請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45457完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳學禮 | |
| dc.contributor.author | Shang-Yu Chuang | en |
| dc.contributor.author | 莊尚餘 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:21:13Z | - |
| dc.date.available | 2013-10-28 | |
| dc.date.copyright | 2009-10-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-10-20 | |
| dc.identifier.citation | Ch1: 1.5 Reference:
1.World Cell Production in 2006, in PV News 26, 10 (2007). 2.G. P. Willeke, In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 383 (2004). 3.R. W. Miles, G. Zoppi, I. Forbes, Materialstoday 10, 20 (2007). 4.S.R. Forrest, Nature, 428, 911 (2004). 5.T. B. Singh, N. S. Sariciftci, Annu. Rev. of Mat. Research 36, 199 (2006). 6.G. Malliaras, R. Friend, Phys. Today 58 (2005). 7.S. E. Shaheen, D.S. Ginley, G. E. Jabbour, Organic-based photovoltaics. Toward low-cost power generation. MRS Bulletin 20. 8.S. E. Gledhill, B. Scott, B. A. Gregg., J. Mat. Res. 20 3167 (2005). 9.H. Hoppe, N. S. Sariciftci., J. Mat. Res. 19, 1924 (2004). 10.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005). 11.W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Func. Mat, 15 1617 (2005). 12.J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mat. 17, 66 (2005). 13.ISI Web of Science search on March 6, (2007). 14.P. A. Hal, S. C. J. Meskers, R. A., J. Janssen, Appl. Phys. A 79, 41 (2004). 15.Y. X. Liu, M. A. Summers, S. R. Scully, M. D. McGehee, J. Appl. Phys. 99, 093521 (2006). 16.B. C. Thompson, J. M. J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008). 17.P. M. Allemand, A. Koch, F. Wudl, J. Am. Chem. Soc. 113, 1050 (1991). 18.E. Kretschmann, H. Raether, Naturforsch. A 23, 2135 (1968). 19.A. Z. Otto, Phys. 216, 398 (1968). 20.B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996). 21.H. Ditlbacher, Appl. Phys. Lett. 80, 404 (2002). 22.R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, Phys. Rev. Lett. 21, 1530 (1968). 23.H. Raether, Surface Plasmons, Springer, Berlin (1988). 24.J. Moreland, A. Adams, P. K. Hansma, Phys. Rev. B 25, 2297 (1982). 25.P. T. Worthing, W. L. Barnes, Appl. Phys. Lett. 79, 3035 (2001). 26.T. W. Ebbssen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Nature 391 667 (1998). 27.J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Science 305, 847 (2004). 28.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998). 29.A. Krishnan, Opt. Commun. 200, 1 (2001). 30.A. Degiron, H. J. Lezec, W. L. Barnes, T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002). 31.A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, M. Inoue, Optic Express 15, 6612 (2007). 32.R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamn, Phys. Rev. Lett. 21, 1530 (1968). 33.L. Martin-Moreno, Phys. Rev. Lett. 86, 1114 (2001). 34.E. Altewischer, M. P. Exter, J. P. Woerdman, Nature 418, 304 (2002). 35.N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, Opt. Express 11, 482 (2003). 36.Avrutsky, Y. Zhao, V. Kochergin, Opt. Lett. 25, 595 (2005). 37.Z. M. Zhu, and T. G. Brown, J. Opt. Soc. Am. A 17, 1798 (2000). 38.S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004). 39.B. F. Bai, L. F. Li, and L. J. Zeng, Opt. Lett. 30, 2360 (2005). 40.K. Zweibel, and P. Hersch, Basic Photovoltaic Principles and Methods, New York. 41.E. Yabkibivucg, J. Opt. Soc. Am. 72, 899 (1982). 42.L. Hu, G. Chen, Nano Lett. 7, 3249 (2007). 43.Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, Nat. Nanotechnol. 2, 770 (2007). 44.Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, Nano Lett. 8, 1501 (2008). 45.T. Lohmuller, M. Helgert, M. Sundermann, R. Brunner, J. P. Spatz, Nano Lett. 8, 1429 (2008). 46.Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, Nano Lett. 8, 446 (2008). 47.ITRS International Technology Roadmap for Semiconductors, URL:http://public.itrs.net/ 48.H. Schift, J. Vac. Sci. Technol. B 26, 458 (2008). 49.S. Y. Chou, C. Keimel, J. Gu, Nature 417, 835 (2002). 50.H. Yoshihiko, U. Toshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003). 51.M. C. Cheng, C. K. Sung, W. H. Wang, J. Mater. Pro. Tech. 191, 326 (2007). 52.X. D. Huang, L. R. Bao, A. F. Yee, J. Vac. Sci. Technol. B 20, 2872 (2002). 53.J.Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, Nano Lett. 3, 1223 (2003). 54.A. S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996). 55.Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, Nano Lett. 3, 913 (2003). 56.C. Peng, B. L. Cardozo, S. W. Pang, J. Vac. Sci. Tech. B 26, 632 (2008). 57.J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. van Duyne, J. Phys. Chem. B 103, 3854 (1999). 58. J. H. Moon, S. G. Jang, J. M. Lim, S. M. Yang, Adv. Mater. 17, 2559 (2005). 59.Z. Huang, H. Fang, and J. Zhu, Adv. Mater. 19, 744 (2007). Ch2: 2.6 Reference: 1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (2005). 2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). 3. H. W. Gao, J. Henzie, T. W. Odom, Nano Lett. 6, 2104 (2006). 4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, Opt. Express 11, 482 (2003) 5. I. Avrutsky, Y. Zhao, and V. Kochergin, Opt. Lett. 25, 595 (2005). 6. Z. M. Zhu, and T. G. Brown, J. Opt. Soc. Am. A 17, 1798 (2000). 7. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004). 8. B. F. Bai, L. F. Li, and L. J. Zeng, Opt. Lett. 30, 2360 (2005). 9. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, Microelectron. Eng. 83, 893 (2006). 10. M. T. Li, L. Chen, and S. Y. Chou, Appl. Phys. Lett. 78, 3322 (2001). 11. D. H. Kim, W. J. Chin, S. S. Lee, S. W. Ahn, and K. D. Lee, Appl. Phys. Lett. 88, 071120 (2006). 12. T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, Nano Lett. 4, 699 (2004). 13. B. C. Okerberg, C. L. Soles, J. F. Douglas, H. W. Ro, A. Karim, and D. R. Hines, Macromolecules 40, 2968 (2007). 14. V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, Opt. Express 15, 7190 (2007) 15. H. Yoshihiko, K. Tomohiro, and M. Takashi, SPIE-Int. Soc. Opt. Eng. 74, 5220 (2003). 16. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, Nano Lett. 7, 2784 (2007). 17. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, J. Opt. Commun. 200, 1 (2001). 18. H. A. Macleod, Thin Film Optical Filters, Institute of Physics (2001). 19. R. W. Wood, Rhys. Rev. B 48, 928 (1935) 20. Tineko Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999) Ch3: 3.6 Reference: 1 Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Nature 391, 667 (1998). 2 Pendry, J. B.; Martyn-Moreno, L.; Garcia-Vidal, F. J. Science 305, 847 (2004). 3 Gao, H.; Joel Henzie, J.; Odom, T. Nano Lett. 6, 2104 (2006). 4 Liu, W. C. Opt. Express 13, 9766 (2005). 5 Andrew, P.; Barnes, W. L. Science 306, 1002 (2004). 6 Brockman, J. M.; Nelson, B. P.; Corn, R. M. Annu. Rev. Phys. Chem. 51, 41 (2000). 7 Homola, J. Surface Plasmon Resonance Based Sensors (Springer, 2006) 8 Reilly, T. H.; van de Lage, J; Tenent, R. C.; Morfa, A. J.; and Rowlen, K. L., Appl. phys. Lett. 92, 243304 (2008). 9 Orbons, S. M. ; Roberts, A. Opt. Express 14, 12623 (2006). 10 Bonod, N.; Enoch, S,; Li, L.; Popov, E.; Neviere, M. Opt. Express 11, 482 (2003). 11 Bai, B. F.; Li, L. F. ; Zeng, L. J. Opt. Lett. 30, 2360 (2005). 12 Wedge, S.; Hooper, I. R.; I.; Sage, I.; Barnes, W. L. Phys. Rev. B 69, 245418 (2004). 13 Zhu, Z. M.; Brown, T. G. J. Opt. Soc. Am. A 17, 1798 (2000). 14 Avrutsky, I.; Zhao, Y.; Kochergin, V. Opt. Lett. 25, 595 (2005). 15 Chuang, S. Y.; Chen, H. L.; Kuo, S. S.; Lai, Y. H.; Lee, C. C. Opt. Express 16, 2415 (2008). 16 Suh, D.; Rhee, J.; Lee, H. H. Nanotechnology 15, 1103 (2004). 17 Kim, J. W.; Yang, K.Y.; Hong S. H.; Lee, H., Appl. Surf. Sci. 254, 5607 (2008). 18 Zaumseil, J.; Meitl, A.; Hsu, J. W. P.; Acharya, B.R.; Baldwin, K.W.; Loo, Y. L.; Rogers, J.A. Nano Lett. 3, 1223 (2003). 19 Loo, Y. L.; Lang, D. V.; Rogers, J. A.; Hsu, J. W. P. Nano Lett. 3, 913 (2003). 20 Peng, C.; Cardozo, B. L.; Pang S. W., J. Vac. Sci. Tech. B 26, 632 (2008). 21 Ma, J. Y.; Liu, S. Y.; Zhang, D. W.; Yao, J. K.; Xu, C.; Shao, J. D.; Jin, Y. X.; Fan, Z. X. J. Opt. A 10, 035002 (2008). 22 Iu, H.; Li, J.; Ong, H. C.; Wan, J. T. K. Opt. Express 16, 10294 (2008). 23 E. D. Palik, Handbook of optical constants of solids (Academic, 1985). 24 Marie-Luce Theye, Phys. Rev. B 2, 3060-3078 (1970). Ch4: 4.7 Reference: 1. M.W. Rowell, M. A. Topinka, M. D. McGehee, Appl. Phys. Lett. 88, 233506 (2006). 2. A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Appl. Phys. Lett. 87, 203511 (2005). 3. J. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, Appl. Phys. Lett. 88, 233503 (2006). 4. Y. Feng, X. Ju, W. Feng, H. Zhang, Y. Cheng, J. Liu, A. Fujii, M. Ozaki, K. Yoshino, Appl. Phys. Lett. 94, 123302 (2009). 5. J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T. J. Marks, Nano. Lett. 6, 2472 (2006). 6. B. Y. Oh, M. C. Jeong, T. H. Moon, W. Lee, J. M. Myoung, J. Appl. Phys. 99, 124505 (2006). 7. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, Vacuum, 66, 365 (2002). 8. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 68, 2606 (1996). 9. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films 394, 201 (2001). 10. S. R. Forrest, Nature 428, 911 (2004). 11. M. A. Topinka, M. W. Rowell, D. Goldhaber-Gordon, M. D. McGehee, D. S. Hecht, G. Gruner, Nano. Lett. 9, 1866 (2009). 12. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, J. L. Blackburn, Adv. Mater. 21, 1 (2009). 13. G. Fanchini, S. Miller, B. B. Parekh, M. Chhowalla, Nano. Lett. 8, 2176 (2008). 14. M. Kaempgen, G. S. Duesberg, S. Roth, Appl. Sur. Sci. 252, 425 (2005). 15. T. M. Barnes, J. L. Blackburn, J. van de Lagemaat, T. J. Coutts, M. J. Heben, ACS. Nano 2, 1968 (2008). 16. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Adv. Func. Mater. 18, 2548 (2008). 17. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, Y. Yang, Nano. Lett. 9, 1949 (2009). 18. E. C. W. Ou, L. Hu, G. C. R. Raymond, O. K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P. Drzaic, G. Gruner, ACS Nan, 3, 2258 (2009). 19. M.G. Kang, M.S. Kim, J. Kim, L.J Guo, Adv. Mater. 20, 4408 (2008). 20. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. J. Coleman, ACS Nano 3, 1767 (2009). 21. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano. Lett. 8, 689 (2008). 22. S. B. Quint, C. Pacholski, J. Mater. Chem. 19, 5906 (2009). 23. W. L. Min, P. Jiang, B. Jiang, Nanotechnology 19, 475604 (2008). 24. T. H. Reilly III, J. van de Laggemaat, R. C. Tenent, A. J. Morfa, K. L. Rowlen, Appl. Phys. Lett. 92, 243304 (2008). Ch5: 5.8 Reference 1. I. M. Dharmadasa, Sol. Energ. Mat. Sol. C 85, 293 (2005). 2. M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Prog. Photovoltaics 11, 39 (2003). 3. S. Siebentritt, Thin Solid Films 404, 1 (2002). 4. E. D. Palik, in Handbook of Optical Constants of Solids, Academic Press (1998). 5. H. A. Macleod, in Thin-Film Optical Filters, 2nd Ed., Adam Hilger Ltd. (1986). 6. B. Kumar, T. B. Pandian, E. Sreekiran, S. Narayanan, in Proceedings of IEEE Conference on Photovoltaic Specialists, 1205 (2005). 7. W. Sonphao, S. Chaisirikul, IEEE International Symposium 3, 2049 (2001). 8. J. D. Hylton, A. R. Burger, W. C. Sinke, J. Electrochem. Soc. 151, 408 (2004). 9. R. Bilyalov, L. Stalmans, J. Poortmans, J. Electrochem. Soc. 150, 216 (2003). 10. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, H. Nakano, Opt. Lett. 26, 1642 (2001). 11. Z. Yu, H. Gao, W. Wu, H. Ge, S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003). 12. S. H. Zaidi, D. S. Ruby, J. M. Gee, Electron Devices, IEEE Transactions 48, 1200 (2001). 13. J. Zhao, A. Wang, M. A. Green, Appl. Phys. Lett. 78, 1991 (1998) 14. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997). 15. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, A. Tünnermann, Opt. Express 15, 779 (2007). 16. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh W. H. Chang, Microelectron. Eng. 83, 1798 (2006). 17. A. K. Wong, The International Society for Optical Engineering (SPIE) (2001). 18. S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, H. K. Yu, Small 2, 458 (2006). 19. J. H. Moon, S. G. Jang, J. M. Lim, S. M. Yang, Adv. Mater. 17, 2559 (2005). 20. A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Small 1, 439 (2005) 21. D. L. J. Vossen, D. Fific, J. Penninkhof, T. Dillen, A. Polman, A. Blaaderen, Nano Lett. 5, 1175 (2005). 22. Y. Zhao, J. Wang, G. Mao, Opt. Lett. 30, 1885 (2005). 23. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall Inc. (2001). Ch6: 6.7 Reference: 1. C. G. Wu, C. W. Hsieh, D. C. Chen, S. J. Chang, K. Y. Chen, Synth. Metals 155, 618 (2005). 2. P. Liu, X. Wang, Y. Zhang, X. Zhou, W. Deng, Synth. Metals 155, 565 (2005). 3. S. Geetha, S. C.Trivedi, Synth. Metals 155, 232 (2005). 4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 258, 1474 (1992). 5. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 376, 498 (1995). 6. M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Sol. Energy Mater. Sol. Cells 85, 13 (2005). 7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4 , 864 (2005). 8. H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, H. Schaeffler, A. Hinsch, M. Ch. Lux-Steiner, N. S. Sariciftci, N. S., Thin Solid Films 511, 587 (2006). 9. R. De Bettignies, J. Leroy, M. Firon, C. Sentein, Synth. Metals 156, 510 (2006). 10. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano. Lett. 5, 579 (2005). 11. D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, V., Nanotechnology 15, 1317 (2004). 12. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004). 13. X. Yang, J. K. J. Duren, R. A. J. Janssen, M. A. J. Michels,J. Loos, Macromolecules 37, 2151 (2004) 14. H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006). 15. X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 5, 579 (2005). 16. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007). 17. A. Swinnen, I. Haeldermans, M. vande Ven, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger, J. Manca, Adv. Funct. Mater. 16, 760, (2006). 18. W. L. Ma, C. Y. Yang, Gong, A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005). 19. G. Li, Y. Yao, H. Yang, V. Shrotriya, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007). 20. T. Erb, S. Raleva, U. Zhokhavets, G. Gobsch, B. Stuihn, M. Spode, O. Ambacher, Thin Solid Films 450, 97 (2004). 21. L. A. Pettersson, L. S. Roman, O. Inganäs, J. Appl. Phys. 86, 487 (1999). 22. N. K. Persson, O. Inganäs, Organic Photovoltaics: Mechanisms,Materials and Devices, 99, 107 (2005). 23. A. J. Moulé, J. B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503 (2006). 24. L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 90, 143506 (2007). 25. D. W. Sievers, V. Shrotriya, Y. J. Yang, Appl. Phys. 100, 114509 (2006). 26. N. K. Persson, M. Schubert, O. Inganäs, Sol. Energy Mater. Sol. Cells 83, 169 (2004). 27. N. K. Persson, O. Inganäs, Sol. Energy Mater. Sol. Cells 90, 3491 (2006) 28. L. A. A. Pettersson, L. S. Roman, O. Inganäs, J. Appl. Phys. 89, 5564 (2001). 29. D. P. Gruber, G. Meinhardt, W. Papousek, Sol. Energy Mater. Sol. Cells 79, 697 (2005). 30. H. Hoppe, N. Arnold, D. Meissner, N. S. Sariciftci, Thin Solid Films 451, 589 (2004). 31. V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006). 32. M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller, C. Bracec, Adv. Funct. Mater. 17, 3274 (2007). 33. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Nature Mater. 5, 197 (2006). Ch7: 7.6 Reference: 1. K. M. Coakley, M. D. McGehee, Chem. Mater. 16, 4533 (2004). 2. B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt. Res. 15, 659 (2007). 3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heegar, Science, 317, 222 (2007). 4. J. U. Lee, A. Cirpan, T. Emrick, T. P. Russell, W. H. Jo, J. Mater. Chem. 19, 1483 (2009). 5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995). 6. G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 21, 1323 (2009). 7. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1 (2009). 8. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nature Mater. 7, 158 (2008). 9. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005). 10. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature. Mater. 4, 864 (2005). 11. J.S. Huang, Y. Yang, Adv. Mater. 20, 415 (2008). 12. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, J. Mater. Chem. 19, 5442 (2009). 13. M. Al-brahim, H. K. Roth, S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004). 14. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nature Mater. 5, 197 (2006). 15. G. Li, Y. Yao, H. Yang, V, Shrotriya, G. Yang, Y.Yang, Adv. Func. Mater. 17, 1636 (2007). 16. V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Func. Mater. 16, 699 (2006). 17. A. Saeki, S. Seki, Y. Koizumi, T. Sunagawa, K. Ushida, S. Tagawa, J. Phys. Chem. B 20, 109 (2005). 18. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Adv. Func. Mater. 19,1227 (2009). 19. B. Y. Yu, A. Tsai, S. P. Tsai, K. T. Wong, Y. Yang, C. W. Chu, J. J. Shyue, Nanotechnology 19, 255202 (2008). 20. J. JO, S. I. Na, S. S. Kim, T. W. Lee, Y. Chung, S. J. Kang, D. Vak, D. Y. Kim, Adv. Func. Maater. 19, 2398 (2009). 21. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, A. Sharifi, Renewable and Sustainable Ene. Rev. 13, 1800 (2009). 22. D. Comoretto, R. Tubino, G. Dellepiane, G. F. Musso, A. Borghesi, A. Piaggi, G. Lanzani, Phys. Rev. B 41, 3534 (1990). 23. M. Tarmmer, A. P. Monkman, Adv.Mater. 14, 210 (2002). 24. C. M. Ramsdale, N. C. Greenham, Adv. Mater. 14, 212 (2002). 25. J. M. Winfield, C. L. Donley, J. S. Kim, J. Appl. Phys. 102, 063505 (2007). 26. U. Zhokhavets, G. Gobsch, H. Hoppe, N. S. Sariciftci, Synth. Met. 143, 113 (2004). 27. C. Soci, D. Comoretto, F. Marabelli, D. Moses, Phys. Rev. B 75, 075204 (2007). 28. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, M. Ree, Nature Mater., 5, 197 (2006). 29. S. Y. Chuang, H. L. Chen, W. H. Lee, Y. C. Huang, W. F. Su, W. M. Jen, C. W. Chen, 19, 5554 (2009). 30. E. D. Palik, Handbook of optical constants of solids (Academic, 1985) 31. T. Q. Nguyen, J. Wu, S. H. Tolbert, B. J. Schwartz, Adv. Mater. 13, 609 (2001) 32. K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Goh, Y. Liu, M. D. McGehee, Adv. Funct. Mater. 15, 1927 (2005). 33. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Optics Express 15, 14793 (2007). 34. P. Lalanne, and G. M. Morris, Nanotechnology 8, 53 (1997). 35. C.H. Sun, B. Ho, J. B. Jiang, and P. Jiang, Opt. Lett. 33, 2224 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45457 | - |
| dc.description.abstract | This thesis aims to study the improvement of light harvesting in various kinds of solarcells. Three parts in photovoltaic devices are needed to be considered for increasing light harvesting: (i) electrode transmission (Chapter 2, 3, 4); (ii) device surface and interface reflection (Chapter 5, 7); (iii) active layer absorption (Chapter 6, 7). In this study, several advanced lithography technologies have been achieved successfully for efficient light harvesting in solar cells: nanoimprint in metal(NIM), reversal imprint of metal(RIM), and colloidal lithography(CL). Two dimension(2D) and three dimension (3D) of periodic structures can be fabricated by NIM, RIM and CL, including nanomesh, corrugated metal films, 3D metal caters, metal pyramids and moth-eye structures.
In the nature, metals possess intrinsically excellent conductivity and applicable flexibility. However, metals demonstrate low transmittance that can not satisfy the requirements of being a good transparent electrode. We fabricated the nano-architectures on metal film to reduce the absorption of light in metal and further increase the transmittance. Besides, nano-architectures of metal film have potential on transparent electrode due to the extraordinary transmission, (EOT) which arises from surface plasmons resonance (SPR) on the metal surface. The EOT of nano-architectures of metal were discussed in Chapter 2 to 4.The electric field propagating through corrugated metal films exhibits localized maxima at the tips of the corrugations. Moreover, a strong cavity effect that enhances light transmission was displayed in 3D metal craters. Furthermore, by coupling with a destructive interference antireflection coating, the metal nanomesh structure performed a maximum transmittance of ca. 75% in the visible regime and ca. 60% in near infrared ray regime whereas maintained a low sheet resistance maintains of 8.74 Ω/□, which was about 0.05 to 0.3 times of that for ITO- or single walled carbon nanotubes (SWNT)-based electrodes. To reduce the device interface reflection, nano-architecturing technology of CL and directly imprinting on flexible film were developed to fabricate optimized moth eye antireflection structures. By performing a refractive index gradient between two optical media, we were able to achieve low reflection (~1%) with such graded index of moth eye structures. To know external quantum efficiency (EQE) in organic solar cells well, we discussed optical properties of active layer based on P3HT:PCBM hybrid films in Chapter 6, 7. When a flexible solar cell was bent or illuminated under large incident angle of light, the optical anisotropy of P3HT:PCBM and interface reflection led to EQE loss. It was noticeable that a bent organic solar cell would experience incoming light of various incident angles. We have characterized the optical anisotropy of high- and low-RR P3HT/PCBM hybrid films before and after their thermal annealing. After annealing to 120°C, the degrees of anisotropy of the 90.2%- and 96.7%-RR P3HT:PCBM blends were represented by values of k‖/k⊥ of 1.09 and 1.59, respectively. The results indicated that when the incident TM-mode light propagated into a severely bent solar cell with large incident angles, its oscillating direction of electric field became perpendicular to the main chain of P3HT and resulted in a low light absorption because of the low k⊥ in the active layer. The TE-mode light would be reflected at substrate/air interface at oblique incident angle. Both two factors of optical anisotropy in P3HT:PCBM and interface reflection strongly influenced device efficiency when the device was under bending operation. We used nanoimprint technique to fabricate antireflection structure on PC substrates, and effectively decreased the reflectance of TE-mode light from 40% to below 10% at the incident angle of 70° and successfully reduced the light loss for a bent solar cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:21:13Z (GMT). No. of bitstreams: 1 ntu-98-D94527016-1.pdf: 15501121 bytes, checksum: 2d2fd7496550a528b8874aa6bcdf3c4d (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 IV Abstract VI List of Figures IV List of Tables XI Chapter 1 introduction 1 1.1 Overview 2 1.2 Solar Cells 5 1.3 Enhancing Light Harvesting in Solar Cells 10 1.4 Advanced Lithography 21 1.5 Reference 27 Chapter 2 Using Direct Nanoimprint to Constuct Textured Metal Film for Inducing Extraordinary Transmission 32 2.1 Introduction 33 2.2 Experimental Details and Simulations 36 2.3 Processing Conditions and Results of NIM 39 2.4 EOT Phenomena on Various Textured Metal Film 44 2.5 Summary 56 2.6 Reference 57 Chapter 3 Using Reversal Imprint of Metal to Construct 3D Metal Structures for enhancing Extraordinary Transmittance 59 3.1 Introduction 60 3.2 Experimental Details and Simulations 62 3.3 The Mechanism of Nanotransfer Patterning for Various Metal Structures 64 3.4 Extraordinary Transmission on 2D and 3D Metal Structures 70 3.5 Summary 79 3.6 Reference 80 Chapter 4 Using Colloidal lithography to fabricate gold nanomesh as flexible transparent electrodes 82 4.1 Introduction 83 4.2 Experimental Details 86 4.3 Test of Resistance and Mechanical Flexibility 87 4.4 Transparent Electrodes based on Flat Metal Film 89 4.5 Transparent Electrodes based on Nanomesh Network 93 4.6 Summary 108 4.7 Reference 109 Chapter 5 Using Colloidal Lithography to Fabricate Sub-Wavelength Antireflection Structures 112 5.1 Introduction 113 5.2 Experimental Details and Simulations 116 5.3 Antireflective Ability of Various Antireflection Structures 119 5.4 Sub-wavelength Structures Fabricated by Colloidal lithography 123 5.5 Testing of Antireflective Ability of Various Sub- wavelength Structures 125 5.6 Testing of Antireflective Ability at Large Incident Angles 129 5.7 Summary 140 5.8 Reference 142 Chapter 6 Optical Properties of P3HT:PCBM blend solar cells 145 6.1 Introduction 146 6.2 Experimental Details 150 6.3 Optical Constants of P3HT:PCBM Blend in OPV 152 6.4 Absorption of P3HT:PCBM Blend in Multilayer Structure 158 6.5 Optical Anisotropy of P3HT:PCBM blend under Various RR value 161 6.6 Summary 175 6.7 Reference 177 Chapter 7 The Study of optical anisotropy effect in flexible solar cells based on P3HT:PCBM blend 179 7.1 Introduction 180 7.2 Experimental Details 184 7.3 The Loss of External Quantum Efficiency form Bent OPV 186 7.4 Improvement of the Degraded Efficiency for Bent OPV 196 7.5 Summary 202 7.6 Reference 202 Chapter 8 Conclusion 205 Publication of Shang-Yu Chuang 209 A. Journal Papers 209 B. Conference Papers 211 C. Patents 213 D. 國內期刊 213 | |
| dc.language.iso | en | |
| dc.subject | 抗反射層 | zh_TW |
| dc.subject | 奈米壓印技術 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | solar cell | en |
| dc.subject | antireflective layer | en |
| dc.subject | nanoimprint lithography | en |
| dc.subject | surface plasmons resonance | en |
| dc.title | 利用先進微影技術奈米結構化太陽能電池在光收成增益上之研究 | zh_TW |
| dc.title | Using advanced lithography to construct nanostructures for enhancing light harvesting in solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林唯芳,王子建,李君浩,林俊宏,葛祖榮,劉旻忠 | |
| dc.subject.keyword | 奈米壓印技術,表面電漿共振,太陽能電池,抗反射層, | zh_TW |
| dc.subject.keyword | nanoimprint lithography,surface plasmons resonance,solar cell,antireflective layer, | en |
| dc.relation.page | 213 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-10-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 15.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
