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Abstract

In this thesis, we discuss the electron transport behavior of the single quantum dot
between two electrodes, that is, the current flowing into the single quantum dot, espe-
cially under the non-Markovian effect of the electrodes. Traditionally, the study on the
current flowing into the quantum dot is under Markovian approximation. Markovian ap-
proximation means that the electron transport behavior will not be affected by the past
information of the environment, which we call it the bath in this thesis. It is affected
only by the environment at the present time. The main research method on transient
current flowing into the quantum dot are Feynman- Vernon influence functional theory,
non-equilibrium Green function method, quantum state diffusion equation. In this the-
sis, we use non-Markovian quantum state diffusion equation (NMQSD) to derive the
master equation under time-dependent bias voltage, time-dependent gate voltage and
time-dependent transmission coefficient controlled by the left and the right gate volt-
age. Finally, by Heisenberg equation, we get the transient current flowing into the single
quantum dot.

Keywords: Non-Markovian Dynamics, Quantum Dot, Time-Dependent Coupling Strength
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1 Introduction

Recent progress in the fabrication technology of nanostructure has made the size of
the transistor from micrometer (10~%m) toeard nanometer (10-%) m). The traditional
transistor devices with channel length below 10 nanometers may be no longer operated
very well due to the large statistical fluctuation of the threshold voltage caused by its
small size. A single electron transistor (SET) is considered as one of the alternatives for
the traditional transistor.

In this thesis, we use quantum dot with only single energy level under Coulomb block-
ade as our physical model to study the electron transport property of a SET. We controll
our single-energy-level quantum dot with the time-dependent bias voltage on the left and
right leads, the time-dependent gate voltage on the quantum dot, and the time-dependent
left and right gate voltage to create potential barrier controlling the coupling strength
as in Fig. 1.0.1. By controlling these three parameter, we hope to model and control the
electron transport through the SET.

Because the interaction between the quantum dot and the leads are in general Non-
Markovian, that is, the system would be affected by the correlation of the leads at an
earlier time, we use Non-Markovian quantum- state-diffusion (NMQSD) method to derive
the master equation and the transient current tunneling from the left and the right leads.

In chapter 2, we briefly present the formalism of the NMQSD. To describe the fermionic
NMQSD, we introduce the Grassman variable and fermionic coherent state. We then

represent our NMQSD in fermionic coherent state. In NMQSD, one most important
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point is that we make an Ansatz that the functional derivatives of the state with respect

to the Grassman variables can be expressed as an operator acting on the state. That is,

m ‘¢(t72*7w*)> = Ol(t7372*7w*) ’(b(t’ z*,w*)> )

4]

sy 1927 w) = Oalts 2w ol w)

where O12(t, s, 2*,w*) are operators. In chapter 3, we use the method of NMQSD to
derive the exact master equation. In chapter 4, we use the master equation in chapter
3 to derive our current formula. We take various calculations to simplify the current
formula, including using Novikov theorem to transform Grassman average of random
Grassman variable into Grassman average of O, Oy operators. In this chapter, we
also use the Heisenberg approach to derive the time evolution equations of O7, Oz. In
chapter 5, we construct a physical model of time-dependent tunneling barrier to calculate
the time-dependent effective transmission coefficients in our model.

All the detailed calculations can be found in the appendix.

Left Gate Volfage Central Gatz Voltage  Righe Gate Voltage

Left Lead Right Lead
‘ (Source) (Drain) |
I Vi(t) Vr(t)

-

gri(t

Jaueg ya
Jauieq yybry

Figure 1.0.1: The symbolic figure o f the model setup.



2 Non-Markovian Quantum State

Diffusion

2.1 Introduction

In real situations, due to the fact that the system of our interest unavoidablely couples
to its surroundings, the closed quantum system is hard to be found and to be relaized .
This means that there are lots of irreversable dymanical properties, such as relaxation,
decoherence, noise...etc. that need to be taken into account for description of such a
coupled system. Obviously, the traditional gauntum mechanics formalism (Scheodinger
eqaution approach) is not adequate for tackling these difficulties. Hence, the so-called
“theory of open quantum systems” was developed. Traditionally, the dynamic of the open
quantum systems is mainly investigated under two important approximations:

1. Born approximation: Suppose that the interaction between system and its sur-
roundings are so weak [1].

2. Markov approximation. (We brief introduce the Markov approximation in Appendix
1.)

These two approximations can lead to a simpler evolution equation for the reduced
density operator of the open system called a Markovian master equation of Lindblad
form. This kind of equation can neglect the memory effect of the environment and can

help us understand the main physics of the open quantum systems. There, however, are
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many cases that the Markovian master equation fails to demonstrate the real physics.
For example, if the coupling strength between the environment and the open quantum
system is too strong such that the memory effect of the environment on the open quantum
systems can’t be neglected. Therefore, we must consider the non-Markovian master
equation for the reduced density operator of the open system by counting the memory
effect in.

There are many techniques to tackle the non-Markovian dynamics. For example, the
non-equilibrium Green’s function (NEGF) method is used especially in transport problem
such as electron transport or thermal transport |2, 3, 4]. The Feynman Vernon influence
functional method |5, 6, 7, 8, 9] puts the environmental non-Markovian memory effect
into the influence functional. The the non-Markovian quantum state diffusion (NMQSD)
is a recently developed method [10, 11, 12]. In this approach, the non-Markovian envi-
ronmental memory effect is represented by an O-operator, and the main purpose of this
method is to properly guess the form of the O-operator. If we obtain the O-operator,
the time evolution of the reduced density operator of the open system is determined by
taking the ensemble average of NMQSD equation.

The NMQSD is orginally used to solve bosonic non-Markovian problems. Recently,
fermionic NMQSD has come up to solve many problems in solid state physics such
as quantum transport [13, 14, 15]. The structure of fermionic NMQSD is similar to
the bosonic one. But fermionic particles obey Pauli exclusion principle so we need to
introduce a new kind of number, Grassman number. By utilizing the fermionic creation
and annihilation operators and Grassman variable, we can modify the bosonic NMQSD

to fit the fermionic system.



2 Non-Markovian Quantum State Diffusion
2.2 Non-Markovian Dynamics of a Single Energy Level

Quantum Dot (SEQD):

2.2.1 Experiment Setup and the Theoretical Model of SEQD:

In this thesis, we consider the experimental setup of SEQD that only one electron can

occupy the one single energy level of the QD by the assumption of Coulomb blockade

here.

Left Gate Voltage  Central Gate Voltage  Righe Gate Voltage

J vV v

=
b =)
Left Lead| * ~ | Right Lead
(Source) é? <::">.<:j:> % (Drain)
T Ing(t) gre(t) E

Ver(t)

I Vi(t)

Figure 2.2.1: The symbolic figure of the SEQD setup.

The total Hamiltonian of the composite system (the environment and the open quan-

tum system) is as follows:

H=Hgs+ Hpr + Hgp, (2.2.1)

Hg = hws(t)cte, (2.2.2)
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Hp =) hwy(t)afja, (2.2.3)
Ak
Hgr = Z(g)\k(t)c+a)\k + H.c.). (2.24)
e

Here X represent the left and the right leads, Hgis the system Hamiltonian and the
hwg(t) is the time-dependent single energy level controlld by an external voltage Vs(t)
such that hwg(t) = hwg + eVs(t), Hg is the non-interacting Hamiltonian of the environ-
ment (if there are interactions, we need to add the transition terms ;. exij(t)at.an;)
controlled by external bias voltage Vi (t) and Vg(t) such that fwyg(t) = hwai + eV (t)
and Hgp is the interaction term between the system and the environment. gyx(¢) is the
coupling strength between the Ak —mode energy level of the environment and the system.
The effect of all gy (t) in different modes k is related to the effective transmission coeffi-
cient of the elctron from A lead. The transmission coefficient V (¢) is determined by the
external gate voltage eV (t) applied on the A barrier, the gate voltage eVs(t) applied
on the system, and the bias voltage applied on the A lead by the theory of tunneling
throught a time-dependent barrier [16, 17].

The NMQSD can be used only when the environment oscillators are originally in their
ground state (7" = 0). But in real situations, it’s not the case (i.e. T # 0). So we need to
modify the T" # 0 case to satisfy the NMQSD. Fortunately, there’s a mathematical trick
widely used in field theory that can canonically transform the environment of temperature
T # 0 into another effective environment with 7' = 0. This trick is called Bogoliubov
transformation that is first used in a superconducting theory by Nikolai Bogoliubov [18].
We now introduce Bogoliubov transformation and how it is used in transforming the non-

zero temperature environment into another effectively zero temperature environment.
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2.2.2 Bogoliubov Transformation

In order to deal with finite-temperature case, we introduce another virtual environ-
ment with another kind of operators by (bjk) We need to add bxk(bjk) into our original
Hamiltonian Hg(t) carefully so that we don’t change the interaction between the envi-
ronment and the system. We simply add a term Y, fwxg (t)bagby, into Hg(t). Because
operators bAk(b;\rk) don’t couple to the system operators c¢(c*), so it won’t change the
interaction between the system and the environment. The action of the virtual environ-
ment Yy, Awyg (t)b,\kb;\rk is a bit like the shift of the energy reference. So it won’t change
the physics. Now we have two sets of operator {a)\k(a';k) , b)\k(b;fk)}, we can use Bogoli-
ubov transformation. Bogoliubov transformation is a linear transformation between two

sets of operator. Thus, we make the Bogoliubov transformation as follows:

axe = V1 —nypdyr — meirk’ (2.2.5)

bk = V1 — nagery + vVrokdy,, (2.2.6)

where ny; = 7 is the initial equilibrium average particle number and

1
Ttel@xi/(kpT)

{dre(dy) , exx(el})} are the new sets of operators. We then get the new Hamiltonian:

H () = hws(t)eTe+ > [hwae(t)(df daeteane )+ D (Viwgin () ceantvT — nargaw(t)ey dan+H.c).
" o (2.2.7)
Here H.c. means Hermitian conjugate. We now recognize Y., [fwxi(t)(di dae +
exreyy,)] as the new virtual environment Hamiltonian Hp(t) and Hgp(t) = Yo (VTakgg (P cens+
VI =gk (t)ex dag+H.c). Because we are interested only in the part Hg(t)+Hgp(t)(the

interaction part and the non-interaction part of the system), we take the interaction pic-

ture with repect to Hp(t) to obtain:
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Hy = en Jo @Rl (Hg (1) + Hp(t))e 7 Jo @ Hrl®), (2.:2.8)

where Hrp is the total Hamiltonian with respect to the environment interaction picture.

2.3 Fermionic Non-Markovian Quantum State Diffusion

2.3.1 Fermionic Coherent State:

In order to simplify the total Hamiltonian in the environment interaction picture, we
first jump to introduce the fermionic operator and then introduce the fermionic coherent
state for later calculation.

Unlike the bosonic creation and annihilation operator satisfying commutation relation:

(i, b)) = 65, (2.3.1)
[bi, bj] = [b;7, 6] = 0. (2.3.2)

The fermionic creation and annihilation operator satisfy anti-commutation:

{ai,al} = 64, (2.3.3)
{ai,a;} = {aj",aj} =0 (2.3.4)

in order to satisfy Fermi-Dirac distribution or more fundamentally, Pauli exclusion prin-
ciple. After we know the fermionic operator, we can pave our way to the fermionic
coherent state just like the bosonic case. Recall the definition of bosonic coherent state

in quantum optics. There are kinds of definitions of the bosonic coherent state [19]:
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1. the state that has the minimum uncertainty AxAp = g

2. the eigenstate of the k-mode bosonic annihilation operator: |ay) = ek A =~k 10) 4,

where ay, is a complex constant and |0), is the vaccum state of k-mode. Since there’s
no classical correspondence of Az and Ap in a fermionic harmonic oscillator [20], we
choose the second definition as our building block to the fermionic coherent state. In
[21], we have the fermionic coherent state as: |€) = e~¢%" |0, which |0) is the vaccum
state wheih is assumed to be normalized (0 | 0)=1 and a|0) = 0. (And ¢ is a new kind of
number called Grassman variable corresponding to at and is a variable used to describe
the fermion particle like the general number used to describe the boson particle). For
a comprehensive introduction of the fermionic coherent state, one can refer to 21, 22].
Now, we introduce the Grassman variables. The Grassman variables satisfy the following

properties:

{&. &1 =0, (2.3.5)
{&.6=0, (2.3.6)
{&.,6§1 =0, (2.3.7)
(&&)" =& (2.3.8)
{ai, &} =0. (2.3.9)

From the above anti-commutation relation of the Grassman variables, one can verify
that €2 = (€)% = 0 easily. This relation can greatly simplify the calculation in the

fermionic system. For example:
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1 1
=1—¢at + §§a+£a+ - 6§a+§a+fa+ + ...

Because we know that £" = 0 for n > 2,

et =1 ¢at. (2.3.10)

The above formula is profitable to simplfy the later calculation. We then introduce the
rules of differentiation and integration of the Grassman variables that are also important
in later calculation of fermionic coherent state and the derivation of NMQSD for fermion.

Differentiation:

Because %is also a Grassman variable (the partial differentiation of the Grassman

variable ), we know that

0

0
{a—&,aj} =0, (2.3.12)
{a‘zi,aj =0. (2.3.13)

The same is hold for %.
Integration:
Integration is very important in obtaining the Grassman average (we will define this

later) over an operator. The integration over Grassman variables is defined as follows:

/d@ =0, (2.3.14)

10
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[ < = (23.15)

Now that we have defined the important properties of the Grassman variable and
fermionic operator, we can discuss more about the fermionic coherent state. We first

examine that |¢) = e~€%" |0) is truly the eigenstate of the fermionic annihilation operator

a.

Proof :

al¢) = ae™*"" [0)
= a(1 - ¢a*)|0)
= —aga™ |0)
= ¢(1—a*a)|0)

=¢10) . ged

Except for the examination of the fact that |€) is the eigenstate of the fermionic
annihilation operator, it’s also interesting to look at how the creation operator act on

the coherent state |{) .We find that the effect of the creation operator on the coherent

state is:

at |¢) = _aay?. (2.3.16)

11
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Proof :
a*|¢) = a* (1~ ¢a™) 0)
=at|0)
And
B 0
_8‘? = 5l = €a™) 0]

=a"|0) =at|¢). ged

We also have the completeness relation: [e=¢¢|€) (¢|d¢*d¢ = I in the coherent state
representation here. We can examine that as follows:

Proof :

/ €€ 16y (€] de*de [o)

- / € Ederde |€) (€] 0)

And,

(€1 0)

= (01 (1 — ag) |0)

12
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=(0]0) =1

Hence,

/ e~€Cdgrdg [¢) (€] 0)
_ /(1 — e E)derde(L — €at) |0)
_ / (1—€a™ — £€)dg™dg [0) = |0) ged

Similarly, one can easily prove that [e~¢"¢d¢*d¢|€) (€] 1) = |1) as well. Here, [1) =

at |0).Consequently, [e=¢"¢

€) (€| d&*d¢ = T for the reason that |0) , |1) is the basis of
the fermion state.
For there are multi-mode fermionic operator; {a}Y_, , {a;}é\le, the completeness re-

lation is generalized to:

[ e Zesis i) @ [ deiags =1, (23.17)
k

where [€) = [], (1 —&xa) ) |0) After we introduce the necessary algebra of fermionic state,

we can proceed our derivation of fermionic NMQSD without difficulty.

2.3.2 The Derivation of Fermionic Non-Markovian Quantum State

Diffusion

In the begining of this section, we name the virtual environment as bath. The left
environment that can be an electrode or other object interacting with the system is the

left bath, and the right environment is the right bath. The bath has a large degrees of

13



2 Non-Markovian Quantum State Diffusion

freedom in general. We continue from equation:
Hy = et Jo 4 HW) (Fg(t) + Hyp(t))e 1 Jo @ Hr(t), (2.3.18)

In generally, there should be a time ordering operation T’ beforee™# Jo @ Hrt): pe=i Jo dt H(t),

But one can prove it easily that:

[d) vdyy s exrexy] = 0, (2.3.19)

[d\pdk s 45 sdyye] =0, (2.3.20)

[exk,e;k, . exkexp) = 0. (2.3.21)

for any A, k, ', k.

Hence,

[HR(t), Hp(t)]
= [Z hawyry (tl)(d;k/ dyry + ey ej\,k,) ) Z hog(t) (d;\rkd/\k: + eAkeirk)]
Nk Ak
= Z hzw/\/k/ (tl)wAk(t)([dj:,k,d)\/k/ y d;\*—kd)\k] + [d;\*—’k’d)\'k' s eAke;\Fk}
Fleywel s dyd] +leyyel . eneli]) = 0. (2.3.22)

The Hamiltonians of different times are commute. The order of Hamiltonian at differ-

ent times are thus not so important. We can final simplify Hp(t) to get :

14
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Hrp(t) t)+ Z gk (VT = et dage™ O 4 gy () /e P We, ™ + Hc).
(2.3.23)

Here, wy,(t) = fot war(t)dt and the detailed calculation will be shown in Appendix
2. Since we have the total Hamiltonian in the interaction picture, we can now determine

the time evolution of the quantum state of the total system,which includes the system

and the bath by the equation: olvi 57 ®) _ —itHp(t) [9{(t)). The superscript I means
that the state !‘Iif(t)> is in the interaction picture and the time evolution equation of
the quantum state of the total system can be easily proved by taking partial derivative
of time of |U](t)) = et Jo Hr ()t |¥/(0)). We assume that we tune the interaction
between the system and the bath at the initial time ¢ = 0 so that the initial quantum
state of the total state can be asssumed to be factorized at the initial time, in other words,
|¥:(0)) = |tho) ® |0), where|0) is the vaccum state of the bath. In the following content,
we are in the interaction picture and we ignore the I in the superscript for simplicity.
Just as the fact that the state is a wave function in the corrdinate representation
in quantum mechanics, we choose the coherent state representation and project the
quantum state of the total system into the coherent state of the bath. This projection
can eliminate the degrees of freedom of the bath and take the effect of the bath on the
system into account by the Grassmann variable of the bath. Inasmuch as that there are
two kinds of particles dy;(d),), exr(e),) in the bath, we need to introduce the coherent

state of the bath as:

|zw) = H(l — 2di ) (1 — wyked,) [0) . (2.3.24)
Ak

Zxk » Wk are the Grassman random variables that have the statistical mean over the

random Grassmann variables as follows:
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2 Non-Markovian Quantum State Diffusion

M2z ( wak)] / H A2y dzy g dwls, dwye T A NN ) 2y (o wyg) = 0,
NE

(2.3.25)

—z%, ,z w*, ,w
Mzxp25e) = /Hdz w2y dws dwye N E I e TN K ENE Y2y 00 = 1,
P
(2.3.26)

where

Mle] = / (T] =y dzy g dw’duwyre XK 53K TN O )] (2.3.27)
NE

is defined as the statistical mean over the random Grassmann variables. The random

variables satisfying the above average is called a Grassmann Gaussian process due to

O|We(t))
ot

the zero average of zyx or wyp. We now project the time evolution equation: =

—itHp(t) |[¥:(t)) into the coherent state: [zw) and get the time evolution equation of

the quantum state of the total system in the coherent state representtion as follow:

<Zw! 2 [2e(2)) = —1% (zw| Hr(t) [V (1))

1
= —iy (ew| Hs(t )+ (g (VT = narcTdage ™ Db gy (1) e O Def T H ) [Wy(1))
Mk
(2.3.28)
After simplifying the above equation, we eventually arrive at the result (the detailed

derivation will be demonstrated in Appendix 3):
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2 Non-Markovian Quantum State Diffusion

§]¢(t, 2", w*))

923 (s) &

, |
Se10(t 2" w) =~ Hs(8) |61, 2", w) - ; ot

Z /aAgtséwtz W Zc wy(t) |p(t, 2%, w* ——Zcz)\ ) |p(t, 2", w™)),

(2.3.29)
with the following definitions of the parameters:
0(t, 2%, w")) = (zw| V4(t)), (2.3.30)
t)=—i Y VI = nangiy(t)2e™ 0, (2.3.31)
k
t)=—i Y Vangaw(t)wipe @0, (2.3.32)
k
axt(t,s) =Y (1= nar)gae(t)giy(s)e @wl=2), (2.3.33)
k
axa(t,s) =Y nargan(s)gi ()™ =), (2.3.34)
k
w)\k(t — 8) = w,\k(t) — w)\k(s)
t

where |p(t, 2*,w*)) is the reduced quantum state of the total system by projecting the
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2 Non-Markovian Quantum State Diffusion

total state into the bath coherent state, and (z*, w*) represent the set of all (23, , wy;)
variables. The time evolution equation of that state |¢(¢,z*,w*)) is the NMQSD. The
function ayy,(t, s) is the bath correlation function of two times ¢, s and will be discussed

later.

2.4 The O Operator and Its Time Evolution Equation

After we derive the fermionic NMQSD, it seems that we can determine the behavior

of the system as we wish. It is, however, not the case. Owing to the fact that we don’t

6‘¢?;*(g*)> (or 6‘¢((5i;i*(g*)>) is, how to deal with the functional derivative
A A

know what

5|¢%t;iz;lf*)) (or 5‘%2’;:&?” ) becomes a troublesome task. In this section, we will introduce
A A

an Ansatz to simplify this problem.

6‘¢(t72*7w*)> 6‘¢(t72*»w)k)> 3 3
For the reason that 525() (or RO ) is dependent on variable ¢, s, 23, w},,

we introduce the Ansatz in such a way:

52’;?(3) lp(t, 2", w™)) = O (t, s, 25, w") |p(t, 2%, w™)) (2.4.1)

— |o(t, 2", w")) = Oxa(t, s, 2", w") |@(t, 2", w™)) . (2.4.2)
dwy(s)

We now transfer the functional derivatives into the operators. Afterwards, we need to
determine the time evolution equation of Oy1(t, s, z*, w*) and Oyxa(t, s, 2%, w*). We only
give the derivation of the time evolution equation of Oy (¢, s, z*, w*). It’s the same for
Oxa(t, s, 2%, w*).

The equation can be determined by the consistency condition:

9 8]e(t, 2", w”)) 6 9p(t, 2", w))

ot 6z5(s) - NG ot ’ (243)

and the time evolution equation of the reduced quantum state |@(t, z*, w*)):
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2 Non-Markovian Quantum State Diffusion

_ « 5|¢> 5—l c toz S 5|¢> S
\qs) HS Z/\: / a( Z;(S)d hz)\: /0 x2(t )5w§\(s)d
S Ui 1) — 1 S e 0)16). (2:44)
A A

We now derive the equation briefly. First, we deal with the left hand side of Eq. (2.4.3):

d 49 0
9Lo2i(s) 8t( A1) @)

50,\1 dl¢)

ot

|9) + Ox1 (2.4.5)

Then, we deal with the right hand side of Eq. (2.4.3) by Eq. (2.4.4):

_lz /t (t,5)=>

js = 7 2t 16) — £ @10, (2:40)

|
s :
By equating the left and the right hand sides, we can finally get the equation of

Oxi(t, s, z*,w*) and the same is for Oya(t, s, 2*, w*):
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2 Non-Markovian Quantum State Diffusion

00y 1 1 — — 1 4
T - = —7Hs,0n] - ﬁ[E (c"Oy1 +¢O0y5), On] + 7101, ¢ty (1))
Y X
1 . 1 400y, 1 00,
1 (O] 4 23 e 2y Ly 2.4,

902 i
ot h

1 — — 1 N 1 N
[HS’O)\Q] — ﬁ[Z(C+O>\/1 + COXQ), O)\Q] + E[O)\z, Zc+w/\/] + ﬁ[O)\g, CZA']
A/

1
@ + = > St (o)’ (2.4.8)

where O,/ (t,2*,w*) = f(f ay, (t, )0y, (t, s, 2, w*)ds is the average of O/, (t, s, 2", w*)
with the bath correlation function.
After we substitute the Ansatz Eq. (2.4.1) and Eq. (2.4.2) into Eq. (2.4.4), the

time non-local linear NMQSD equation becomes the time-local or time-convolutionless

equation:
ot ’¢>:_ﬁHS‘¢>_ﬁZC O)\l(tvz , W )‘¢>—ﬁ200)\2(t,z W )‘(b)
A A
1 1
s 0)]6) — 1 Y e 19). (249
A A

The time evolution of the reduced quantum state |¢(¢, z*, w*)) seems not to be influenced
by the past history at the earlier time s by virtue of the substitution of 5)\/n(t, 2% w*). All
the past memories in the time integral over the past time are assumed to be 5/\/n(t, Z*, w*).
Oy, (t, 2%, w*) is extremely crucial for NMQSD for the reason that it contain all the infor-

mation of the past history. If we can solve it exactly, we can then directly determine the
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2 Non-Markovian Quantum State Diffusion

time evolution behavior of |¢), in other words, the system behavior under the interaction

of the bath.

2.5 Summary

In the beginning, we briefly introduce our physical model and write down the Hamil-
tonian of the total system. The bias voltage between the source and the drain electrodes,
gate voltage applied to control the system energy and the barrier between source ( or drain
) are all time-dependent. At the beginning, all the fermionic environment oscillators are
not in the ground strate at finite temperature. We introduce Bogoliubov transformation
to canonically map the environment onto another effective zero temperature environment
so that we can use NMQSD at the finite temperature bath. The effect of temperature is
now in the coefficients of the Bogoliubov transformation.Then, we project the NMQSD
into the bath coherent states. Because the coherent state is the eigenstate of annihilation
operator, this projection can simplify the NMQSD significantly.

Althought now we derive the fermionic NMQSD in the coherent state representation,
it is usually a difficult task to exactly get the time evolution information from it for the
sake of the functional derivative terms inside the time integral. Instead of evaluating
the functional derivative terms directly which is very troublesome, we introduce the O
operator Ansatz. In O operator Ansatz, we introduce O operator to include the past
history trajectory so that the time evolution of the system at time ¢ seems not to be
affected by the past history trajectory of the whole system at the earlier time s.

Finally, we derive the time evolution equation of O operator by the consistency con-
dition of Eq. (2.4.3) and the time evolution equation (2.4.4) with the appropriate initial
condition of O operator. If we can exactly solve the O operator, we can determine the
time evolution of the system. Nonetheless, it is usually not the case that O operator can

be solved exactly. In many cases, O operator can only be solved perturbatively.
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3 Exact Master Equation

3.1 Introduction

In quantum statistical mechanis, we have learned a very important concept, which is
density operator x(¢). It can express the expectation value of physical quantity of an
ensemble in a more compact way by taking the trace of the density operator and the

physical observable:

(0) = Tr(Ox(t)). (3.1.1)

So, it is very important to determine the time evolution equation of the density operator
of the total system in order to determine the expectation value of the physical quantity
we are concerned. One can find a more detailed introduction in [23]. However, we are
seeking information about the system S without requiring detailed information about
the total system S ® R in generl. Thus, we neglect the degrees of the part we don’t care
by tracing them out. In other words, we take the statistical average of the bath part (the

part we are not concern) in advance as follows [24]:

(O@)) = Trser[O)x(t)] = Trs[O@)Trr(x(t)] = Trs[O(t)p(t)]- (3.1.2)

We are in the bath interaction picture as the previous chapter and define the reduced

density operator by tracing over the bath degrees of freedom :
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3 Exact Master Equation

plt) = Tra(x(t)). (3.1.3)

We achieve our goal that we can only care about the specific part of the total system.
The time evolution equation of the reduced density operator is called a master equation.
In general, the bavior of the open quantum system is investigated by the master equa-
tion. Traditionally, we use the quantum Markovian master equation in Lindblad form to
investigate the system we are concerned with. If the coupling strength between the bath
and the system is strong, then we need to use a non-Markovian master equation.

In this chapter, we derive the non-Markovian master equation by NMQSD. We will
introduce Novikov theorem in the process of the derivation. It is a profitable theorem to
transform the troublesome Grassman average into the average of the O operator. The O

operator is just what we want and can simplify the problem.

3.2 Exact Master Equation from Fermionic Non-Markovian

Quantum State Diffusion

In this section, we derive the exact master equation from fermionic NMQSD. By def-
inition, the reduced density operator can be obtained by taking the statistical mean
for the density operator related to the total system state |U.(t)): p(t) = Trr(x(t)) =
Trr(|¥:(t)) (Pe(t)]). We now do some mathematical trick on p(¢) and get (the detailed

calculation is presented in Appendix 4):

plt) = M[(zw] Wy(t)) (Wy(t)] —2 — w)]. (3.2.1)

Here M represent the statistical mean over the random Grassmann variables as defined

in Eq. (2.3.27). The ket |-z — w) is defined as the stochastic density operator as follows:
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3 Exact Master Equation

|—z —w) = [ [+ 2aedfy,) [ + wared) 10) - (3.2.2)
k l

For simplicity, we use the definition in Eq. (2.3.30):

‘(z)(tv Z*vw*» = (zw[ \I]t(t»?

(P(t, —z, —w)| = (U (t)| =2z — w) . (3.2.3)

The master equation is then:

ap(t) _ BMHQb(tv Z*v w*)> <¢(t7 —Z, *U))H

ot ot

9|o(t, 2", w*))

= OO (o1 (s, 2wy SN

I (3.2.4)

From Eq. (3.2.1), we say that the reduced density operator can be unraveled by quan-
tum trajectories: |¢) = |¢(t, z*,w*)) following Eq. (2.4.9), and (¢| = (¢(t, —z, —w)| =

(Uy(t)| —z — w) satisfies the following equation:

0
g0 = {915~ 5 S {0IOh R [ A

A

+2 > (dlaalt (3.2.5)
A

m\»a

+= Y (Blwa(t)
X

The above equation can be readily obtained by first taking the Hermitian conjugate of

:H»—'

Eq. (2.4.9) and then change variables: z)z — —2zxp, waxx — —wyk. Consequently, by

Eq. (2.4.9) and Eq. (3.2.5), we finally derive the exact non-Markovian fermionic master
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3 Exact Master Equation

equation by Novikov theorem:

CPL) = X 1Hs(0), 0(0)] + 7 (s MIPOR, (1,2, —w)] — [, M[Oxi (¢, 2w
A

—Je, M[Oxo(t, 2*, w*)Py)] + [¢F, M[POxo(t, —2, —w)]]). (3.2.6)

Here we define the stochastic density operator P, = (zw| Ui(t)) (Vi(t)] —2 —w) =
|¢) (¢|. The detailed calculation is given in Appendix 5. The exact master equation
is derived without perturbation, hence it can be applied to the case of strong coupling
strength between the system and the environments.

The solution p(t) of the exact master equation Eq. (3.2.6) satisfies the following

equation:

Trs(p(t)) =1, (3.2.7)
p(t) = p" (1), (3.2.8)
(S| p(t)]S) >0 for any system state (3.2.9)

which can be apparently proved. That is, the reduced density operator preserves the

Hermicity, the positivity and the trace.

3.3 Two-Time Correlation Function of the Bath

Correlation function is a very important physical quantiy that measures the correlation

between noises of different modes in different timings. Thus, the correlation function of
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3 Exact Master Equation

2k (t) and 23, (s) is defined as:

Mzxi(t) 236 (8)]- (3.3.1)

In section 2.3.2, we have introduced the bath correlation function:

M[zxe(t) 23, (5)] = ani(t, s) = Z(l — ’I’L)\k)g)\k(t)g;‘\k(s)e—iw)\k(t—s)7 (3.3.2)
k
Mwar(B)why,(s)] = cna(t, s) = D naegar(s)ghp(t) ™02, (3.3.3)
k

for discrete mode. Equations (3.3.2) and (3.3.3) can be proved easily by the definition of
MTe].

If the distribution of the coupling strength g (t) is continuous rather than discrete, we
need to introduce the density of state p)(w) to describe the distribution of gy (w, t)gx(w, ).
The spectral density Jy(w,t,s) is defined as py(w)gx(w,t)gr(w,s). We consider in this

thesis the spectral density of Lorentzian form:

1 VAOVA(s)DWR
27 (hw — py)? + W)% ’

I(w,t,s) = (3.3.4)

Here W) is the bandwidth of the spectral density. It can be thought of as the
width of the peak of Jy and I'y is a constant of unit Joule?. When W) — oo, Jy —
i%(t)?’;(s)m, and J) is independent of w. This is called the wide-band limit. After
we take the wide-band limit, Jy = %V,\(t)VX(S)FA becomes a constant independent
of w. By introducing the continuous spectral density Jy(w,t,s), the bath correlation

functions a1 (¢, s) and ayo(t, s) become:

o (b, 5) = e~ie L dVA) / deo(1 — ny () s (w, £, 5)e— (=) (3.3.5)

26



3 Exact Master Equation

axa(t,s) = eiefs A / dwny (W) J5 (w, t, s)e =), (3.3.6)

3.4 Summary

In this chapter, we first introduce the density operator to deal with the average of
some phyical quantities of a specific ensemble. In general, we don’t need the infromation
of the whole system, so we introduce the reduced density operator by tracing over the
degrees of freedom of the bath. Thus, the information of the bath is included in the
reduced density operator as a number. We can consider the time evolution of the system
we are concerned by the time evolution equation of the reduced density operator, in other
words, the master equation.

Then in section 3.2, we derive the exact master equation. First we trace over the
degrees of freedom of the bath and get the reduced density operator. Then by some
mathematical trick, we represent the reduced density operator as the the statistical
mean of the operator: (zw| W:(t)) (¥4(t)] —z — w) over the random Grassmann vari-
ables: p(t) = M[(zw| W(t)) (Vi(t)| —z — w)]. Then we differentiate the reduced density
operator p(t) and get the exact master equation. We then simplify the master equation
by Novikov theorem.

Finally, we introduce the correlation function for later calculation. One noticing thing
is that if we turn off all the time dependence and take the wide band limit, it can be
easily demonstrated that the two time correlation of ¢ and 7 will proportional to §(t — 7).
It is exactly the Markovian limit. So, wide band limit can somewhat be treated as the

Makovian limit.
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4 Transient Current into a

Single-Energy-Level Quantum Dot

4.1 Introduction

In the previous chapter, we have shown up the exact master equation for the reduced
density operator by some mathematical tricks. Since we know the time evolution of
the reduced density operator, we can discuss the behavior of the physical quantities we
are interested. In this chapter, we focus on the transient current flowing from the left
bath and the right bath. The definition of current is I = —edg—tA = —eL (N\(1)). In
section 4.2, it takes us several pages to demonstrate the detailed derivation of the current

formula. In the bottom of section4.2, we deduce that:
OL2 = Oprz = Oy,

Or1 = Opr1 = Oy,

by some arguments. We propose the assumption of the Grassman average of the

O1, Oy operators, Q1, Q2:

Q1(t,s) = M[O1(t,s, 2%, w*) P = Al(t, s)ep(t) + A5(t, s)p(t)e,
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4 Transient Current into a Single-Energy-Level Quantum Dot

Qa(t, 8) = M[Os(t, s, 2%, w*)Py] = Ba(t,s)ctp(t) + Bi(t, s)p(t)c.

with Ay Ao, By, By to be determined. Although we have derived the time evolution
equation of Oy and Oy, it is not so convenient to use due to the fact that there is Oyo
term in the equation of Oy; and vice versa. In other words, the time evolution equation
of Ox1(0y2) is mixed with the term Ox2(Oy1). In section 4.3, we refer to part 2. D in
[25] to derive the pure time evolution equation for O; and Oz. The method used in [25]
is mainly dealing with the propagator. Through this method, we can derive the time
evolution equation of the undetermined coefficients A; As, By, By and finally solve @

and (o operators.

4.2 The Transient Current

We apply the NMQSD to the research on the transient current through the single

quantum dot. The current flowing from the A-side lead is as follows:

Iy = e (N{(1)

= e (TroorlN{!(1)")). (4.2.1)

Here we use the Heisenberg picture for the convenience that the density operator in

the Heisenberg picture is time-independent. Eq. (4.2.1) then becomes:

AN () o
dtﬂ]

—eTrser|

- Z;;Trm(wf (t), H(t)]p"). (4.2.2)
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4 Transient Current into a Single-Energy-Level Quantum Dot

Because we use interaction picture in the previous text, we introduce the transforma-

tion betweern the Heisenberg picture and the bath interaction picture as follows:

o =U+0'U, (4.2.3)

! =U*'U, (4.2.4)

it

where U = e Jo Hr(r)dr (Te nlo i (T)47)_ This is the Hermitian conjugate of the trans-
formation operator between the Schrodinger picture and the bath interaction picture
U]}L times the transformation operator between the Schrodinger picture and the Heisen-
berg picture U. Then we use Eq. (4.2.3) and Eq. (4.2.4) to transfrom Eq. (4.2.2) to
I = ©Trsgg[[NL(t), H (t)]p! (t)] easily. We now ignore the superscript I and adopt the
bath interaction picture in the followings: H!(t) — H(t), N{(t) — Nx(t) but still use
pl(t) = |\I!tl(t)> <\I't1(t)‘ — | W (t)) (Uy(t)] in order to distinguish from the reduced density
operator p(t). The next step is to deal with Iy. We now briefly calculate the operators

in Iy:

N)\(t) = 6% f(f H;{(T)d‘r Z(di—kd}\k + eAke;\rk)e_% fg HJ/R(T)dT
k

= Z(di_kd)\k + e,\kej{k), (4.2.5)
k

H(t) = et s TR0 (Hg() + Hip(t) + Hap(t))e™ Jo Hr(rdr

The ei Js Ha(DT (F g (t)+ Hyp(t))e# Jo Hr()4 torm is exactly the Hy(t) in Eq. (2.3.23)

and H;%(t) = [thk@)(d;\rkd)\k + e,\ke;\rk)]_ So,

H(t) = Hp(t) + er lo H;;(T)dTH;%(t)e—% Jo Hy(r)dr
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4 Transient Current into a Single-Energy-Level Quantum Dot

— HS(t)—f—Z(g)\/k/ (t)\ / ]_ —_ ’I’L)\/k/ C+d)\/k/ e_iwklk’ (t)—}-g/\/k/ (t), /nA/kle_Zw)\/k/ (t)e;\’_,k, C++HC)+H/R(t)
N

(4.2.6)
The commutator
[NA(t), H(t)]
= [Z(d;tdek + ekke;k) s Z(g)\/k/ (t) m6+d)\,k,e—iw)\/k/ (t)
k NE
oy Oy e o+ He)
= Z [k + excesy, > Gy g (/T = nyretdy e Exw @
Nk k'
+gyy (Oyye O Vel ot + H.el (4.2.7)

In Eq. (4.2.7), [d,dx + exxelys cTdy ] = [dfde, ctdyy]. EX# X or kb #£ K,
then [dy,dx, ctdyy] = 0. If X = X and k = k', [dfda, cTda] = —cTdai. So
[df dow + exvedy,, cTdy ] = —cTdaedyyr 6y, . Similarly, [df,dye + excely e:\*‘,k,cﬂ =
—e;\rkch(SM/ 0, - For the Hermitian conjugate part, we introduce a small mathematical
trick so that we don’t really calculate them. The trick is that: if A is a Hermitian
operator, then [A4,Bt] = [AT,B*] = —(|A,B])T. We can use this to simplify the
Hermitian conjugate part of Eq. (4.2.7). For the sake of the Hermicity of djkd,\k +
exkerys [ da + e)\keik,d;\r,k,c] = —(—cTdpb, 6, )T = dfcd, /6, and [df dy, +
exceyy > eyl = —(—epet Oy 0 )t = ceardyy Oy

Through the above argument, Eq. (4.2.7) is reduced to:
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4 Transient Current into a Single-Energy-Level Quantum Dot

[NA(t), H(t)]
Z — (VT — et dype O — gy (1) rnge IO Wef oF
K

+g3e (VI — nagdy, ce’ @@ L gx (1) /mage P Deeyy). (4.2.8)

Using Eq. (4.2.8), the current of the A-side lead is:

e —iw
Iv=5Trserl- > aOVT = npet dyge 0 pl (1)
k

ie —iw

+-Trser[~ > gt ymee O 0ed et pl (1))
k

e * iw

+%T7“S®R[Z Ga(tVT = napdyyce Ol (1)
K
ie * 1w
+-Trsor D~ gik () v/mare ™ Deexip” ()] (4.2.9)

After some calculation and simplification (see Appendix 6 for details), the current then

becomes:

ie e 17
I)\ = fTT’S[— Zg)\k(t) 1-— nyie M(t)c-i_TT’R(d)\k,OI(t))]
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4 Transient Current into a Single-Energy-Level Quantum Dot
Ll Trs Z!L\k Ve RO Trp(pl (t)ef )]
+° Trs Zg)\k (VT = nagee’ O Trp(p! ()d),)]
+%€Trs[z G (OVme O eTrp (e’ (1))

So next we need to deal with the terms Trg(dxip’ (t)), Trr(p’(t)el,), Trr(p!(t)ds,),

Trr(exxp’(t)). We leave it in Appendix 7 and only list the results of them:

Trr(dp! (t) = M[z2x P, (4.2.10)
Trr(p' (t)df,) = —M[Pz}), (4.2.11)
Trr(exep’ () = Mwyi Py, (4.2.12)
Trr(p' (t)el,) = —M|[Paw}y). (4.2.13)

So the current formula becomes:

i€ L
I/\ = fTrs[— Z g)\k(t)\/ 1-— n/\ke—lka(t)c-i-M[z)\thH

f k
ie —iw *
——Trs[- > gak(t)y/ake Ot MPaws, ]
k
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4 Transient Current into a Single-Energy-Level Quantum Dot
——TTS Z 9 (V1 = nyg nAkceW”“(t)M[Ptz;k]]

+%T’P5[Z G5 () /Taee O e M [wy Pi]] (4.2.14)

Through Eq. (2.3.31) and Eq. (2.3.32), Eq. (4.2.14) becomes:

I = —%Trg[c*M[zA(t)Pt]]—%TTS[CJrM [thi(t)]H%Trs [cM [Ptzi(t)]H%Trs[cM [wa(t) Fr]].

Here, we are not willing to deal with the annoying noise term M [z (t)P;], M[Paw3(t)],
M[P,z}(t)], M[wx(t)P]. Instead, we use Novikov theorem to transform these terms into

other terms with O operator, that is, we transform the current formula into:

Iy = =5 Trs[e" M[Ox P+ Trslet MIPO]| 5 Trs[eM[PiO3 |1+ Trs[eM[Ox Pl
(4.2.15)

In Eq. (4.2.15), we know that Oy, (t, 2%, w*) = fg axn(t, $)Oxn(t, s, 2", w*)ds, 5;1 =
5:\Fn(t, —z,—w) = fg o, (t,s)OF (t,s,—z,—w)ds, O = OF (t,s,—2,—w)n=1,2. As

a result,

M[Ox, P
t

:/szdeGZQ“’z/ axn(t, 8)Oxn(t, s, 2", w")dsP,
0

) /t s (. $)M[Oxn P/lds. (4.2.16)
0
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4 Transient Current into a Single-Energy-Level Quantum Dot
—+
M[Pto)\n]

t
:/szdwze_Zz_w2Pt/ o, (t, )0 (t,s,—2z, —w)ds
0

t
_ / o, (t, s) M[P.O5. ]ds. (4.2.17)
0

Now we define M[O),,(t, s, 2%, w*) P;] as Qxn(t, s) and QF, (¢, s) = M[P,OY. (t,5,—2,—w)].
After we define @ operator, we jump to Eq. (2.4.7) and Eq. (2.4.8) and discover that
Opgr1 and Op; have the same time evolution equation. Besides, Ogr; and Oy have the
same initial condition: Ory(t,t, 2", w*) = Or1(t,t, 2%, w*) = ¥ [15]. As a consequence,
we can conclude that Or; = Op; = O;7 by the uniqueness of the solution of the dif-
ferential equation. Likewise, for the sake of the initial condition Opgs(t,t,z*, w*) =
Opa(t,t, 2%, w*) = % [15] and the same time evolution equations of Ogry and Orps.
we can derive the same conclusion that Oro = Ops = Os. By the above argument,
we can simplify: Q1(t,s) = M[O1(t, s, z*, w*)P,], Qa(t,s) = M[Oa(t, s, z*,w*)P,] and
Qf (t,s) = M[P,Of (t,8,—z,—w)], QF (t,s) = M[P,OF (t,s,—z,—w)]. In the final step

in this section, we get the current formula after numerous calculation:

¢ t
I = —;Trs[ﬁ/o axi(t, s)Qu(t, s)ds] + ;TTS[C+/[) %o (t, 5)Q3 (t, 5)ds]

t t
_;Trs[c/o a3y (t, 8)Q7 (t, s)ds| + ;TTS[C/O axa(t, s)Qa(t, s)ds]. (4.2.18)

The unknown part of Eq. (4.2.18) is the @ operator. Fortunately, in [15], we find that

the @ operator is as follows:

rQ1(t,s) = Al(t, s)cp(t) + A5(t, s)p(t)c, (4.2.19)
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4 Transient Current into a Single-Energy-Level Quantum Dot

hQa(t,s) = Bi(t,s)p(t)ct + Ba(t,s)ctp(t). (4.2.20)

The Ay Ay, B, By are the undetermined coefficients. We then substitute Eq. (4.2.19)
and Eq. (4.2.20) into Eq. (4.2.18):

€ . € . e e
1) = =T (T rsle* ep(t)]— 5T (OTrsle plt)el o (O rslep(t)e | = o Taa(t) Trslect o).
(4.2.21)
where the time-dependent coefficients are:
¢
Ta(t) = / (41 (t 5) Av (£, 5) — ana(t, s) Bi(t, 5))ds, (4.2.22)
0
t
Tyo(t) = / (%1 () As(t, 5) — ara(t, $) Ba(t, 5))ds. (4.2.93)
0
The trace over system degrees of freedom can be easily evaluated:
Trs[ctep(t)] =) (nlcFep(t) In) = (0] ctep(t) [0) + (1] ¢Tep(t) |1)
=0+ (1 p(t) 1)
= p11(t), (4.2.24)

Trs[ctp(t)e] = Trslectp(t)] =Y (nlectp(t) |n) = (0] cc™p(t) |0) + (1] cct p(t) 1)

n
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4 Transient Current into a Single-Energy-Level Quantum Dot

— (0] p(t) [0) + 0

= poo(?), (4.2.25)
Trslep(t)ct] = Trs[ctep(t)] = p11(t), (4.2.26)
Trslecp(t)] = poo(t). (42.27)

Thus we can get the simplified current formula as:

Ix(t) = —%(Fn(t) + I ()p1a(t) — %(Fm(t) + 2 (t)) poo(t).- (4.2.28)

Besides Eq. (4.2.28), we can also bring Eq. (4.2.19) and Eq. (4.2.20) into the master
equation of Eq. (3.2.6) and get the simpler form of Eq. (3.2.6):

ap(t)  —i
?)(t)_ i [Hs(®) h?ZF“ le: ot hQZF pt)]

= ZFAQ [e, ¢t p(t - ZFAQ + p(t)d. (4.2.29)

The first term in Eq. (4.2.29) is the free evolution of the system and other terms are
caused by the interaction with the baths. The memory effects of the baths are embedded
in the time-dependent coefficients I'y1(t) , I'xo(¢). This is the case because I'y1(¢) , T'xa(t)

are integrals including all the history of the baths.
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4 Transient Current into a Single-Energy-Level Quantum Dot

4.3 Heisenberg Approach to the O, Operator

In section 2.3.2, we learn that the total state of the system plus the bath is factorized:
[U4(0)) = |10) ®|0) and (zw [V(t)) = (zw| U |¥(0)) = ((zw| U |0)) |1ho). Uy is the time
evolution operator at time ¢ of the total system. Here we define G¢(2*, w*) = (zw| U; |0)
as the stochastic propagator for the state |¢(t, 2%, w*)). Our mathod is that we first want

to prove that:

(zw| Uct(s) |0) = hOa(t, s, 2%, w*)Gy(2*, w*), (4.3.1)

(zw| Ue(s) |0) = hO1(t, s, 2%, w" )Gy (2%, w™). (4.3.2)

Here, c(s) = U cUs, ¢t (s) = UfctUs. Next, we take the differentiation of Eq. (4.3.1)
and Eq. (4.3.2) with respect to time s and get the new time evolution equation of O

and Oj. To achieve this goal, we first find the time evolution equation of G¢(z*, w*).

4.3.1 The Time Evolution of G,(z*, w*)
The time evolution of G} is:

LO0Gy
R — i
th— =1 (zw]

o,

T |0) .

By the Schridinger-like equation in the bath interaction picture: ih% = ih% |, (0)) =

Hr(t)Uy |,(0)) — ih98%t = Hy(t)Uy,

m% = (zw| Hp(H)U, |0)
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4 Transient Current into a Single-Energy-Level Quantum Dot

= HSGt—f-Z (g (V1 —nypcte” i@xk(t) (zw| dar Uy \O>+Z g,\k(t)«/n,\ke*i@k(t)wikcJFGt
Ak Ak

+ Zg)\k VI =yt 2% eGy + ZgAk e Ve (zwl e, Uy [0) . (4.3.3)
Ak

In order to get the time evolution equation of G; with only G term rather than (zw|dy;U; |0)
and (zw|ex;U |0), we need to transform them. The transformation techinique is as fol-

lows.

First, we define dyi(t) = UjdAkUt and ey, (t) = Ut+e>\kUt and differentiate them:

Odyi(t) _ . AU U
o = ih( 5t Ydax U + iU d g ( 8t>

th

= U, [dxi , HT)U;

= g (OVI = e’ We(t), (4.3.4)

86Ak(t)
ot

ih = Ut+ [6)\k, HT]Ut

= gk (t)y/mape et (g), (4.3.5)

Eq. (4.3.3) is thus converted to:
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4 Transient Current into a Single-Energy-Level Quantum Dot

oG — &
ha—t = HSGt+Z (g (V1 —nypcte” iWxk(t) (zw| Upd i (t) |0) ZgAk ke Z‘“J*’“(t)c'kwf\k(}t
Ak

- Z T (OVT = e Oz Gy 4+ g () v/mare P De (zw] Uyear(t) [0) . (4.3.6)
V2

Second, we integrate Eq. (4.3.4) and Eq. (4.3.5):

ot
? * Tk (s
d(t) = doa— . [ Gl IT= e P Oe(s)ds, (43.7)
0
i [t L
ext(t) = exx — h/ g,\k(s)\/n)\ke*’w*k(s)ch(s)ds. (4.3.8)
0

Equations (4.3.7) and (4.3.8) are what we exactly want for the reason that dyx(exx) [0) =
0. We then put Eq. 4.3.7 and Eq. 4.3.8 into Eq. 4.3.6 and get:

3G
8tt HgsGy — C+Z/ axi(t, s) (zw| Upc(s) |0))ds

i Z cTwy(t)Gy — i Z czy
A A
—1e 3 [ (s el Uit () 0. (1.3.9)
A

Here, Wy (t—s) = Wak(t) —wrk(s). We know that Gy = (zw| Uy |0), |¢) = (zw]| Uy |0) |o).
Hence, ih% = ih% |tbo). By comparing Eq. (2.4.9) and Eq. (4.3.9), we can immedi-

ately obtain Eq. (4.3.1) and Eq. (4.3.2):
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4 Transient Current into a Single-Energy-Level Quantum Dot

(zw| Ue(s) |0) = hOq(t, s, 2%, w™ )Gy (2%, w"),

(zw| Usc™ (5)|0) = hOa(t, 5, 2%, w*)Gy(2*, w*).

A noted point in Eq. (4.3.1) and Eq. (4.3.2) is that if s = ¢, we find that:

c(zw| U |0) = hO1(t,t, 2", w* )G (2", w™),

ct (zw| Uy |0) = ROo(t, t, 2*, w*)Gy(2*, w*).

Because (zw| Uy |0) = Gy, we can immediately get: hOq(t,t, z*, w*) = cand hOa(t, t, z*, w*) =

c¢™. These are exactly the initial conditions in section 4.2.

4.3.2 The Time Evolution Equation of O;(t, s, z*, w*)

We first differentiate Eq. (4.3.2) with respect to time s and will get the time evolution

equation of operator Oy later.

0 00 ta ) *7 * * *
() 0,20 gy = pPAEZ ) g oo
dc(s) 0 .4 Uy L O0Us iy
55 %(US cUy) = s cUs+ U ¢ 95 ﬁUS [Hr(s), c]Us.

Here Hy(s) = hws(s)cte+d (g (s)v/1 — nxke*m*k(s)c*d)\k—i—g)\k(3)‘/n,\ke*i@k(s)e:\kkc*—i—
Gir(s)v/1— n,\kei@k(s)dj\rkc + 95, (8)A /n,\kem*k(s)ceM) and

[cTe, ¢ = —c,
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4 Transient Current into a Single-Energy-Level Quantum Dot
[k, ] = —dn,
[ + +

+ 1
e sl = enps

[df,c.c] = [cexk, ] = 0.

So,
Jc(s i — Wk (s — Wk (s
8(3) = ﬁUj(_hWS(S)C‘i’Z(_gAk(S)Vl — ke PR d it gap(s)y/mage T e ) U

Ak

= —iwg(s)c(s) + % Z(—g)\k(s)\/l — e O Ay (s) + g,\k(s)\/n)\ke*m*’“(s)e;\rk(s)).
Ak
(4.3.10)

dc(s)
s

0) = haaosth = —iwg(s) (zw| Usc(s) |0)

<ZU)| Ut

{ —iw s i —1 W, s
~ > gar(s)VT = ke M) (| Upd g (s) !0>+ﬁ >~ gae(s)y/make () (| Uyei (5) 0)
IV IV

(4.3.11)
By the same technique in obtaining Eq. (4.3.7) and Eq. (4.3.8), we have
dxi(s) = da — ;/ g}"\k(s/)\/l — n,\kem”(s”)c(s/)dsl, (4.3.12)
0
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4 Transient Current into a Single-Energy-Level Quantum Dot

4 ’ ’

.
? * ! Tk (S
G0 = ) + 5 [ gl )i Bl s (43.13)

Then we put Eq. (4.3.12) and Eq. (4.3.13) into Eq. (4.3.11), replace (zw| Usc(s")|0)

by hO1(t, s , 2*,w*)Gy and get:

1 8 / P ! / ’
h@Gt = —ihwg(s)O1G—— Z(l—n,\k)/ Ik (8)g5n(s)e GO (85, 2% w*)ds Gy
88 h IV 0

/

. . t
¢ —1 Wk (s L x T1Wak(s N
4 S gwloamwe P Gl Ul 0 - 5 [ giuls)imme @ es s 0
Y 5

1 § ’ pp— ! ’ /
= —ithwg(s)01Gy — — (1-— nAk)/ 9k (8)grs (s )e*““’“(sfs )Ol(t, s, 2" w")ds Gy
0

h
M

i —iwAk(8),, * 1 ¢ * ! — T (s—s o x * /
+ PN ON D )w)\th‘i'% Z/ Iak(8) g3k (s ke T EETON (1,8, 2, w*)ds Gy
Nk Xk

S

Finally, we arrive at the time evolution equation of Oy:

801 . 1 % 1 s ’ . % ’
e = —iwg(s)0O1 — hQZ\:wA(S) ~ 12 2}\:/0 axi(s,s)01(t,s, 2", w*)ds
1 t ! I !
+hzZ/ ana(s,8)O1(t, s, 2", w)ds . (4.3.14)
>\ S
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4 Transient Current into a Single-Energy-Level Quantum Dot

4.3.3 The Time Evolution Equation of Os(t, s, z*, w*)

We first differentiate Eq. (4.3.1) with respect to time s and will get the time evolution

equation of operator Os.

-+ * *
(| 0,258 oc ( Jdc™(s) 0) = haOg(t,s,z , W )Gt(z*,w*)
0s
oct(s) (80(3) )+
ds 0Os
= iwg(s h Z (93 (s)V1 — nAkei@’“(S)d;\rk(s) - gf\k(s)w/nAkemM(s)exk(s)).
(4.3.15)
+
(2] 0,27 10y = 19226, = itog () (2] Ui (5)0)
0s s
Z’ * W S W S
++ > G (VI — e’ ) (2| Ud ( ngk Ve ) (zw| Uexr(s) 0)
Mk
(4.3.16)
By the same technique in obtaining Eq. (4.3.7) and Eq. (4.3.8), we get
ext(s) = exg — ;/ g)\k(sl)\/nxke*m*k(sw)c+(3,)ds,, (4.3.17)
0
7 t ’ . / ’ /
dy,(t) = di(s) + h/ k(s VT = nppe et (5 s (4.3.18)

Then, we put Eq. (4.3.17) and Eq. (4.3.18) into Eq. (4.3.16), replace (zw|Usct(s') |0)
by hOs(t, s , 2*,w*)Gy and get:
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4 Transient Current into a Single-Energy-Level Quantum Dot

00,

]_ s ! !
hﬁat = iliwg(s)02Gy — h%;mk/o G (8) g (s )t~ S)Og(t,s 25w )ds Gy

ot
! ! —iwp(s ! !
E Gan($)VT = nne’ ) (20| Uy (dif () - h/ Ie(s )W = nape” O3 )et(57)ds) |0)
. 1 3 * Tk (S—S T x * !
= thwg(s)02Gy — 7 g n)\k/o 9k (S)grk (s ) @ )Og(t,s 25w )ds Gy
Ak

thAk W — nppet @) 25, GH_hZ/ G () g (s ) 1=y ) et @rws= S)Og(t s, 25 wh)ds Gy

Finally, we arrive at the time evolution equation of Os by the same technique as Oq:

802 . 1 % 1 § ’ o % ’
e = iwg(s)O2 — =) z)\:z/\(s) ~ Z\:/O axa(s,s)0a(t, s, 2%, w*)ds

1 ' ! Tk !
+hzZ/ ani(s,s)Oa(t, s, 2%, w')ds . (4.3.19)
by S

4.4 Time Evolution of Undetermined Coefficients

AI,A27 Bl) B2

We made the assumption of Eq. (4.2.19) and Eq. (4.2.20),

BQu (L, s) = Af(t, s)ep(t) + A3(t, s)p(t)e,
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4 Transient Current into a Single-Energy-Level Quantum Dot

hQa(t,s) = Bi(t,s)p(t)ct + Ba(t,s)ctp(t).

If we want to know the time evolution equation of Ay Ay, By, Bs, we need to find
the time evolution of @)1 and @9 first. It is not a difficult task for the reason that we
have now the time evolution of Oy, O2, and Q1 (t,s) = M[O1(t, s, z*, w*) P, Q2(t,s) =
M[Ox(t, s, z*, w*) P;] actually.

The time evolution equations of )1 and ()5 are:
001

:M[gPt]

00:
Os

t
= —in(S)Q1+h122/ a)\g(s $)Q1(t, s ds —Z/ ax (s, s )Q1(t, s ds ——ZM
)\ S

(441)

00,
0s

00
= MG =P

= iws(s Q2+h22/ Oé,\ls SQQtS ds—Z/ a,\gss Qgts ds——ZM

(4 412)
We use Novikov theorem to deal with M w3 (s)P;], M[2}(s)FP):
" =+
M[4(s)P) = —M[POy (t, 5, —2 —w), (443)
" =+
M[wy(s)Py) = =M [P,Oyy(t, s, —z, —w)]. (4.4.4)

~+ , , , ~+
Here O,,(t,s,—z,—w) = fg o (s,8)0f (t,s,—z,—w)ds and Oyy(t,s,—z,—w) =
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4 Transient Current into a Single-Energy-Level Quantum Dot

fot aiy(s,8)0F (t,s',—z,—w)ds'. The proof of Eq. (4.4.3) and Eq. (4.4:4) is similar
to the proof in section 5.5. We note that the time in 23(s), wi(s) is s. Thus the cor-
relation functions inside the integrals are a3, (s, s') and ays(s, s'), respectively. By Eq.

(4.4.3) and Eq. (4.4.4), we can simplify Eq. (4.4.1) and Eq. (4.4.2) as :

t
% = —iws(s)Q1 + % EA:/ ara(s,8)Q1(t, s )ds

: S )@t )ds' + (s $)QF (1, 445
_Z/O ax1(s,s)Q1(,s)s+hQZ)\:/0 a3o(s,s)Q7 (t,s), (4.4.5)

A2
A

t
% = iwg(s)Q2 + % XA:/S ani (s, 8)Qa(t, s )ds

1 s ! I ! 1 t * ! i ’
s Z/{) axa(s,s )Qa(t,s )ds + = Z/o a31(s,8)QT (t,5 )ds . (4.4.6)
A A

Next we take Eq. (4.2.19) and Eq. (4.2.20) into Eq. (4.4.5) and (4.4.6) respectively

and obtain

O )+ P40 e = o) (11 )e(t) + 4500, 9p(0)e)

!/

+% > / axa(s',8)(A5(t, s )ep(t) + Ab(t, s )p(t)c)ds
)\ S

/

S Z /Os axi(s, S,)(A*{(t, s/)cp(t) + A5(t, Sl)p(t)c)ds
A

’

+% Z/O @3a(s,8 ) (Bi(t, 8 )ep(t) + B3 (t, s )p(t)e)ds (4.4.7)
A
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9B (t, 5)
Os

p(t)ct + WCJF/)@) = iwg(s)(B1(t, s)p(t)et + Ba(t, s)e p(t))

/

+% Z/ axi(s,s)(Bi(t, s )p(t)c™ + Ba(t, s )T p(t))ds
by S

/

—% > / axa(s, s )(Bi(t, s )p(t)e™ + Ba(t, s ) p(t))ds
A 0

¢
+% Z/o (5,8 )(AL(t, s )p(t)et + Ag(t, s )etp(t))ds . (4.4.8)
\

Since ¢p(t), p(t)c, p(t)ct, ctp(t) are linealy independent. We can get the time evo-
lution of Ay, As, By, Bs through the coefficients of cp(t), p(t)c, p(t)ct, ¢ p(t).

For Qq:

cp(t):
8‘%8(;’8) = iwg(s)A1(t,s) — % Z/\: /OS(QA1(S/7 ) + cals, Sl))Al(t7 sl)dsl
+1Z/t axa(s, s )(Bi(t,s) + Ai(t,s))ds . (4.4.9)
R ) ) :
p(t)c:
51426(?8) — iws(s) Aa(t, 5) — % ; /Os(om(s’, b (e s
1 ¢ , , , )
T Z/ axa(s, s )(Aa(t, s) + Ba(t,s ))ds . (4.4.10)
N Y0
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%g(jvs) — iws(s)Bu(t, 5) — % z; /0 (s 5) oo VB 5

+% Z/t axi(s,s)(Ai(t,s) + Bi(t,s))ds . (4.4.11)
A 0
p(t)e™:

8328(;’5) = iwg(s)Bal(t, s) — % ; /05(04)\1(sl, ) & s, Sl))BQ(t7 sl)dsl

o ) [ (s oa(e )+ Bl i (4.4.12)

Finally, we get the time evolution of A; A, Bi, Bo. We have used the fact that
af, (s,8) = ax(s,s). This can be easily proved. Because the initial condition of
Q1(t,s) and Qa(t, s) are:

Q1(t,t) = M[O1(t,t, 2", w*)P] = cp(t),
Qa(t,t) = M[Oa(t, t, 2%, w*)P] = ¢*p(t).

We can get the initial condition as follows:

Ai(t,t) = Ba(t,t) =1, (4.4.13)

As(t,t) = By(t,t) = 0. (4.4.14)
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4.5 Summary

In the begining of this chapter, we start from the definition of the transient current
flowing into the quantum dot. We calculate it in the Heisenberg picture for the conve-
nience that the density operator in the Heisenberg picture is time-independent. After
we calculate it in the Heisenberg picture, we transform the result back into the bath

interaction picture. By the average of dyx , d;k, ext ejk

Trr(dap’ () = M2z P,
Trr(p'(t)df,) = —M[Pzy,],
Trr(excp’ (t) = M{wxp P,

TTR(pI(t)eXk) = —M[Pawy],

and the Novikov theorem, we can get the final current form as

e

L\t) = =23 (M (t) + D () pua () — %(F,\z(t) + X2 (8)) poo(t)- (4.5.1)

In Eq. (4.5.1),

Ta(t) = /0 (o (t,s)A1(t, s) — axa(t, s)Bi(t, s))ds,

The(t) = /0 (axg(t, s)Aa(t, s) — ana(t, s)Bal(t, s))ds.

In section 4.3, we use Heisenberg approach to obtain another time evolution equation
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4 Transient Current into a Single-Energy-Level Quantum Dot

for O1 and Os. Through the time evolution equation for Oy and O3, we can then derive
the time evolution equation of the undetermined coefficients A1, Ay, By, Bs. Thus both
of the exact master equation and the current formula with time-dependent bias voltage,
external time-dependent gate voltage and time-dependent transmission coefficient can be

exactly determined.
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5 Modeling of Time-dependent Coupling

strength

5.1 Introduction

In section 3.3, we have introduced the effective transmission coefficent V' (¢). This term
will also determine the behavior of ay(t, s) and ay2(t,s). Thus, we have to determine
the form of V\(t). We use the barrier controlled by the gate voltage to vary V(). In
our setup, the bias voltage, the system energy, the gate voltage are all time-dependent.
For this reason, we need to calculate the tunneling problem which is not stationary.
Our system contains the left lead, left barrier, central system, right barrier and right
lead. The the method to calculate the effective transmission through the left barrier is
the same as that for the right side. Hence we demonstrate the left part in this section.
Figures 5.1.1 is a schematic illustration of our physical model. We refer to Ref. [16]
as our prototype. In that paper, only the barrier is controlled by time-dependent gate
voltage and the scattering wave function solved in that paper is approximated under the
assumption that % < 1, where A is the amplitude of the time-dependent voltage and w
is the oscillating frequency of the time-dependent voltage. In Ref. [26], the wave function
and transmission coefficient is calculated by scattering matrix and Floquet theorem and
the wavefunction solved in Ref. [26] is more accurate. In our model, we use the same

approximation of wavefunction as in Ref. [16] with three regions controlled by time-
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5 Modeling of Time-dependent Coupling strength
dependent voltage.

Left Barrier

Left Lead ﬁ

Region 1 | _ _
System
VL(t
© VGL(t) (Quantum Dot)
- _G_ . Region 3
Region 2
epsilon(t)

_9_ -
3

Figure 5.1.1: This is the figure of our model. The left lead region is controlled by the bias
voltage. The left barrier region is controlled by the left gate voltage. The
central system is controlled by the gate voltage. We only consider the left
hand side of our physical model. The setup is the same as the right hand
side. All the voltages are time-dependent. In the following sections, we call
the left lead regionl, the left barrier region2 and the system(quantum dot)
region3.

5.2 Simple Model constructed by M. Biittiker and R.

Landauer

In Ref. [16], the Hamiltonian of the barrier region is simply: H(t) = —%% + Vo +

Vicos(wt). By solving the Schrodinger equation: H(t)y(x,t) = ihwéf’t), we can easily

get the wavefunction ¢ (z,t, E)

- Bt Vi

Y(x,t, E) = (Be"™ + Ce™")e " e i sn(wt), (5.2.1)

E is the incident energy. e ‘m ™) can be expanded as > Jn(%)e_m”t [27],
n=—00
—i(nhw+E)t

where J,,(z) is the Bessel function. ¢ (z,t, E) is thus (Be"*4+Ce™"") > Jn(%)e R

n=—oo

We can see that if the wavefunction is incident from the left lead with energy F,

it will be transferred to another sideband F + nhiw. Because there are now other
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5 Modeling of Time-dependent Coupling strength

sidebands in the barrier (Be"* + Ce*m)Jn(%)e h , we need to add the term
—i(nhw+E)t — ..
(Bpe"™* + Cpe e m , where k,, = M This is an analogy to the

stationary quantum tunneling. The generation of sidebands in the barrier will produce
reflected waves and transmitted waves at the energies E+nhw. The general wavefunction

solutions in regions 1, 2, 3: 11, 12, Y3 are, respectively,

o
. . . . —i(nhw )
D) = (€ + AT ® e Ty Y (A e T ), (5.2.2)

n=—o00,n#0

00 oo
V —i(nhw ) —i(nhw )
o(x,t) = (Be"+Ce™™) Y Jn(al)eihﬁ““ S (Bae h Cpe ),
n=-—o00 n=—00,n#0
(5.2.3)
0o
: . . —i(nhw+E)
P3(x,t) = Dekre=i% 4 Z (Dneanxe%), (5.2.4)
n=—o0,n#0

where & = \/Q?TE, k, = \/W. In the model of the paper of Ref. [16],

the potentials in region 1 and 3 are 0 as in Fig. 5.2.1. By the boundary condi-

tion: 11(0,t) = 12(0,t), ¥2(L,t) = ¥3(L,t), awl(m’t)!xzo = Mh:o, M\x:L =

oz oz oz
81/)3(21?,t) —i(nhw+E)t
ox

|.—r and the linear independence of e R , we can solve the coefficients
A, B,C,D, A, B,,C,, D,. We now take a look on a simple property of Bessel

function. We know from Ref. [28] that

) :z::o s!<(; 2 Ss)! (), (5.2:3)

Ton(@) = (=1)"Jn (), (5.2.6)

where n is an integer. Therefore, if % < 1, Jn(%) ~ %(%)” and J_n(%) ~

(_1)71%(2%;)” for n > 0. Thus,
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5 Modeling of Time-dependent Coupling strength

oo [e.e]

- 1 V —z(nhw+E)t —i(—nhw+E)t

)~ (Bert+ )3 BVt §° LMyt
n=0 n=1

oo
—i(nhw+E)
+ § : (Bnennx_'_cne—nnx)e%

n=—00,n#0

Vi —iGw+B)e Vi  —i(—hw+E) —i(hw+E)

~ (Be™+Ce ")e” (1—}-% h —ﬁe D t)—l—(Ble'“x—i-Cle*””)e T
—i(—hw+E)t

+(B_1e" T 4 C_1e” "1 )e . (5.2.7)

In other words, we can for Vi < hw consider only the contribution from n = —1 to

n = 1, and the wavefunctionsy; and 3 are then

. (hw+E)t (—hwtE)t

Yy (1) = (e + Ae_ikm)e_i% + A eTMT LA emt TR e (5.2.8)

(hw+E)t

sz, t) = Detkz =i + Die V€Mt 4 D_je”

(*thfE)t
h

k-1 (5.2.9)

This approximation can greatly simplify the problem. We will find its benefit when

this method is applied in our model in section 5.3.
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5 Modeling of Time-dependent Coupling strength

Left Barrier

Left Lead 1=} System
Region 1 0 (Qutclntum Dot)
_——= Region 3
VGL(t)
Region 2

Figure 5.2.1: This is the figure of the model of M. Biittiker and R. Landauer. The left
lead region and the central system is at zero potential. The left barrier
region is controlled by the time-dependent left gate voltage.

5.3 Model of Calculating Effective Transmission Coefficient

Va(t)

In this section, we generalize the method described in section 5.2. That is, the po-
tentials at regions 1, 2, 3 are all time-dependent as in Fig. 5.1.1. In our model we add
time-dependent potentials Vi, = Ajcos(wit), Var = Ascos(wat) and e(t) = Ascos(wst)
on regions 1, 2, 3, respectively. Similar to section 5.2, we can write

the wavefunction ¢ (z,t) as

1/11(:E,t) — (ezklx_{_Ae—zklx)e—z”TLt(l_i_ 1

—twit

2hwn 2hwy

Al : o s (ppthwy)t
ezwlt)‘i’All,le zk1171xe e

. _(pp—hwy)t . _(pp +hwo)t . _i(pp—hwo)t
+A11,—16 zkll,—lxe T 5 +A2171€ Zk21,1xe i 5 —|—A217_1€ 2k21,—196€ i .

26



5 Modeling of Time-dependent Coupling strength

(pp+hwsg)t

_|_A31 16_ik31‘1x6_l =

the wavefunction 1y (z,t) as

mrt
= h

Yo(z,t) = (Be™* + Ce 2" )e ™"

Koo 1T kg @y —i BLThw2)t
+(Bag,—1€™2 71 4 Cop _1e” ™27 1")e h

K32. 1T — K317 _; b —hws)t
+(Bgg, 1271 - C39 _1e” 2710 )¢ h

_;lpp—hop)t
h

+(Bi2,—1€"%7 1 + Cig 1”271 )e

and the wavefunction ¢s3(x,t) as

Az
2ess

—iwzt

bs(m, 1) = D3 (1 4

. (pp, —hwg)t

+ D33 19817 4 Dyg qeihte

s (ppthw)t

+Dy3eMs1Te T

o7

+ Az —

Dy _1e*13.-17¢

. (pp —hw3)t
_zk317,1x6—zf’

(5.3.1)

1€

(1 + ﬁ —dwat ﬂeiwgt)
2hws 2hes
+ (Bsg,1€™>1" + 032,167“32’”)6*1@

_ _,(HL-FfLwl)t
+ (Biz1e™?1 + Crgpe” 131 )e 0

k22,12 —K22.1T _;lppthog)t
+ (Ba2g2,1€"21* + Cgp 172217 )e 2

(5.3.2)

Az
2ess

. . _.(;LL+hW3)t
ezw3t) + D337161k33’1x6 e

(g +hwg)t

—3 . +

. - (np —hwy)t
e

—q (pp—hwy)t
h

(5.3.3)



5 Modeling of Time-dependent Coupling strength

. . : /2 [2m
in regions 1, 2, 3 respectively. Here, k1 = 4/ 2”);5“ , m(‘;gz ML) | g = ’;fz gl 3 41 =

2m(;¢LiFuun)7 K1 = \/Qm(Vof(,uLihwn)) (pup,Fhwn—eo)

2 2 , and kp3 41 = h‘. In section
5.2, we know that the oscillating potential will produce reflected waves and transmitted
waves at the energies F + hw, FF — hw. In this section, we apply time-dependent. poten-

tials in regions 1, 2, 3. Thus, the oscillating potential in region 1 will produce sideband

i(uL+hw1>t

contributions on region 2: (Bjg1€121% 4 Clg 16”1217 )e™ i+ (Big,—1€M2717 4+
_(pp—hwy)t . _(ppthwy)t _ipp—hwi)t
Clg, 17 f12-1T)e ™ and on region 3: D137162k13 12— +D137,1e”“13 B

the oscillating potential in region 3 will produce sideband contributions on region 1:

_(ppthws)t _(pp—hwa)t .
Asz1e” k31,17 =1 + Az e a1z m i and on region 2: (Bszp €% 4

(NLHMs)t _ (g —hwg)t .
Cp1e” 217 )™ +(Bsg,—1€2-1% 4 C39 _1e "2 1% )e ™" " and the oscillat-

ing potential in region 2 will produce sideband contrivutions on region 1: Ag; je™ k21,120~
(uL+ﬁWQ)t

(np —hwy)t . ; pThwa)t —
and on region 3: D237lelk23v1$e +Do3 _ etkes 1w o=t

(np —hwy)t
—ik21, 1T o —0 7 Lf

Ao —1e

)

The coefficients in Eq. (5.3.1), Eq. (5.3.2) and Eq. (5.3.3) can be solved similar
to section 5.2 by the boundary condition: 11(0,t) = 12(0,t), ¥2(L,t) = s3(L,t),

Wl(zt le=0 = %2(:‘” t)\x, 0, 8w2(zt lo=p = 8¢3 (z.1) ]I 1, and the linear independence of

—z(ihwm—Q— )t
e ", Recall now that in quantum mechanics [29], the transmission coefficient
is defined as T' = % J1 is the incident probability current density and J3 is the prob-

ability current density after tunneling. Here we find the effective transmission coefficient

by the same definition as before.

Valt) = JT‘”““:L (5.3.4)
I3

Js 2—( D .c), (5.3.5)
h o,

Ji = %(mi 5@? + c.c), (5.3.6)
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prt

where ty; = e (1 4 2,A7116_"’“t - fﬁeiwlt) is the incident wavefunction.

5.4 Summary

In this chapter, we have found the effective transmission coefficients. We first introduce
how M. Biittiker and R. Landauer dealt with the tunneling problem with an oscillating
barrier. We imitate their method, that is, we only consider the contributions from the

AL Ay

sidebands n = —1, n = 1 under the approximation -, =2, %33 < 1, and apply it to

our model in section 5.3. In the general case, we should consider all the sidebands and

: nwt - : iV = _
the coefficients of e~™** in the expansion e 'az*m«H = $° Jn(%)e nwt - However,

we can still use this method to discuss the current unde: E;OSO approximation. There is
another approximation in Ref. [30]. In that paper, if the oscillation of the potential is not
so rapid: wT < 1, 7 is the traversal time through the potential barrier [16], the tunneling
problem can be treated as quasi-stationary. In the quasi-stationary approximation, one
can just use the result in stationary tunneling problem and change the time-independent
potential to time-dependent case, i.e., V. — V(¢). In Eq. 5.3.4, % is in general
a function of x and t. We take its value at x = L, which is just the position the
wavefunction tunnel through the barrier as our transmission coefficient. Our method is

an approximated method to discuss the time-dependent effective transmission and we can

get more accurate result by taking into account more terms in the sideband contributions.
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6 Numerical Result and Discussion

6.1 Numerical method

In this chapter, we use nature unit 4 = e = kg = 1 for simplicity. From Eq. (4.2.28)

and Eq. (4.2.29), we know the current is:

I(t) = —(Tar(t) + TRi () — Taz(t) — Tia(®)pna(t) — (Ta2(t) +To(1).  (6.1.1)
apgt(t) =~ ;(F/\I(t) + T30 () = Daa(t) = Tia(t)p11(t) — (Daz(t) +T3a(8))  (6.1.2)

Here we have used the fact that Trg(p(t)) = poo(t) + p11(t) = 1. Therefore, if we know
p11(t), Tar(t) + T3, () — Taa(t) — I'io(t) , Taa(t) + I'35(2), we can exactly determine the

current. Fortunately, we find in [9] that the current is as follows:

In(t) = =(Ax(8) + AN (1) + (ra(t) + £3 (1)) 11 (1)) (6.1.3)

We can get that kx(t) + k3(t) = Ta1(t) +T5,(2) — Taa(t) — I, () and M\ (8) + A3 (¢) =
I'xo(t) + T34 (t). Hence if we solve k) (t) and Ay (t), we can get the current. The numerical

details can be found in [9], [31] and [30]. We ignore the lengthy calculation here.

60



6 Numerical Result and Discussion

6.2 Numerical Result

Here, m is the effective mass in GaAs 0.067m., m. is the rest mass of electron and the
energy unit I' = ImeV . In this section, we use all the controlling voltage as sine function
form. In this section, we do numerical analysis with high frequency bias voltage and high

frequency system voltage respectively and the effective transmission coefficient.

6.2.1 Investigation of Wide Band Limit

In this subsection, we use asymmetric setup to see the relation between wideband limit

and Markovian limit. We use the asymmetric setup as Fig. 6.2.1.

,Ef’
8.

Figure 6.2.1: The symbolic figure of the asymmetric setup. pur = 3, ug = 1", ¢ = 2T

e

Here, we fix the chemical potential of the left lead: uy = 3", the right lead: ur = 1I
and the system energy ¢y = 2I'. In Fig. 6.2.2, we take the wideband limit, that is,
bandwidth W;, = Wi = 80I'and we compare it with Fig. 6.2.3, whcih has bandwidth
Wi, = Wg = T'. The blue curve is for I (t), and the green one is for Ir(t). In these
two figures, you can find immediately that the currents Iy (t), Ir(t) both decay more
rapidly in Fig. 6.2.2 than in Fig. 6.2.3. This manifests clearly the Markovian limit, that
is, without the memory effect of the bath, the current flowing into the system will reach

steady state more rapidly.
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Figure 6.2.2: I (the green one) and Iy, (the blue one) with bandwith Wy = Wx = 80T,
chemical potential puy, = 3I', up = I' and system energy e¢g = 2T
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Figure 6.2.3: Ir(the green one) and I, (the blue one) with bandwith W, = Wgr =T,
other parameters are the same as Fig. 6.2.2



6 Numerical Result and Discussion

6.3 Investigation on Time-Dependent gate voltage on the

system

In this section, we discuss the behavior when we apply time-dependent gate voltage
on the system without applying time-dependent bias voltage. Here, we set the chemical
potential of the left lead py = 3I', the chemical potential of the right lead up = T’
and apply gate voltage €5(t) = €y + €.cos(wst) on the system, €. is I' such that the
maximum of €5(¢) is equal to pz and the minimum of €4(t) is equal to pur. When €4(t)
reach its maximum, the current flowing from the left lead can be ignored when it is
compared with the current flowing from the system to the right lead. Thus the net
current I (t) = IL(t) — Ig(t) is dominated by Igr(¢t). And due to the large value of
energy difference between e4(t) and pg, we can get the conclusion that the magnitude of

2nm

the net current has the maximum value. The case in Fig. 6.3.1 occurs at time ¢ = <7,

with n a nonnegatice integer. These times correspond to the first peak of the net current

Inet(1).

4=
v hamry EO+€C

MR

Figure 6.3.1: The picture representing the flow of the current when €5(¢) reaches its max-
imum. The current between the left lead and the system is negligible com-
pared with the current flowing from the system into the right lead.

Similar to Fig. 6.3.1, in Fig. 6.3.2, when €,(¢) reaches its minimum, the current flowing
from the right lead can be ignored when it is compared with the current flowing from

the left lead to the system. Thus the net current I, (t) = I1.(t) — Ig(t) is dominated by
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6 Numerical Result and Discussion

I1(t). And the net current has the maximum value in Fig. 6.3.2 for the same reason as

Fig. 6.3.1. The case in Fig. 6.3.2 occurs at time t = w

with n a positive integer

These times correspond to the second peak of the net current I (t).

N

==
€o€ == Hg

Figure 6.3.2: The picture representing the flow of the current when €4(t) reaches its min-
imum. The current between the right lead and the system is negligible
compared with the current flowing from the left lead to the system.

In the following, we do some numerical simulation to examine our argument. It can be
seen obviously in Fig. that when the magnitude of Ir is minimum, the I}, has maximum
and vice versa. In Fig. 6.3.4 and Fig. 6.3.5, we plot the net current and set the
bandwidth Wj, = Wgr = 5I'. The chemical potential of the left, the right lead is puy, = 3T

and pp = 11" respectively.
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time (1/T)

Figure 6.3.3: The Ip(the green one) and I (the blue one) when we apply time-dependent
gate voltage on the system e4(t) = € + €c.cos(wst), g = 2T, e =T, pup =
3I', ugr = 1I'. The other parameters are as follows: Wy = Wgr = 5T,

I, =Tg=05T,w, =5, =24
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T T T T T T
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Inen(t) (eTVN)
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Figure 6.3.4: The net current when we apply a time-dependent gate voltage on the system
es(t) = €9 + €ccos(wst), eg = 2T, e = T', pur, = 3T, ur = 1I'. The other
parameters are as follows: Wy = Wgr = 50", 'y, = I'p = 0.51", ws = 5T,
p=0
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Inatlt) (elih)

time (1/T)

Figure 6.3.5: The picture showing the details of Fig. 6.3.4 from time ¢ = % tot =19

In Fig. 6.3.4, the first local maximum is at ¢t = 3'7F—845 and the next local maximum are as

follows: t = 4'212’49 , 4‘91§62 , 5'5;163 , 6'21905. These values are very close to g—g , g—g , ... And

. . _ 3.3533((2#6—1)7 _ 11z . 3.4558Y 4.0108 137 . 4.0841\ 4.6168 157
the minimum is at ¢ = S22 (5505 = g5p = =77), =5 (or ® =1 )» ~r (1or *
4.7124

= )-.. The result match our previous argument perfectly. In Fig. 6.3.6 and Fig. 6.3.7,
we plot I, Ir and I, and find the net current reaches maximum at times very close

to 2_17:7 g—iﬂ, ... , which is the same as Fig. 6.3.4.
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Figure 6.3.6: The Ir(the green one) and Iz, (the blue one) when we apply time-dependent
gate voltage on the system €5(t) = €y + €.cos(wst), g = 4I', e, = 2T,
wr, =60, pr = 2I'. The other parameters are as follows: Wy = Wgr = 5T,

I, =Tg=05T,w, =5, 3="2%
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Inet(t) (er/h)

L L L L L L L L L L L L L L L L L L L L L L L L L
2 4 & B 10 12 14

time (1/7)
Figure 6.3.7: The net current when we apply a time-dependent gate voltage on the system
es(t) = eo + €eccos(wst), eg = AT, e = 2I", ug, = 6", ur = 2I". The other

parameters are as follows: Wy = Wgr = 50", 'y, = I'p = 0.51", ws = 5T,
p=0

6.4 Investigation on Time-Dependent Efficient Transmission

Coefficient

In this section, we take a look at the behavior of the time-dependent transmission

coefficient V' (¢) as the Fig. 6.4.1.
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Incident wave

E—

Transmitted wave

(eeee———

Reflected wave

with multimode '

x=0

with multimode

Figure 6.4.1: The left barrier and the parameters are as follows L = 10~%m [26]

In the following, we only show the transmission coefficient of the left barrier. The
transmission coefficient of the right barrier can be obtained by the same method as the
left barrier. In Fig. 6.4.2, we choose A1 = T', Ay = 2I', Az = T’ and w; = 4.22T,
wg = 5.275I", w3 = 1.055I" and we take the potential in region 1 as reference so that the
potential is 0 in region 1 and the potential in region 2 without bias voltage is V{, the

potential in region 3 without gate voltage is €.
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0 2 4 & B 10 12 14

time (1/T)

Figure 6.4.2: The effective transmission coefficient with A; =T, Ay = 2T, A3 =T and
wy = 4.221", wo = 5.275T", w3 = 1.055I" and Vy = 51", ¢g =T

However, it contradicts our intuition that the transmission coefficient > 1. It is because

that in this case ﬁ—: ~ 1, this does not obey our assumption that ﬁ—: < 1. If ﬁ—: ~ 1,
we need to consider more terms in section 5.3 so that we would not lose information of
the incident wave and the transmitted wave. In Fig. 6.4.3, we choose A; =T, Ay = 2T,
Az =T and wy; = 4220I", wy = 5275I", w3z = 1055I" and V = 5I" so that these parameters

satisfy the condition ﬁ—: < L
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Figure 6.4.3: The effective transmission coefficient with Ay =T, Ay = 2I", A3 =T and
wy = 42201, we = 52751, w3 = 1055I" and Vo = 51, ¢g =T

6.5 Electron Switch

In this section, we control the left and the right barrier oscillating in a 7 phase shift,
that is, applying the left gate voltage and the right gate voltage Vg, = Acos(wt + 7)
and Vgr = Acos(wt) on the left and the right barrier respectively. We fix the chemical
potential of the left lead p; = 2I', the chemical potential potential of the right lead
ur = 2TI'and the quantum dot energy ¢g = 1I". A = 2I" and w = 40T". Here, we plot the
I;, Ig and I, in Fig. 6.5.2 and Fig. 6.5.3. The pictures of I, Ir and I, from the

time t = % to the time ¢t = 11“_0 are showed in Fig. and Fig.
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t 3

VGL(t) VGR(t)
Left Lead Right Lead
Quantum Dot
Left Barrier Right Barrier

Figure 6.5.1: We apply the left gate voltage Vg, = Acos(wt + 7) and the right gate
voltage Vor = Acos(wt) on the left and the right barrier respectively. The
other parameters are up = 2", ug = 2I', ¢¢ = 1. A = 2", w = 40T,
Wir = Wgr = 5I' and I';, = I'g = 0.5I" and the width of the left and the
right barrier are both L = 5nm
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Figure 6.5.2: I (green one) and I, (blue one) when we apply the left gate voltage Vo, =
Acos(wt + ) and the right gate voltage Vgor = Acos(wt) on the left and
the right barrier respectively. The other parameters are puy, = 2", up = 2T,
g =1 A =2, w =40, Wy, = Wi =5I' and 'y, =T'gr = 0.5T" and the
width of the left and the right barrier are both L = 5nm
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Figure 6.5.3: I,,o; when we apply the left gate voltage Vg, = Acos(wt + ) and the right
gate voltage Vor = Acos(wt) on the left and the right barrier respectively.
The other parameters are puy = 2I", ugp = 21", ¢ = 1I". A = 2I', w = 40T,
Wi = Wgr = 5I' and I';, = ' = 0.5I" and the width of the left and the
right barrier are both L = 5nm
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Figure 6.5.4: I (green one) and I1, (blue one) from the time ¢ = £ to the time ¢ = 10,
The other parameters are the same as Fig. 6.5.2.
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time (1/T)

Figure 6.5.5: It from the time ¢t = % to the time t = %. The other parameters are the
same as Fig. 6.5.3.

From Fig. 6.5.4, we can obtain that when Ip reaches its maximum, I} reaches its
minimum and vice versa. Thus, we achieve our goal that we can control the current like
a switch. One noting point is that the shpae of I, is a different from Ir. There may be
two reasons for this. First, in our simulation, we need to expand our correlation function
a (t, s) and it would take a long time to do this simulation. Thus, we only expand it
to 50 terms that is not enough. Second, although the left and the right gate voltage are
cosine functions with only a 7 phase shift, the wavefunctions in the left and the right
barrier would contain contributions from the sidebands. Thus, the behavior of Iz and

I;, would be different.

0]



7 Conclusion and Future Work

In this thesis, we apply the fermionic NMQSD to describe the transport dynamics of
an open quantum dot under the time-dependent bias voltage on the left lead (drain)
and the right lead (source) and the time-dependent gate voltage on the single-energy-
level quantum dot (system). We not only derive the fermionic NMQSD but also use it
to obtain the exact master equation for transport dynamics. We then use the master
equation to derive the transient current formula.

In the numerical aspect, we have proved that the transient current formula is equivalent
to the Feynman-Vernon influence functional theorem. We also derive the time-dependent
effective transmission coefficient so that we can deal with the transport problem with
time-dependent coupling strength. However, in this case, we assume the barrier potential,
system energy and bias energy have the same phase (we assume it to be 0). In the future
work, for more general cases, we need to obtain the efficient transmission coefficient under
the time-dependent voltages with different phases.

With the derived master equation, one can then describe and then control the dynamics
of the quantum dot for various time-dependent voltage applied to the source and the

drain, to the energy level of the quantum dot system as well as to the tunnel barriers.
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8.1 Markovian Limit

In the open quantum dynamics, the Markovian dynamics is easier under the Markovian

limit [32],

a(t,t) = <l§i(t) Rj(t’)>R o 8(t — 1) (8.1.1)

In this formula, a(¢,¢) is defined as the two-time correlation of R;(t) and ]%j(t/), (*) g
means average over bath degrees, i.e. take trace of xover a set of basis states of the
bath. This means that R;(t) and R;(t') have correlation only when t = t .‘When t # t,
<I:Zz(t) Rj (t/)>R = 0 which means that the environmental bath at ¢ won’t be affected by
the previous bath at t. Asa result, the interaction of the system and the environmental
will not be affected by the previous bath, too. There will not be memory terms in the
time-evolution equation. We will see its simplicity in the non Markovian dynamics wich

has a memory kernel.

8.2 Transforming the Hamiltonian into the Interaction

Picture

We now shoe the detailed proof of Hr in the interaction picture:
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Hy = et Jo 4 HRE) (Ho (1) + Hap(t))e i Jo @ Hal®) (8.2.1)
H;%(t) = Z hw, s (t)(d;t—,k,d)\/k/ + eA/k'e;_’k’) (8.2.2)
Ak

By definition @,/ (t) = fg dtlw/\/k/ (t/)

. - + +
Hy = ¢ 50w S W et ) (g (t)ete + Y (Vinwgincens+
Ak
, = + +
/71 — n)\k'g)\kcjdkk + H.C))G_ZZA,IC/ NG (t)(dA’k’dA,k, +e)\/k,e>\,k,) (823)

Because [dj\r,k,d)\/k/ (e/\/k/e;\r,k,), c¢tc] =0 and [dj\r,k,dxk/ (e)\/k/e;\r,k,), ct ()] =0,

3 //7//td+,,d// //+,,
Hy = hug(t)etc + ¢ X0 0 O b o) (S fimgs, cent
Ak
—1 AT + 1t /el
V31— n,\kg,\kc;\rd)\k + H.c)e ZZ)‘ KOk (t)(dk/k/dA ¥k ek/k/) (8.2.4)
Now, we need to proof that:

[ei ZXI AN (t)(dj:, N d>\/ PN 61_, N )] [eAk] [efi ZXI AN (t)(dj\', Y d>\/ PN 61_/ K )] — €iw>\k(t)€)\k
(8.2.5)
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Proof :
Because [d;\r,k,d)\/k/ , exr) = 0 and [e)\/k/e;r,k, , exp] = 0 for A # Nor k £ k. Hence, the

above equation can be written as:

. - + + + _ _
[el(z/\/;ﬁork/;&kw,\/k/ (t)(dA,k/d/\/k/Jre)\/k/e/\,k,))er)\kd)\k][elwkk(t)ekke;\rk][eAk][e—zw,\k(t)ekkeirk]
— = + oy gt
*[6 Z(Z)\l#)\orkl#k Wy (t)(d)\lk/d)\lk,+e>\/kle)\lk,)) dAkd/\k]

We first deal with the Ak part:

(eiw,\k (texwedy )i (e—ika (texvel, )

1, n . i Pen
- (Z ﬁ(zw)\k(t)) (eAkej\_k) exk(e Ak (E)exk ;\rk)

n

And

(exveln)"exe = (exves)" " (eanvels) ek

= (exeed)" (1 — efpenn)enn
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= (exrely)" e

By the same step, we can get the same result of n—2, n—3, ..., 0. And finally arrive

at:

=ey, for every n

So, the Ak part is

(eika (exred, )exk (e*iwkk (t)exwedy )

Lo n n —iw
- (Z ﬁ(u")/\k(t)) (6>\k€;\rk,) ek (e A‘lﬂ(t)ekkei—k)

n

L iw n —iwan(t)ernes
= ZE(ZW)\]C(LL)) exc(e Ak(t)eak %)

n

- 1 — m m
_ elw“(t)e)\k Z ﬁ(—m))\k(t)) (eAkej\_k)

— e’ika(t)e/\k

Finally,
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[ ZZ ’ /w ’ /(t)(d , ,d ’ /-‘re ’ /ej, /)][6)\]6][ —ZZ ’ /w ’ /(t)(d , ,d ’ /-‘re / /ej:,k,)]

t)(d+/ /d 1 Tey /6 N /))"‘d)\kd)\k]eiw)\k(t)e)\k

- [ei(zx/;& or k' #k @y Mk
, = + + +
*[e—l(z)‘/#)\ork/#k Wy (t)(d)\’k’d)\/k,+e)\/kle)\’k’))_dﬂfd’\k]

We prove that:

[ ZZ AN /(t)(d , ,d ’ /-‘reA/k/e;r,k,)He)\kH ZZ AN /(t)(d , ,d / /-‘reA/k/e;r,k,)] _ eiwkk( )6)\k (8 9. 5)

For dy;, part is similar, we only simply manifest the part (ei@k(t)d;kdkk)d)\k( —i@xk (O3 drk )

(eiw)\k (t)di, dxk )k (e—ika (t)d,dar )

- 4 1, n n
— (6 Ak(t)d,\dek)dAk(Z E(_Zw)\k’(t)) (d;\‘—dek) )

n
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And

dai(d.dae)™ = dw(ddag) (didoe)" ™

= dyi(1 — daed$, ) (df, doe)"

= dar(dfdar)" "

By the same step, we can get the same result of n —2, n—3,

at:

=dy; for every n

So, the Ak part is

(eika (t)di, dxk )k (e—iUAk (t)ddar )

= (Ot )y 37 (i (1))

_ d}\ke*ika(t)‘
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So,

; = + + ; = + + .
[ez Z)\/kl Wyr ! (t)(d)\,k,d)\/k/+e)\/k/6>\,k,)][d)\k] [e_lZA/k, Wiy (t)(d)\’k’d)\/k,+e)\/k/e/\’k’)] _ d)\keilwﬂc(t)
(8.2.6)

The Hermitian conjugate (H.c.) of Eq. (8.2.5) and Eq. (8.2.6) are

, = + + : = + +
[el Z)\/k/ Wyryt (t)(d)\,k,d)\/k/-‘rt?)\/kle)\,k,)][e+ He—Z Z)\/k/ Wyt (t)(d)\,k,d)\/k/-‘rt?)\/k/eA,k,)] — e

+ e—iw)\k(t)
Ak Ak ’

(8.2.7)

; = + + ; = + + _
[e’b z)\/ AN (t)(d)\/ K d)\/ & -‘re)\/ Y 6)\/ & )] [dj:k,] [e—l Zklkl Wy (t)(d)\/k, dklkl +€)\/ Y eAlk, )] — ezw)\k(t)d;\rk’

(8.2.8)
respectively. Through Eq. (8.2.5) and Eq. (8.2.6) and their Hermitian conjugate parts,

we can get the simplified Hamiltonian Hr in the interaction picture:

Hp(t) = Hs(t)+Y _(gat)VT = nancTdage ™ PO gyp(t) e @ Wef e+ Hoe) ged
Y

8.3 Derivation of the Fermionic Non-Markovian Quantum

State Diffusion

We are now to simplify the following equation:
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(sl o W4 (1)) = i {2l Hor(r) |¥,(0)

= —i%((zw| Hs(t)—i—Z(g)\k(t)mc'kd)\ke_m“(t)+g)\k(t)mte_iwk’“(t)ejkchjLH.C.) [T (1))
" (8.3.1)
Because (zwlis independent of time ¢, (zw)| % |Wy(t)) = %((zw\ U (t))). And |zw) is
the bath state vector, the Hg(t) system Hamiltonian is only acting on the system state

vector, so |zw) and Hg(t) are commute:

O 10(t, 2" w) =+ His(t) o0, 2, w)

1 . .

—zﬁ(<zw\ Z(g,\k(t)\/l — et dape T O gy () Towe Zwkk(t)e;\rkch + H.c.)|U(t)))
Mk

(8.3.2)

To simplify Eq. (8.3.2), we need to introduce some properties when fermionic operators

act on the fermionic coherent states:

(zw|df, = (zw| 23, (8.3.3)
(zw| dy, = 0 (zw] (8.3.4)
Ak — 82;\]6 J.
(zw] ey, = (zw|w}, (8.3.5)
(sl exe = o (2w (3:3.6)
ZW| ek = aw;k .9
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the above equations can be easily proved by the definition of fermionic coherent state.
We don’t put too much emphasis on it. Before we use Eq. (8.3.3) to (8.3.6) to simplfy

Eq. (8.3.2), we demonstrate how the memory effect rises by the functional derivative:

0
823 (s)

0 2/ B = / ds(—iv/ T el (5)e ) (8.3.7)
0

02y, 023(s)

t * t o
8* :/ dsawA»ES) f :/ ds(—iv/argar(s)e @) f (8.3.8)
0 0 5w,\(3)

owy,, owy, owi(s)

By Eq. (8.3.3) to (8.3.6), Eq. (8.3.7) and Eq. (8.3.8), we can finally get the fermionic
NMQSD:

8 * * o { * 1 t 5’¢(t7 Z*aw*)>
ot |p(t, 2", w")) = _ﬁHS(t) |p(t, 2", w") hz; / axi (i, S)st

5|¢>(t,z*,w 1 i 1
;Aax2 W hz/\: wi (1) [o(t, 2", w” hz/\: t) |o(t, 2%, w")) .
(8.3.9)

St \

8.4 The Transformation of the Reduced Density Operator

We now derive how the density operator p(t) = Trr(|U:(t)) (¥:(¢)]) be transformed to
M [(zw] Wy(t)) (Ve (t)] =2 — w)].

p(t) = Trr([¥: (1)) (¥:(2)])
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= 3 [0 (0) () ) B:4.1)

To prove Eq. (3.2.1), we calculate M[(zw| ¥4(t)) (¥+(t)| —2z — w)] and show that it is

the Trr(|We(t)) (W (1))
Proof :

M[(zw| Wi(t)) (Pt (t)] —2 — w)]

_ / d=2dwe " (zw] Wi(8)) (Ws(8)] —2 — w) (8.4.2)

2 2 * *
Here, dz? =[], dz},dorg, dw? = [, dw}dwyg, €77 Y = e 2k ke WAkWak

(zw| = O] T (1 = exsw}y) (1 — drez3p)
Ak

= (®ak (O xpe (1 = exewix)) @ (@ak (Ol ypg (1 — darzig))

—z—w) = [ [0+ 2ndfp) [ [ (1 + warefy) [0)
i !

= (a1 + 22d3;) 10) 3pg) @ (Oar(1 + wrrely)) 10) ype)

Here, we argue that the vaccum state is separable in different modes: [0) = (®xx [0) \zy)®
(®ak 10) o) It is resonable in the reason that there is no entanglement between different
modes when the bath is in the vaccum state. So we can write the vaccum state |0) in a

separable way of different modes. The above argument makes Eq. (8.4.2) become:

M[(zw| Wy(t)) (P (t)] =2 — w)]
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= / d2dw?e ™" " (@ (0] ype (1 — exsw}se)) @ (@ O]y (1 — drpzin)) [We(t))

(Te()] (@5 (1 + 220d3,) [0)rpa) © (@26 (1 + wanexy)) [0 yze)- (8.4.3)

So that we can deal with the integral in the Hilbert space of different modes respec-
tively. We demonstrate the calculation of one specific mode and the other modes can be

derived in the same way.

/dz;kdzkk(l — 232k) (Oag (1 — darzig) [We (1)) (W (8)] (1 + 2ard ) [0) g

= /dzik\kd'z)\k(1_Z§\kz>\k)(<0‘/\kd|\I[t(t)>_<0|>\kdd>\k2§\k|\I’t(t)>)(<\ljt(t) 10) gt (Wi (8)] 2ard 3y, 0) 3ra)

= /dZXdeAk(l = 230 2ak) (Ol yga [ W4 (8)) (e(t) 0) yg + (Olsga [Le(1)) (Wi (t)] 22k, ) [0)

— (0] xga e zag, Ve () (Wi (t) [0)srg — (Olyeg darzin %o (2)) (Wi ()] 2ardy, [0) a)

= (Ol xgq [%e(£)) (We(t) 0) apg + (Olaga dre [Ce(8)) (Te(8)] 3, 10) gpq - (8.4.4)

Here, the state d, [0),,4 15 |1)\rg- |1)\1q represent the one particle state in the Ak
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mode.

The next mode Ak becomes:

<0’,\kd/dz;'k'dzxk’ﬂ_zf\'k’ ZA'k’) <0‘)\’k'd (1—d,\’k’Z;'k') (W () (We(2)] (1+Z>\'k'd:\,—’k’) ’0>)\’k'd 10) \a

+ <1|>\kd/d'z;/k'd’z)\/k'(1_Z;k\'k/’z)\/k’) <0|)\lk_ld (1_d)\lk:/2;/k/) ‘\I’t(t» <\I’t(t)| (1+Z/\/kld;k/) |0>)\/k/d |]‘>/\kd

= <0|,\kd <O’>\'k/d [We(t)) (We(t) ‘0>>\'k'd ’O>)\kd + <O’)\kd (HA’k’d [We(t)) (Wi () ‘1>/\’k'd ‘0>)\kd

+ <1‘)\kd <0|)\’k/d |\I’t(t)> <‘1’t(t) |0>>\’k’d |1>>\kd + <1|Akd <1|>\’k’d ’\I’t(t» <‘I’t(t) ’1>>\’k’d |1>)\kd

By integrating all the modes in the 2y, part, we can easily get: >, (n. [W(t)) (W¢(t)] nz).

It’s the same for the w)y; part and we finally get:

M[(zw] W) (T()] —2 —w)] = 37 {nal (no (L) (T (1) nu) ) (8.45)

Nz, Nw

So Eq. (8.4.3) becomes:

D (W) (e(t) ) (8.4.6)
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And eq, (8.4.6) is exactly >, (n| We(t)) (¥e(t) n) = Trr(|W(t)) (¥:(t)]) = p(t). Thus,
p(t) = M[(zw| U (1)) (Uy(t)| —z — w)]. Here, we define P, = (zw| W(t)) (Vy(t)| =2 — w)
so that p(t) = M[P;] for simplicity.

8.5 Derivation of Eq. (3.2.6) and Novikov Theorem

0 oM LG v —z— oM 0
g(tt) _ OM[(zw| t(t)>8<t () —z—w)] [Ig;ﬂ ol _ H@LJrﬂwH
By Eq. (2.4.9):
‘96’)‘? = ——Hg ) — fzcmﬂ (t, 2", w*) |p) — —an)\g(t,z*,w*) )
A
1 i 1
h; wy(t) [¢) — h;
and Eq. (3.2.5)
0
§f| = (| Hs — Z (8] O, (£, —2, — %Z (¢ Oxa(t, —2, —w)c™
A A
1 1
hz}\: (Pl wa(t) hz}\: (9] 2a(2)
The master equation becomes:
agsjt):—;[Hg,p(t)]—fliZM[P,:OL]C—;LZ M[P,O)ct+= ZM Pywy (t gz [Pza(t
A A A
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1 — 1 1
Z M[OnFP] -+ Y eM[OxP] - 7 > Ml ()P - P cM (23 (t) P
A A A
(8.5.1)
Because we don’t need the troublesome noise term w)(t), 2x(t), w}(t), 23(t), we now
introduce Novikov theorem that represent the relation between the noise and the O

operator:

Novikov theorem:

M[Piz)\(t)] = M[Ox1 P (8.5.2)
M [Pywy(t)] = M[OxP;] (8.5.3)
M[w}(t)P] = —M[P,0,] (8.5.4)
M([z;(t)P) = —M[P,0] (8.5.5)

We only prove M[P,z)(t)] = M[Ox1P]. To prove M[P,z\(t)] = M[Ox1P,], we first

prvoe that:

2 OF;
owy,,

222 2
/dzzdwge 2T Powyg :/szdw% 2w

It is obvious that for modes different from Ak, the left hand side is equal to the right
hand side. Thus, we only deal with the mode wy:

The left hand side:
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/dwikdka(l — wipwak) (0] (1 — exrwiz,) [Pe(®)) (¥ ()] (1 + wared,) 0) wak

= (O exr [W4(2)) (We ()] 0)

The right hand side:

/dIUdeU)Ak(l — wigwak) (O exe [Te (1)) (Te(t)] (1 + wakeyy,) [0)

= (O exr [We(t)) (Wi ()] 0) -

So the right hand side is equal to the left hand side and we prove that [ dzzdwze*ZQ*WQth)\k =

2 2
fdz2dw26_z —w aaif
Wik

Then,
M[Pawy(t)] = 12 N IO /dz2dw2622w2th>\k
k

2 OP;
owy,,

=i Vnegi(t)e / d=2dwle "~
k

3w§\(5) (SPt
owy, dwi(s)

t
=i b 00O [ atare = [ as )
‘ 0

t
=13 Vg0 [ dstaute [ as(imondae )
% 0
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t
— / dz2dw2e™>" " ( / ds()  naegin () gan(s)e™ )05, P)
0 e

Here, ([ ds(32), mkgin (D) gan(8)e@ (=)0 = [ dsaa(t, $)Ox2a=0Oxa. Thus, M[Pwy(t)] =

[ dz2dw?e=2"~"" 0y P;) = M[OxoP,].Similarly, M[P;zy(t)] = M[Ox; Pi]. Then we deal
with M[w3(t)P] = —M[Pt61_2]. First we calculate:

(M[Pawoa(t)]) " = (M[(zw] (1)) (Te(t)] —2 — w) wr()]) "
= M[w)(t) (=2 — w| W4(t)) (V4 (t)] zw)]

= (M[Ox2P3])" = M[(=z — w| Wy(t)) (W4(t)| 2) O}y,

Then we change variables: zyp — —2ag, Wk — —Wik,
—M[w} (1) (zw] Wy(#)) (Wi(8)] —2 — w)] = M[(zw] () (W1()] —2 — w) Oxy)

— Mw}(t)P] = —M[P,Oxy(t, —z, —w)].

Finally, by substituting from Eq. (8.5.2) to Eq. (8.5.5) in Eq. (8.5.1), we can easily

get:

GgSf) _ %[Hs(t)m(t)] +

St =

> (e, M[POy, (t, — 2, —w)]] — [¢*, M[Ox (t, 2%, w*) Py]
A
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—[e, M[Oxa(t, 2", w*)P]] + [c¢T, M[Ptég(t, —z,—w)]]).

8.6 Simplification of Eq. (4.2.9)

First, we use Tr(AB) = Tr(BA). Eq. (4.2.9) becomes:

te —iw
Iv=5Trserl- > aOVT = nypet dyge @0 pl (1)
k

e —i@
—i—ETrs@R[—ZgAk(t)\/@e Ak(t)l)l(t)ej\rk;cﬂ
e
+ hTTS®R Z.g)\k (VT = nage' Ol (1)d3, ]

ie * 1w
+ETTS®R[ZgAk(t) nane O Weeyip! (1))

Then, by Eq. (3.1.2), the current finally becomes:

e —iw
Iy=—Trs[= Y gV = nage Ot Trp(dyp! (1))
4+ T?“s Zg,\k e OO Ty ()ef et
+ Trg Zg)\k T — nyget Ot )TTR(pI(t)dj\rk)c]

ie * W
+51rs D~ gin®)vmare D elrg(exrp’ (1))
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8.7 Bath Ensemble Average of d,;, e\, d, , e},

Trr(dap’ () = Trr(da [V (t)) (W (t)])
=3 (nl / d22dw?e " " dyg |zw) (zw| |4 (8)) (T (£)| n) . (8.7.1)

As in appendix 5.4, we consider different modes respectively. Eq. (8.7.1) in mode w)yg

is :

Z <”|Akd/d2§k;dZAkZ>\k(1 — 2 ) 10) apa (Ol ara (1 — darzie) [We () (Wi (8)] 1) ypg

N \kd

= (0l )pq / A2y dzxezak (1 — 2akdy,) 0) apq (Olxpg (1 — darzie) [%e(2)) (Wi (t)] 0) y1g
+ <1|,\kd/dzf\deAkzkk(1 — 2xkd31,) |0) apa (Olarg (1 — dxezng) [We(8) (Pe(2)] 1) 54

= (011t 10) sk (Olxga @k [Pe(2)) (Pt ()] 0)agg + (Laga 100 aka Olxga e [We(8)) (e (t)] 1) 3pq

And we note that in mode wy:

> /dzf\deAkZAk (0 s (1 = dow23i) [P () (Pe(t)] 1) g (Pl aga (1 + 220d35) [0) 3

NAkd
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= (0] q dai [We(8)) (Wi ()] 0) xga (Olxga [0V xa + (Olaga e [ () (We()] 1) (L [0) aa

= (0l 5a 100 xa (Olxga dai [We(8)) (Pe ()] 0) gt (Lxka 100 xka (Olxka dar [We(t)) (Pe()] 1) ygq -

Because (0],;,710) \xg @and (1],,410) g are all just numbers. For the other modes, it is

just the case in the appendix 5.4. Thus we finally prove that:
Trr(dap' () = / d2?dw?e™ " 23 Y (2w [Wy(1)) (W4(8)] ) (n] —2 — w)

_ / d22dwe >~ oy (2w [0, (0) (Ty(1)] —2 — w)

by virtue of ), |n) (n| = I. Taking the Hermitian conjugate of Eq. (8.7.2):

Tra(p! (£)d,) = M(—z — w [U4(8) (T1(0)] 2w) 4,)-

Then we change variables: zyx — —2ag, Wk — — Wik,

Trr(p! ()df,) = —M[(zw [W4(1)) (Ve(t)] —2 — w) 23¢] = —M [Pr2}y).

Similarly,

Trr(excp’ (t) = Trr(ex [¥e(t)) (y(t)])
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= Mwy, P,

Trr(p! (t)ely) = —M[{zw [0e(8)) (We(t)| —2 — w) wiy] = —M [Pa}y].
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