請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4544完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Chih-Wei Yang | en |
| dc.contributor.author | 楊智偉 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:12Z | - |
| dc.date.available | 2016-08-11 | |
| dc.date.available | 2021-05-14T17:43:12Z | - |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-11 | |
| dc.identifier.citation | [1] C. W. Gardiner and P. Zoller, Quantum noise, Springer, p. 133, 2004.
[2] A. P. Jauho, N. S. Wingreen, and Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems, Physical Review B, vol. 50, pp. 5528 5544, 1994. [3] J. S.Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium green's function method for quantum thermal transport, Arxiv, no. 1303.7317, 2013. [4] H. Haug and A. P. Jauho, Quantum kinetics in transport and optics of semiconductors, Springer, 1997. [5] A. O. Caldeira and A. J. Leggett, Path integral approach to quantum brownian motion, Physica A, vol. 121A, pp. 587 616, 1983. [6] R. P. Feynman and F. L. V. Jr., The theory of a general quantum system interacting with a linear dissipative system, Annals of Physics, vol. 281, pp. 547 607, 2000. [7] A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Annals of Physics, vol. 149, pp. 374 456, 1983. [8] M. W. Y. Tu and W. M. Zhang, Non-markovian decoherence theory for a double-dot charge qubit, Physical Review B, vol. 78, no. 235311, 2008. [9] J. S. Jin, M. W. Y. Tu, W. M. Zhang, and Y. Yan, Non-equilibrium quantum theory for nanodevices based on the feynmanvvernon in uence functional, New Journal of Physics, vol. 12, no. 083013, 2010. [10] L. Diósi, N. Gisin, and W. T. Strunz, Non-markovian quantum state di usion, Physical Review A, vol. 58, pp. 1699 1712, 1998. [11] W. T. Strunz, L. Diósi, and N. Gisin, Open system dynamics with non-markovian quantum trajectories, Physical Review Letter, vol. 82, pp. 1801 1805, 1999. [12] L. Diósi and W. T. Strunz, The non-markovian stochastic schrödinger equation for open systems, Physics Letters A, vol. 235, pp. 569 573, 1997. [13] X. Zhao, W. Shi, L. A. Wu, and T. Yu, Fermionic stochastic schrödinger equation and master equation: An open-system model, Physical Review A, vol. 86, no. 032116, 2012. [14] W. Shi, X. Zhao, and T. Yu, Non-markovian fermionic stochastic schrödinger equation for open system dynamics, Physical Review A, vol. 87, no. 052127, 2013. [15] M. Chen and J. Q. You, Non-markovian quantum state di usion for an open quantum system in fermionic environments, Physical Review A, vol. 87, no. 052108, 2013. [16] M. Büttiker and R. Landauer, Traversal time for tunneling, Physica Scripta, vol. 32, pp. 429 434, 1985. [17] Z. S. Gribnikov and G. I. Haddad, Time-dependent electron tunneling through time-dependent tunnel barriers, Journal of Applied Physics, vol. 96, pp. 3831 3838, 2004. [18] N. N. Bogolyubov, On the theory of super uidity, Journal of Physics (USSR), vol. 11, pp. 23 32, 1947. [19] M. O. Scully and M. S. Zubairy, Quantum optics, Cambridge, pp. 48 54, 1997. [20] A. Das, Field theory: a path integral approach, World Scienti c, p. Chapter 5, 2006. [21] K. E. Cahill and R. J. Glauber, Density operators for fermions, Physical Review A, vol. 59, pp. 1538 1555, 1999. [22] M. Combescure and D. Robert, Fermionic coherent states, Journal of Physics A, vol. 45, no. 244005, 2012. [23] K. Blum, Density matrix theory and applications, Springer, 2012. [24] H. J. Carmichael, Statistical methods in quantum optics volume 1, Springer, p. 5, 2002. [25] W. T. Strunz and T. Yu, Convolutionless non-markovian master equations and quantum trajectories: Brownian motion, Physical Review A, vol. 69, no. 052115, 2004. [26] W. Li and L. E. Reichl, Floquet scattering through a time-periodic potential, Physical Review A, vol. 60, pp. 15 732 15 741, 1991. [27] P. K. Tien and J. P. Gordon, Multiphoton process observed in the interaction of microwave elds with the tunneling between superconductor lms, Physical Review, vol. 129, pp. 647 651, 1963. [28] G. B. Arfken and H. J. Weber, Mathematical methods for physicists, Elsevier Academic Press, pp. 676 677, 2005. [29] G. Auletta, M. Fortunato, and G. Parisi, Quantum mechanics, Cambridge, pp. 147 148, 2009. [30] C. Y. Lin and W. M. Zhang, Transient quantum transport theory in nanoelectronic devices, Master thesis, 2012. [31] J. S. Jin, W. M. Zhang, X. Q. Li, and Y. J. Yan, Noise spectrum of quantum transport through quantum dots: a combined e ect of non-markovian and cotunneling processes, Arxiv, no. 1105.0136, 2012. [32] H. J. Carmichael, Statistical methods in quantum optics volume 1, Springer, p. 8, 2002. [33] G. P. Berman, E. N. Bulgakov, D. K. Campbell, and A. F. Sadreev, Resonant tunneling in time-periodically modulated semiconductor nanostructures, Physica B, vol. 225, pp. 1 22, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4544 | - |
| dc.description.abstract | 在此篇論文中,我們討論通過兩個電極之間的單量子點(single quantum dot) 的電子
傳輸行為,亦即特別在考慮電極對量子點上電子的非馬可夫效應情況下通過單量子點的 電流。傳統上研究通過單量子點的電流,大部分使用馬可夫近似,馬可夫近似是指電子 的傳輸行為不會受到環境過去的資訊影響,只和當下的環境產生交互作用,而得到近 似後的馬可夫約化密度矩陣主方程式(reduced density matrix master equation )。而在 研究非馬可夫環境下,通過量子點的電流,主要有Feynman Vernon in uence functional theory、Non-equilibrium Green function method、Quantum state di usion equation幾 種方法。此篇論文中,我們使用非馬可夫量子態擴散方程式(non-Markovian quantum state di usion equation , NMQSD) 去推導出在外加時變偏壓與時變閘極電壓,且單量 子點和電極之間耦合常數亦為時變下精確的約化密度矩陣主方程式。然後用約化密度算 出量子點的平均粒子數,再經由海森堡方程式,進而得到通過量子點的電流。 | zh_TW |
| dc.description.abstract | In this thesis, we discuss the electron transport behavior of the single quantum dot
between two electrodes, that is, the current owing into the single quantum dot, especially under the non-Markovian e ect of the electrodes. Traditionally, the study on the current owing into the quantum dot is under Markovian approximation. Markovian approximation means that the electron transport behavior will not be a ected by the past information of the environment, which we call it the bath in this thesis. It is a ected only by the environment at the present time. The main research method on transient current owing into the quantum dot are Feynman- Vernon in uence functional theory, non-equilibrium Green function method, quantum state di usion equation. In this thesis, we use non-Markovian quantum state di usion equation (NMQSD) to derive the master equation under time-dependent bias voltage, time-dependent gate voltage and time-dependent transmission coe cient controlled by the left and the right gate voltage. Finally, by Heisenberg equation, we get the transient current owing into the single quantum dot. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:12Z (GMT). No. of bitstreams: 1 ntu-104-R01222068-1.pdf: 1944891 bytes, checksum: bfa0ead5bc8bd24ddf6266d0ad6723ff (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝I
摘要II Abstract III 1 Introduction 1 2 Non-Markovian Quantum State Diusion 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Non-Markovian Dynamics of a Single Energy Level Quantum Dot (SEQD): 5 2.2.1 Experiment Setup and the Theoretical Model of SEQD: . . . . . . 5 2.2.2 Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Fermionic Non-Markovian Quantum State Diusion . . . . . . . . . . . . . 8 2.3.1 Fermionic Coherent State: . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 The Derivation of Fermionic Non-Markovian Quantum State Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The O Operator and Its Time Evolution Equation . . . . . . . . . . . . . 18 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Exact Master Equation 22 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Exact Master Equation from Fermionic Non-Markovian Quantum State Diusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Two-Time Correlation Function of the Bath . . . . . . . . . . . . . . . . . 25 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Transient Current into a Single-Energy-Level Quantum Dot 28 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 The Transient Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Heisenberg Approach to the On Operator . . . . . . . . . . . . . . . . . . 38 4.3.1 The Time Evolution of Gt(z;w) . . . . . . . . . . . . . . . . . . . 38 4.3.2 The Time Evolution Equation of O1(t; s; z;w) . . . . . . . . . . . 41 4.3.3 The Time Evolution Equation of O2(t; s; z;w) . . . . . . . . . . . 44 4.4 Time Evolution of Undetermined Coecients A1 ;A2 ; B1 ; B2 . . . . . . . 45 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Modeling of Time-dependent Coupling strength 52 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Simple Model constructed by M. Büttiker and R. Landauer . . . . . . . . 53 5.3 Model of Calculating Eective Transmission Coecient V (t) . . . . . . . 56 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6 Numerical Result and Discussion 60 6.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2.1 Investigation of Wide Band Limit . . . . . . . . . . . . . . . . . . . 61 6.3 Investigation on Time-Dependent gate voltage on the system . . . . . . . 63 6.4 Investigation on Time-Dependent Ecient Transmission Coecient . . . . 69 6.5 Electron Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 Conclusion and Future Work 76 8 Appendix 77 8.1 Markovian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8.2 Transforming the Hamiltonian into the Interaction Picture . . . . . . . . . 77 8.3 Derivation of the Fermionic Non-Markovian Quantum State Diusion . . . 83 8.4 The Transformation of the Reduced Density Operator . . . . . . . . . . . 85 8.5 Derivation of Eq. (3.2.6) and Novikov Theorem . . . . . . . . . . . . . . . 89 8.6 Simplication of Eq. (4.2.9) . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.7 Bath Ensemble Average of dk ; ek ; d+ k ; e+ k . . . . . . . . . . . . . . . . 94 | |
| dc.language.iso | en | |
| dc.subject | 隨時變耦合強度 | zh_TW |
| dc.subject | 非馬可夫動力學 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | Quantum Dot | en |
| dc.subject | Time-Dependent Coupling Strength | en |
| dc.subject | Non-Markovian Dynamics | en |
| dc.title | 單量子點在與電極之耦合強度隨時間變化下的非馬可夫量子傳輸研究 | zh_TW |
| dc.title | Non-Markovian Quantum Transport of a Quantum Dot with Time-Dependent Coupling Strength | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊達(Guin-Dar Lin),蘇正耀(Zheng-Yao Su) | |
| dc.subject.keyword | 非馬可夫動力學,量子點,隨時變耦合強度, | zh_TW |
| dc.subject.keyword | Non-Markovian Dynamics,Quantum Dot,Time-Dependent Coupling Strength, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 1.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
