權
dc.date.accepted2009-10-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
15.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved