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中中中文文文摘摘摘要要要

在此篇論文中，我們討論通過兩個電極之間的單量子點 (single quantum dot) 的電子

傳輸行為，亦即特別在考慮電極對量子點上電子的非馬可夫效應情況下通過單量子點的

電流。傳統上研究通過單量子點的電流，大部分使用馬可夫近似，馬可夫近似是指電子

的傳輸行為不會受到環境過去的資訊影響，只和當下的環境產生交互作用，而得到近

似後的馬可夫約化密度矩陣主方程式 (reduced density matrix master equation )。而在

研究非馬可夫環境下，通過量子點的電流，主要有Feynman Vernon in�uence functional

theory、Non-equilibrium Green function method、Quantum state di�usion equation幾

種方法。此篇論文中，我們使用非馬可夫量子態擴散方程式 (non-Markovian quantum

state di�usion equation , NMQSD) 去推導出在外加時變偏壓與時變閘極電壓，且單量

子點和電極之間耦合常數亦為時變下精確的約化密度矩陣主方程式。然後用約化密度算

出量子點的平均粒子數，再經由海森堡方程式，進而得到通過量子點的電流。

關鍵字: 非馬可夫動力學、 量子點、 隨時變耦合強度
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Abstract

In this thesis, we discuss the electron transport behavior of the single quantum dot

between two electrodes, that is, the current �owing into the single quantum dot, espe-

cially under the non-Markovian e�ect of the electrodes. Traditionally, the study on the

current �owing into the quantum dot is under Markovian approximation. Markovian ap-

proximation means that the electron transport behavior will not be a�ected by the past

information of the environment, which we call it the bath in this thesis. It is a�ected

only by the environment at the present time. The main research method on transient

current �owing into the quantum dot are Feynman- Vernon in�uence functional theory,

non-equilibrium Green function method, quantum state di�usion equation. In this the-

sis, we use non-Markovian quantum state di�usion equation (NMQSD) to derive the

master equation under time-dependent bias voltage, time-dependent gate voltage and

time-dependent transmission coe�cient controlled by the left and the right gate volt-

age. Finally, by Heisenberg equation, we get the transient current �owing into the single

quantum dot.

Keywords: Non-Markovian Dynamics, Quantum Dot, Time-Dependent Coupling Strength
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1 Introduction

Recent progress in the fabrication technology of nanostructure has made the size of

the transistor from micrometer (10−6m) toeard nanometer (10(−9)m). The traditional

transistor devices with channel length below 10 nanometers may be no longer operated

very well due to the large statistical �uctuation of the threshold voltage caused by its

small size. A single electron transistor (SET) is considered as one of the alternatives for

the traditional transistor.

In this thesis, we use quantum dot with only single energy level under Coulomb block-

ade as our physical model to study the electron transport property of a SET. We controll

our single-energy-level quantum dot with the time-dependent bias voltage on the left and

right leads, the time-dependent gate voltage on the quantum dot, and the time-dependent

left and right gate voltage to create potential barrier controlling the coupling strength

as in Fig. 1.0.1. By controlling these three parameter, we hope to model and control the

electron transport through the SET.

Because the interaction between the quantum dot and the leads are in general Non-

Markovian, that is, the system would be a�ected by the correlation of the leads at an

earlier time, we use Non-Markovian quantum- state-di�usion (NMQSD) method to derive

the master equation and the transient current tunneling from the left and the right leads.

In chapter 2, we brie�y present the formalism of the NMQSD. To describe the fermionic

NMQSD, we introduce the Grassman variable and fermionic coherent state. We then

represent our NMQSD in fermionic coherent state. In NMQSD, one most important

1



1 Introduction

point is that we make an Ansatz that the functional derivatives of the state with respect

to the Grassman variables can be expressed as an operator acting on the state. That is,

δ

δz∗λ(s)
|φ(t, z∗, w∗)〉 = O1(t, s, z∗, w∗) |φ(t, z∗, w∗)〉 ,

δ

δw∗λ(s)
|φ(t, z∗, w∗)〉 = O2(t, s, z∗, w∗) |φ(t, z∗, w∗)〉 ,

where O1,2(t, s, z∗, w∗) are operators. In chapter 3, we use the method of NMQSD to

derive the exact master equation. In chapter 4, we use the master equation in chapter

3 to derive our current formula. We take various calculations to simplify the current

formula, including using Novikov theorem to transform Grassman average of random

Grassman variable into Grassman average of O1 , O2 operators. In this chapter, we

also use the Heisenberg approach to derive the time evolution equations of O1 , O2. In

chapter 5, we construct a physical model of time-dependent tunneling barrier to calculate

the time-dependent e�ective transmission coe�cients in our model.

All the detailed calculations can be found in the appendix.

Figure 1.0.1: The symbolic �gure o f the model setup.

2



2 Non-Markovian Quantum State

Di�usion

2.1 Introduction

In real situations, due to the fact that the system of our interest unavoidablely couples

to its surroundings, the closed quantum system is hard to be found and to be relaized .

This means that there are lots of irreversable dymanical properties, such as relaxation,

decoherence, noise...etc. that need to be taken into account for description of such a

coupled system. Obviously, the traditional qauntum mechanics formalism (Scheodinger

eqaution approach) is not adequate for tackling these di�culties. Hence, the so-called

�theory of open quantum systems� was developed. Traditionally, the dynamic of the open

quantum systems is mainly investigated under two important approximations:

1. Born approximation: Suppose that the interaction between system and its sur-

roundings are so weak [1].

2. Markov approximation. (We brief introduce the Markov approximation in Appendix

1.)

These two approximations can lead to a simpler evolution equation for the reduced

density operator of the open system called a Markovian master equation of Lindblad

form. This kind of equation can neglect the memory e�ect of the environment and can

help us understand the main physics of the open quantum systems. There, however, are

3



2 Non-Markovian Quantum State Di�usion

many cases that the Markovian master equation fails to demonstrate the real physics.

For example, if the coupling strength between the environment and the open quantum

system is too strong such that the memory e�ect of the environment on the open quantum

systems can't be neglected. Therefore, we must consider the non-Markovian master

equation for the reduced density operator of the open system by counting the memory

e�ect in.

There are many techniques to tackle the non-Markovian dynamics. For example, the

non-equilibrium Green's function (NEGF) method is used especially in transport problem

such as electron transport or thermal transport [2, 3, 4]. The Feynman Vernon in�uence

functional method [5, 6, 7, 8, 9] puts the environmental non-Markovian memory e�ect

into the in�uence functional. The the non-Markovian quantum state di�usion (NMQSD)

is a recently developed method [10, 11, 12]. In this approach, the non-Markovian envi-

ronmental memory e�ect is represented by an O-operator, and the main purpose of this

method is to properly guess the form of the O-operator. If we obtain the O-operator,

the time evolution of the reduced density operator of the open system is determined by

taking the ensemble average of NMQSD equation.

The NMQSD is orginally used to solve bosonic non-Markovian problems. Recently,

fermionic NMQSD has come up to solve many problems in solid state physics such

as quantum transport [13, 14, 15]. The structure of fermionic NMQSD is similar to

the bosonic one. But fermionic particles obey Pauli exclusion principle so we need to

introduce a new kind of number, Grassman number. By utilizing the fermionic creation

and annihilation operators and Grassman variable, we can modify the bosonic NMQSD

to �t the fermionic system.

4



2 Non-Markovian Quantum State Di�usion

2.2 Non-Markovian Dynamics of a Single Energy Level

Quantum Dot (SEQD):

2.2.1 Experiment Setup and the Theoretical Model of SEQD:

In this thesis, we consider the experimental setup of SEQD that only one electron can

occupy the one single energy level of the QD by the assumption of Coulomb blockade

here.

Figure 2.2.1: The symbolic �gure of the SEQD setup.

The total Hamiltonian of the composite system (the environment and the open quan-

tum system) is as follows:

H = HS +HR +HSR, (2.2.1)

HS = ~ωS(t)c+c, (2.2.2)

5



2 Non-Markovian Quantum State Di�usion

HR =
∑
λk

~ωλk(t)a+
λkaλk, (2.2.3)

HSR =
∑
λk

(gλk(t)c
+aλk +H.c.). (2.2.4)

Here λ represent the left and the right leads, HS is the system Hamiltonian and the

~ωS(t) is the time-dependent single energy level controlld by an external voltage VS(t)

such that ~ωS(t) = ~ωS + eVS(t), HR is the non-interacting Hamiltonian of the environ-

ment (if there are interactions, we need to add the transition terms
∑

λij ελij(t)a
+
λiaλj)

controlled by external bias voltage VL(t) and VR(t) such that ~ωλk(t) = ~ωλk + eVλ(t)

and HSR is the interaction term between the system and the environment. gλk(t) is the

coupling strength between the λk−mode energy level of the environment and the system.

The e�ect of all gλk(t) in di�erent modes k is related to the e�ective transmission coe�-

cient of the elctron from λ lead. The transmission coe�cient V λ(t) is determined by the

external gate voltage eVGλ(t) applied on the λ barrier, the gate voltage eVS(t) applied

on the system, and the bias voltage applied on the λ lead by the theory of tunneling

throught a time-dependent barrier [16, 17].

The NMQSD can be used only when the environment oscillators are originally in their

ground state (T = 0). But in real situations, it's not the case (i.e. T 6= 0). So we need to

modify the T 6= 0 case to satisfy the NMQSD. Fortunately, there's a mathematical trick

widely used in �eld theory that can canonically transform the environment of temperature

T 6= 0 into another e�ective environment with T = 0. This trick is called Bogoliubov

transformation that is �rst used in a superconducting theory by Nikolai Bogoliubov [18].

We now introduce Bogoliubov transformation and how it is used in transforming the non-

zero temperature environment into another e�ectively zero temperature environment.

6



2 Non-Markovian Quantum State Di�usion

2.2.2 Bogoliubov Transformation

In order to deal with �nite-temperature case, we introduce another virtual environ-

ment with another kind of operators bλk(b
+
λk). We need to add bλk(b

+
λk) into our original

Hamiltonian HR(t) carefully so that we don't change the interaction between the envi-

ronment and the system. We simply add a term
∑

λk ~ωλk(t)bλkb
+
λk into HR(t). Because

operators bλk(b
+
λk) don't couple to the system operators c(c+), so it won't change the

interaction between the system and the environment. The action of the virtual environ-

ment
∑

λk ~ωλk(t)bλkb
+
λk is a bit like the shift of the energy reference. So it won't change

the physics. Now we have two sets of operator
{
aλk(a

+
λk) , bλk(b

+
λk)
}
, we can use Bogoli-

ubov transformation. Bogoliubov transformation is a linear transformation between two

sets of operator. Thus, we make the Bogoliubov transformation as follows:

aλk =
√

1− nλkdλk −
√
nλke

+
λk, (2.2.5)

bλk =
√

1− nλkeλk +
√
nλkd

+
λk, (2.2.6)

where nλk = 1
1+e[~ωλk/(kBT )] is the initial equilibrium average particle number and

{dλk(d+
λk) , eλk(e

+
λk)} are the new sets of operators. We then get the new Hamiltonian:

H
′
(t) = ~ωS(t)c+c+

∑
λk

[~ωλk(t)(d+
λkdλk+eλke

+
λk)]+

∑
λk

(
√
nλkg

∗
λk(t)ceλk+

√
1− nλkgλk(t)c+

λ dλk+H.c).

(2.2.7)

Here H.c. means Hermitian conjugate. We now recognize
∑

λk[~ωλk(t)(d
+
λkdλk +

eλke
+
λk)] as the new virtual environment HamiltonianH

′
R(t) andH

′
SR(t) =

∑
λk(
√
nλkg

∗
λk(t)ceλk+

√
1− nλkgλk(t)c+

λ dλk+H.c). Because we are interested only in the partHS(t)+H
′
SR(t)(the

interaction part and the non-interaction part of the system), we take the interaction pic-

ture with repect to H
′
R(t) to obtain:

7



2 Non-Markovian Quantum State Di�usion

HT = e
i
~
� t
0 dt
′
H
′
R(t
′
)(HS(t) +H

′
SR(t))e−

i
~
� t
0 dt
′
H
′
R(t
′
), (2.2.8)

where HT is the total Hamiltonian with respect to the environment interaction picture.

2.3 Fermionic Non-Markovian Quantum State Di�usion

2.3.1 Fermionic Coherent State:

In order to simplify the total Hamiltonian in the environment interaction picture, we

�rst jump to introduce the fermionic operator and then introduce the fermionic coherent

state for later calculation.

Unlike the bosonic creation and annihilation operator satisfying commutation relation:

[bi, b
+
j ] = δij , (2.3.1)

[bi, bj ] = [b+i , b
+
j ] = 0. (2.3.2)

The fermionic creation and annihilation operator satisfy anti-commutation:

{ai, a+
j } = δij , (2.3.3)

{ai, aj} = {a+
i , a

+
j } = 0 (2.3.4)

in order to satisfy Fermi-Dirac distribution or more fundamentally, Pauli exclusion prin-

ciple. After we know the fermionic operator, we can pave our way to the fermionic

coherent state just like the bosonic case. Recall the de�nition of bosonic coherent state

in quantum optics. There are kinds of de�nitions of the bosonic coherent state [19]:

8



2 Non-Markovian Quantum State Di�usion

1. the state that has the minimum uncertainty ∆x∆p = ~
2

2. the eigenstate of the k -mode bosonic annihilation operator: |αk〉 = eαka
+
k −α

∗
kak |0〉k,

where αk is a complex constant and |0〉k is the vaccum state of k -mode. Since there's

no classical correspondence of ∆x and ∆p in a fermionic harmonic oscillator [20], we

choose the second de�nition as our building block to the fermionic coherent state. In

[21], we have the fermionic coherent state as: |ξ〉 = e−ξa
+ |0〉, which |0〉 is the vaccum

state whcih is assumed to be normalized
〈
0│0

〉
=1 and a |0〉 = 0. (And ξ is a new kind of

number called Grassman variable corresponding to a+ and is a variable used to describe

the fermion particle like the general number used to describe the boson particle). For

a comprehensive introduction of the fermionic coherent state, one can refer to [21, 22].

Now, we introduce the Grassman variables. The Grassman variables satisfy the following

properties:

{ξi, ξj} = 0, (2.3.5)

{ξ∗i , ξj} = 0, (2.3.6)

{ξ∗i , ξ∗j } = 0, (2.3.7)

(ξiξj)
∗ = ξ∗j ξ

∗
i , (2.3.8)

{ai, ξj} = 0. (2.3.9)

From the above anti-commutation relation of the Grassman variables, one can verify

that ξ2
i = (ξ∗i )2 = 0 easily. This relation can greatly simplify the calculation in the

fermionic system. For example:

9



2 Non-Markovian Quantum State Di�usion

e−ξa
+

=
∑
n

1

n!
(−ξa+)n

= 1− ξa+ +
1

2
ξa+ξa+ − 1

6
ξa+ξa+ξa+ + ...

Because we know that ξn = 0 for n ≥ 2,

e−ξa
+

= 1− ξa+. (2.3.10)

The above formula is pro�table to simplfy the later calculation. We then introduce the

rules of di�erentiation and integration of the Grassman variables that are also important

in later calculation of fermionic coherent state and the derivation of NMQSD for fermion.

Di�erentiation:

Because ∂
∂ξi

is also a Grassman variable (the partial di�erentiation of the Grassman

variable ), we know that

{ ∂
∂ξi

, ξj} = 0, (2.3.11)

{ ∂
∂ξi

, aj} = 0, (2.3.12)

{ ∂
∂ξi

, a+
j } = 0. (2.3.13)

The same is hold for ∂
∂ξ∗i

.

Integration:

Integration is very important in obtaining the Grassman average (we will de�ne this

later) over an operator. The integration over Grassman variables is de�ned as follows:

�
dξi = 0, (2.3.14)

10



2 Non-Markovian Quantum State Di�usion

�
ξjdξi = δji. (2.3.15)

Now that we have de�ned the important properties of the Grassman variable and

fermionic operator, we can discuss more about the fermionic coherent state. We �rst

examine that |ξ〉 = e−ξa
+ |0〉 is truly the eigenstate of the fermionic annihilation operator

a.

Proof :

a |ξ〉 = ae−ξa
+ |0〉

= a(1− ξa+) |0〉

= −aξa+ |0〉

= ξ(1− a+a) |0〉

= ξ |0〉 . qed

Except for the examination of the fact that |ξ〉 is the eigenstate of the fermionic

annihilation operator, it's also interesting to look at how the creation operator act on

the coherent state |ξ〉 .We �nd that the e�ect of the creation operator on the coherent

state is:

a+ |ξ〉 = −∂ |ξ〉
∂ξ

. (2.3.16)

11



2 Non-Markovian Quantum State Di�usion

Proof :

a+ |ξ〉 = a+(1− ξa+) |0〉

= a+ |0〉

And

−∂ |ξ〉
∂ξ

= − ∂

∂ξ
[(1− ξa+) |0〉]

= a+ |0〉 = a+ |ξ〉 . qed

We also have the completeness relation:
�
e−ξ

∗ξ |ξ〉 〈ξ| dξ∗dξ = I in the coherent state

representation here. We can examine that as follows:

Proof :

�
e−ξ

∗ξ |ξ〉 〈ξ| dξ∗dξ |0〉

=

�
e−ξ

∗ξdξ∗dξ |ξ〉 〈ξ| 0〉

And,

〈ξ| 0〉

= 〈0| (1− aξ∗) |0〉

12



2 Non-Markovian Quantum State Di�usion

= 〈0| 0〉 = 1

Hence,

�
e−ξ

∗ξdξ∗dξ |ξ〉 〈ξ| 0〉

=

�
(1− ξ∗ξ)dξ∗dξ(1− ξa+) |0〉

=

�
(1− ξa+ − ξ∗ξ)dξ∗dξ |0〉 = |0〉 qed

Similarly, one can easily prove that
�
e−ξ

∗ξdξ∗dξ |ξ〉 〈ξ| 1〉 = |1〉 as well. Here, |1〉 =

a+ |0〉.Consequently,
�
e−ξ

∗ξ |ξ〉 〈ξ| dξ∗dξ = I for the reason that |0〉 , |1〉 is the basis of

the fermion state.

For there are multi-mode fermionic operator; {ak}Nk=1 , {a
+
k }

N
k=1, the completeness re-

lation is generalized to:

�
e−

∑
k ξ
∗
kξk |ξ〉 〈ξ|

∏
k

dξ∗kdξk = 1, (2.3.17)

where |ξ〉 =
∏
k(1−ξka

+
k ) |0〉 After we introduce the necessary algebra of fermionic state,

we can proceed our derivation of fermionic NMQSD without di�culty.

2.3.2 The Derivation of Fermionic Non-Markovian Quantum State

Di�usion

In the begining of this section, we name the virtual environment as bath. The left

environment that can be an electrode or other object interacting with the system is the

left bath, and the right environment is the right bath. The bath has a large degrees of

13



2 Non-Markovian Quantum State Di�usion

freedom in general. We continue from equation:

HT = e
i
~
� t
0 dt
′
H
′
R(t
′
)(HS(t) +H

′
SR(t))e−

i
~
� t
0 dt
′
H
′
R(t
′
). (2.3.18)

In generally, there should be a time ordering operation T beforee−
i
~
� t
0 dt
′
H
′
R(t
′
): Te−

i
~
� t
0 dt
′
H
′
R(t
′
).

But one can prove it easily that:

[d+
λ′k′

dλ′k′ , eλke
+
λk] = 0, (2.3.19)

[d+
λkdλk , d

+
λ′k′

dλ′k′ ] = 0, (2.3.20)

[eλ′k′e
+
λ′k′

, eλke
+
λk] = 0. (2.3.21)

for any λ, k, λ
′
, k
′
.

Hence,

[H
′
R(t

′
) , H

′
R(t)]

= [
∑
λ′k′

~ωλ′k′ (t
′
)(d+

λ′k′
dλ′k′ + eλ′k′e

+
λ′k′

) ,
∑
λk

~ωλk(t)(d+
λkdλk + eλke

+
λk)]

=
∑

λ,k,λ′ ,k′

~2ωλ′k′ (t
′
)ωλk(t)([d

+
λ
′
k
′dλ′k′ , d

+
λkdλk] + [d+

λ
′
k
′dλ′k′ , eλke

+
λk]

+[eλ′k′e
+
λ′k′

, d+
λkdλk] + [eλ′k′e

+
λ′k′

, eλke
+
λk]) = 0. (2.3.22)

The Hamiltonians of di�erent times are commute. The order of Hamiltonian at di�er-

ent times are thus not so important. We can �nal simplify HT (t) to get :
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HT (t) = HS(t) +
∑
λk

(gλk(t)
√

1− nλkc+dλke
−i ωλk(t) + gλk(t)

√
nλke

−i ωλk(t)e+
λkc

+ +H.c.).

(2.3.23)

Here, ωλk(t) ≡
� t

0 ωλk(t
′
)dt
′
and the detailed calculation will be shown in Appendix

2. Since we have the total Hamiltonian in the interaction picture, we can now determine

the time evolution of the quantum state of the total system,which includes the system

and the bath by the equation:
∂|ΨIt (t)〉

∂t = −i1
~HT (t)

∣∣ΨI
t (t)
〉
. The superscript I means

that the state
∣∣ΨI

t (t)
〉
is in the interaction picture and the time evolution equation of

the quantum state of the total system can be easily proved by taking partial derivative

of time of
∣∣ΨI

t (t)
〉

= e−i
1
~
� t
0 HT (t

′
)dt
′ ∣∣ΨI

t (0)
〉
. We assume that we tune the interaction

between the system and the bath at the initial time t = 0 so that the initial quantum

state of the total state can be asssumed to be factorized at the initial time, in other words,

|Ψt(0)〉 = |ψ0〉 ⊗ |0〉, where|0〉 is the vaccum state of the bath. In the following content,

we are in the interaction picture and we ignore the I in the superscript for simplicity.

Just as the fact that the state is a wave function in the corrdinate representation

in quantum mechanics, we choose the coherent state representation and project the

quantum state of the total system into the coherent state of the bath. This projection

can eliminate the degrees of freedom of the bath and take the e�ect of the bath on the

system into account by the Grassmann variable of the bath. Inasmuch as that there are

two kinds of particles dλk(d
+
λk) , eλk(e

+
λk) in the bath, we need to introduce the coherent

state of the bath as:

|zw〉 ≡
∏
λk

(1− zλkd+
λk)(1− wλke

+
λk) |0〉 . (2.3.24)

zλk , wλk are the Grassman random variables that have the statistical mean over the

random Grassmann variables as follows:
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M [zλk( wλk)] =

�
(
∏
λ′k′

dz∗
λ′k′

dzλ′k′dw
∗
λ′k′

dwλ′k′e
−z∗

λ
′
k
′ zλ′k′ e

−w∗
λ
′
k
′wλ′k′ )zλk(or wλk) = 0,

(2.3.25)

M [zλkz
∗
λk] =

�
(
∏
λ′k′

dz∗
λ′k′

dzλ′k′dw
∗
λ′k′

dwλ′k′e
−z∗

λ
′
k
′ zλ′k′ e

−w∗
λ
′
k
′wλ′k′ )zλkz

∗
λk = 1,

(2.3.26)

where

M [•] ≡
�

(
∏
λ′k′

dz∗
λ′k′

dzλ′k′dw
∗
λ′k′

dwλ′k′e
−z∗

λ
′
k
′ zλ′k′ e

−w∗
λ
′
k
′wλ′k′ )[•] (2.3.27)

is de�ned as the statistical mean over the random Grassmann variables. The random

variables satisfying the above average is called a Grassmann Gaussian process due to

the zero average of zλk or wλk. We now project the time evolution equation: ∂|Ψt(t)〉
∂t =

−i1
~HT (t) |Ψt(t)〉 into the coherent state: |zw〉 and get the time evolution equation of

the quantum state of the total system in the coherent state representtion as follow:

〈zw| ∂
∂t
|Ψt(t)〉 = −i1

~
〈zw|HT (t) |Ψt(t)〉

= −i1
~
〈zw|HS(t)+

∑
λk

(gλk(t)
√

1− nλkc+dλke
−i ωλk(t)+gλk(t)

√
nλke

−i ωλk(t)e+
λkc

++H.c.) |Ψt(t)〉 .

(2.3.28)

After simplifying the above equation, we eventually arrive at the result (the detailed

derivation will be demonstrated in Appendix 3):
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∂

∂t
|φ(t, z∗, w∗)〉 = − i

~
HS(t) |φ(t, z∗, w∗)〉 − 1

~
∑
λ

c+

� t

0
αλ1(t, s)

δ |φ(t, z∗, w∗)〉
δz∗λ(s)

ds

−1

~
∑
λ

c

� t

0
αλ2(t, s)

δ |φ(t, z∗, w∗)〉
δw∗λ(s)

ds−1

~
∑
λ

c+w∗λ(t) |φ(t, z∗, w∗)〉−1

~
∑
λ

cz∗λ(t) |φ(t, z∗, w∗)〉 ,

(2.3.29)

with the following de�nitions of the parameters:

|φ(t, z∗, w∗)〉 ≡ 〈zw| Ψt(t)〉 , (2.3.30)

z∗λ(t) ≡ −i
∑
k

√
1− nλkg∗λk(t)z∗λkeiωλk(t), (2.3.31)

w∗λ(t) ≡ −i
∑
k

√
nλkgλk(t)w

∗
λke
−iωλk(t), (2.3.32)

αλ1(t, s) =
∑
k

(1− nλk)gλk(t)g∗λk(s)e−iωλk(t−s), (2.3.33)

αλ2(t, s) =
∑
k

nλkgλk(s)g
∗
λk(t)e

iωλk(t−s), (2.3.34)

ωλk(t− s) ≡ ωλk(t)− ωλk(s)

=

� t

s
ωλk(τ)dτ, (2.3.35)

where |φ(t, z∗, w∗)〉 is the reduced quantum state of the total system by projecting the
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2 Non-Markovian Quantum State Di�usion

total state into the bath coherent state, and (z∗ , w∗) represent the set of all (z∗λk , w
∗
λk)

variables. The time evolution equation of that state |φ(t, z∗, w∗)〉 is the NMQSD. The

function αλn(t, s) is the bath correlation function of two times t , s and will be discussed

later.

2.4 The O Operator and Its Time Evolution Equation

After we derive the fermionic NMQSD, it seems that we can determine the behavior

of the system as we wish. It is, however, not the case. Owing to the fact that we don't

know what δ|φ(t,z∗,w∗)〉
δz∗λ(s) (or δ|φ(t,z∗,w∗)〉

δw∗λ(s) ) is, how to deal with the functional derivative

δ|φ(t,z∗,w∗)〉
δz∗λ(s) (or δ|φ(t,z∗,w∗)〉

δw∗λ(s) ) becomes a troublesome task. In this section, we will introduce

an Ansatz to simplify this problem.

For the reason that δ|φ(t,z∗,w∗)〉
δz∗λ(s) (or δ|φ(t,z∗,w∗)〉

δw∗λ(s) ) is dependent on variable t, s, z∗λk, w
∗
λk,

we introduce the Ansatz in such a way:

δ

δz∗λ(s)
|φ(t, z∗, w∗)〉 = Oλ1(t, s, z∗, w∗) |φ(t, z∗, w∗)〉 , (2.4.1)

δ

δw∗λ(s)
|φ(t, z∗, w∗)〉 = Oλ2(t, s, z∗, w∗) |φ(t, z∗, w∗)〉 . (2.4.2)

We now transfer the functional derivatives into the operators. Afterwards, we need to

determine the time evolution equation of Oλ1(t, s, z∗, w∗) and Oλ2(t, s, z∗, w∗). We only

give the derivation of the time evolution equation of Oλ1(t, s, z∗, w∗). It's the same for

Oλ2(t, s, z∗, w∗).

The equation can be determined by the consistency condition:

∂

∂t

δ |φ(t, z∗, w∗)〉
δz∗λ(s)

=
δ

δz∗λ(s)

∂ |φ(t, z∗, w∗)〉
∂t

, (2.4.3)

and the time evolution equation of the reduced quantum state |φ(t, z∗, w∗)〉:
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∂

∂t
|φ〉 = − i

~
HS(t) |φ〉 − 1

~
∑
λ

c+

� t

0
αλ1(t, s)

δ |φ〉
δz∗λ(s)

ds− 1

~
∑
λ

c

� t

0
αλ2(t, s)

δ |φ〉
δw∗λ(s)

ds

−1

~
∑
λ

c+w∗λ(t) |φ〉 − 1

~
∑
λ

cz∗λ(t) |φ〉 . (2.4.4)

n

We now derive the equation brie�y. First, we deal with the left hand side of Eq. (2.4.3):

∂

∂t

δ |φ〉
δz∗λ(s)

=
∂

∂t
(Oλ1) |φ〉)

=
∂Oλ1

∂t
|φ〉+Oλ1

∂ |φ〉
∂t

(2.4.5)

Then, we deal with the right hand side of Eq. (2.4.3) by Eq. (2.4.4):

δ

δz∗λ(s)

∂ |φ〉
∂t

=
δ

δz∗λ(s)
(− i

~
HS(t) |φ〉 − 1

~
∑
λ

c+

� t

0
αλ1(t, s)

δ |φ〉
δz∗λ(s)

ds

−1

~
∑
λ

c

� t

0
αλ2(t, s)

δ |φ〉
δw∗λ(s)

ds− 1

~
∑
λ

c+w∗λ(t) |φ〉 − 1

~
∑
λ

cz∗λ(t) |φ〉). (2.4.6)

By equating the left and the right hand sides, we can �nally get the equation of

Oλ1(t, s, z∗, w∗) and the same is for Oλ2(t, s, z∗, w∗):
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∂Oλ1

∂t
= − i

~
[HS,Oλ1]− 1

~
[
∑
λ′

(c+Oλ′1 + cOλ′2), Oλ1] +
1

~
[Oλ1,

∑
λ′

c+w∗
λ′

(t)]

+
1

~
[Oλ1, cz

∗
λ′

(t)] +
1

~
∑
λ′

c+ δOλ′1
δz∗λ(s)

+
1

~
∑
λ′

c
δOλ′2
δz∗λ(s)

, (2.4.7)

∂Oλ2

∂t
= − i

~
[HS,Oλ2]− 1

~
[
∑
λ′

(c+Oλ′1 + cOλ′2), Oλ2] +
1

~
[Oλ2,

∑
λ′

c+w∗
λ′

] +
1

~
[Oλ2, cz

∗
λ′

]

+
1

~
∑
λ
′

c+ δOλ′1
δw∗λ(s)

+
1

~
∑
λ
′

c
δOλ′2
δw∗λ(s)

, (2.4.8)

whereOλ′n(t, z∗, w∗) ≡
� t

0 αλ′n(t, s)Oλ′n(t, s, z∗, w∗)ds is the average ofOλ′n(t, s, z∗, w∗)

with the bath correlation function.

After we substitute the Ansatz Eq. (2.4.1) and Eq. (2.4.2) into Eq. (2.4.4), the

time non-local linear NMQSD equation becomes the time-local or time-convolutionless

equation:

∂

∂t
|φ〉 = − i

~
HS |φ〉 −

1

~
∑
λ

c+Oλ1(t, z∗, w∗) |φ〉 − 1

~
∑
λ

cOλ2(t, z∗, w∗) |φ〉

−1

~
∑
λ

c+w∗λ(t) |φ〉 − 1

~
∑
λ

cz∗λ(t) |φ〉 . (2.4.9)

The time evolution of the reduced quantum state |φ(t, z∗, w∗)〉 seems not to be in�uenced

by the past history at the earlier time s by virtue of the substitution of Oλ′n(t, z∗, w∗). All

the past memories in the time integral over the past time are assumed to beOλ′n(t, z∗, w∗).

Oλ′n(t, z∗, w∗) is extremely crucial for NMQSD for the reason that it contain all the infor-

mation of the past history. If we can solve it exactly, we can then directly determine the
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time evolution behavior of |φ〉, in other words, the system behavior under the interaction

of the bath.

2.5 Summary

In the beginning, we brie�y introduce our physical model and write down the Hamil-

tonian of the total system. The bias voltage between the source and the drain electrodes,

gate voltage applied to control the system energy and the barrier between source ( or drain

) are all time-dependent. At the beginning, all the fermionic environment oscillators are

not in the ground strate at �nite temperature. We introduce Bogoliubov transformation

to canonically map the environment onto another e�ective zero temperature environment

so that we can use NMQSD at the �nite temperature bath. The e�ect of temperature is

now in the coe�cients of the Bogoliubov transformation.Then, we project the NMQSD

into the bath coherent states. Because the coherent state is the eigenstate of annihilation

operator, this projection can simplify the NMQSD signi�cantly.

Althought now we derive the fermionic NMQSD in the coherent state representation,

it is usually a di�cult task to exactly get the time evolution information from it for the

sake of the functional derivative terms inside the time integral. Instead of evaluating

the functional derivative terms directly which is very troublesome, we introduce the O

operator Ansatz. In O operator Ansatz, we introduce O operator to include the past

history trajectory so that the time evolution of the system at time t seems not to be

a�ected by the past history trajectory of the whole system at the earlier time s.

Finally, we derive the time evolution equation of O operator by the consistency con-

dition of Eq. (2.4.3) and the time evolution equation (2.4.4) with the appropriate initial

condition of O operator. If we can exactly solve the O operator, we can determine the

time evolution of the system. Nonetheless, it is usually not the case that O operator can

be solved exactly. In many cases, O operator can only be solved perturbatively.
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3.1 Introduction

In quantum statistical mechanis, we have learned a very important concept, which is

density operator χ(t). It can express the expectation value of physical quantity of an

ensemble in a more compact way by taking the trace of the density operator and the

physical observable:

〈O〉 = Tr(Oχ(t)). (3.1.1)

So, it is very important to determine the time evolution equation of the density operator

of the total system in order to determine the expectation value of the physical quantity

we are concerned. One can �nd a more detailed introduction in [23]. However, we are

seeking information about the system S without requiring detailed information about

the total system S ⊗R in generl. Thus, we neglect the degrees of the part we don't care

by tracing them out. In other words, we take the statistical average of the bath part (the

part we are not concern) in advance as follows [24]:

〈O(t)〉 = TrS⊗R[O(t)χ(t)] = TrS [O(t)TrR(χ(t))] = TrS [O(t)ρ(t)]. (3.1.2)

We are in the bath interaction picture as the previous chapter and de�ne the reduced

density operator by tracing over the bath degrees of freedom :
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ρ(t) ≡ TrR(χ(t)). (3.1.3)

We achieve our goal that we can only care about the speci�c part of the total system.

The time evolution equation of the reduced density operator is called a master equation.

In general, the bavior of the open quantum system is investigated by the master equa-

tion. Traditionally, we use the quantum Markovian master equation in Lindblad form to

investigate the system we are concerned with. If the coupling strength between the bath

and the system is strong, then we need to use a non-Markovian master equation.

In this chapter, we derive the non-Markovian master equation by NMQSD. We will

introduce Novikov theorem in the process of the derivation. It is a pro�table theorem to

transform the troublesome Grassman average into the average of the O operator. The O

operator is just what we want and can simplify the problem.

3.2 Exact Master Equation from Fermionic Non-Markovian

Quantum State Di�usion

In this section, we derive the exact master equation from fermionic NMQSD. By def-

inition, the reduced density operator can be obtained by taking the statistical mean

for the density operator related to the total system state |Ψt(t)〉: ρ(t) = TrR(χ(t)) =

TrR(|Ψt(t)〉 〈Ψt(t)|). We now do some mathematical trick on ρ(t) and get (the detailed

calculation is presented in Appendix 4):

ρ(t) = M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]. (3.2.1)

HereM represent the statistical mean over the random Grassmann variables as de�ned

in Eq. (2.3.27). The ket |−z − w〉 is de�ned as the stochastic density operator as follows:
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3 Exact Master Equation

|−z − w〉 ≡
∏
k

(1 + zλkd
+
λk)
∏
l

(1 + wλke
+
λk) |0〉 . (3.2.2)

For simplicity, we use the de�nition in Eq. (2.3.30):

|φ(t, z∗, w∗)〉 ≡ 〈zw| Ψt(t)〉 ,

〈φ(t,−z,−w)| ≡ 〈Ψt(t)| −z − w〉 . (3.2.3)

The master equation is then:

∂ρ(t)

∂t
=
∂M [|φ(t, z∗, w∗)〉 〈φ(t,−z,−w)|]

∂t

= M [
∂ |φ(t, z∗, w∗)〉

∂t
〈φ(t,−z,−w)|+ |φ(t, z∗, w∗)〉 ∂ 〈φ(t,−z,−w)|

∂t
]. (3.2.4)

From Eq. (3.2.1), we say that the reduced density operator can be unraveled by quan-

tum trajectories: |φ〉 = |φ(t, z∗, w∗)〉 following Eq. (2.4.9), and 〈φ| = 〈φ(t,−z,−w)| ≡

〈Ψt(t)| −z − w〉 satis�es the following equation:

∂ 〈φ|
∂t

=
i

~
〈φ|HS −

1

~
∑
λ

〈φ|O+
λ1(t,−z,−w)c− 1

~
∑
λ

〈φ|O+
λ2(t,−z,−w)c+

+
1

~
∑
λ

〈φ|wλ(t)c+
1

~
∑
λ

〈φ| zλ(t)c+. (3.2.5)

The above equation can be readily obtained by �rst taking the Hermitian conjugate of

Eq. (2.4.9) and then change variables: zλk → −zλk , wλk → −wλk. Consequently, by

Eq. (2.4.9) and Eq. (3.2.5), we �nally derive the exact non-Markovian fermionic master
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3 Exact Master Equation

equation by Novikov theorem:

∂ρ(t)

∂t
=
−i
~

[HS(t), ρ(t)] +
1

~
∑
λ

([c,M [PtO
+
λ1(t,−z,−w)]]− [c+,M [Oλ1(t, z∗, w∗)Pt]]

−[c,M [Oλ2(t, z∗, w∗)Pt]] + [c+,M [PtO
+
λ2(t,−z,−w)]]). (3.2.6)

Here we de�ne the stochastic density operator Pt ≡ 〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉 =

|φ〉 〈φ|. The detailed calculation is given in Appendix 5. The exact master equation

is derived without perturbation, hence it can be applied to the case of strong coupling

strength between the system and the environments.

The solution ρ(t) of the exact master equation Eq. (3.2.6) satis�es the following

equation:

TrS(ρ(t)) = 1, (3.2.7)

ρ(t) = ρ+(t), (3.2.8)

〈S| ρ(t) |S〉 ≥ 0 for any system state (3.2.9)

which can be apparently proved. That is, the reduced density operator preserves the

Hermicity, the positivity and the trace.

3.3 Two-Time Correlation Function of the Bath

Correlation function is a very important physical quantiy that measures the correlation

between noises of di�erent modes in di�erent timings. Thus, the correlation function of
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3 Exact Master Equation

zλk(t) and z
∗
λk(s) is de�ned as:

M [zλk(t)z
∗
λk(s)]. (3.3.1)

In section 2.3.2, we have introduced the bath correlation function:

M [zλk(t)z
∗
λk(s)] ≡ αλ1(t, s) =

∑
k

(1− nλk)gλk(t)g∗λk(s)e−iωλk(t−s), (3.3.2)

M [wλk(t)w
∗
λk(s)] ≡ αλ2(t, s) =

∑
k

nλkgλk(s)g
∗
λk(t)e

iωλk(t−s), (3.3.3)

for discrete mode. Equations (3.3.2) and (3.3.3) can be proved easily by the de�nition of

M [•].

If the distribution of the coupling strength gλk(t) is continuous rather than discrete, we

need to introduce the density of state ρλ(ω) to describe the distribution of gλ(ω, t)gλ(ω, s).

The spectral density Jλ(ω, t, s) is de�ned as ρλ(ω)gλ(ω, t)gλ(ω, s). We consider in this

thesis the spectral density of Lorentzian form:

Jλ(ω, t, s) =
1

2π

V λ(t)V
∗
λ(s)ΓλW

2
λ

(~ω − µλ)2 +W 2
λ

. (3.3.4)

Here Wλ is the bandwidth of the spectral density. It can be thought of as the

width of the peak of Jλ and Γλ is a constant of unit Joule2. When Wλ → ∞, Jλ →
1

2πV λ(t)V
∗
λ(s)Γλ, and Jλ is independent of ω. This is called the wide-band limit. After

we take the wide-band limit, Jλ = 1
2πV λ(t)V

∗
λ(s)Γλ becomes a constant independent

of ω. By introducing the continuous spectral density Jλ(ω, t, s), the bath correlation

functions αλ1(t, s) and αλ2(t, s) become:

αλ1(t, s) = e−ie
� t
s dτVλ(τ)

� ∞
−∞

dω(1− nλ(ω))Jλ(ω, t, s)e−iω(t−s), (3.3.5)
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3 Exact Master Equation

αλ2(t, s) = eie
� t
s dτVλ(τ)

� ∞
−∞

dωnλ(ω)J∗λ(ω, t, s)eiω(t−s). (3.3.6)

3.4 Summary

In this chapter, we �rst introduce the density operator to deal with the average of

some phyical quantities of a speci�c ensemble. In general, we don't need the infromation

of the whole system, so we introduce the reduced density operator by tracing over the

degrees of freedom of the bath. Thus, the information of the bath is included in the

reduced density operator as a number. We can consider the time evolution of the system

we are concerned by the time evolution equation of the reduced density operator, in other

words, the master equation.

Then in section 3.2, we derive the exact master equation. First we trace over the

degrees of freedom of the bath and get the reduced density operator. Then by some

mathematical trick, we represent the reduced density operator as the the statistical

mean of the operator: 〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉 over the random Grassmann vari-

ables: ρ(t) = M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]. Then we di�erentiate the reduced density

operator ρ(t) and get the exact master equation. We then simplify the master equation

by Novikov theorem.

Finally, we introduce the correlation function for later calculation. One noticing thing

is that if we turn o� all the time dependence and take the wide band limit, it can be

easily demonstrated that the two time correlation of t and τ will proportional to δ(t−τ).

It is exactly the Markovian limit. So, wide band limit can somewhat be treated as the

Makovian limit.
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4 Transient Current into a

Single-Energy-Level Quantum Dot

4.1 Introduction

In the previous chapter, we have shown up the exact master equation for the reduced

density operator by some mathematical tricks. Since we know the time evolution of

the reduced density operator, we can discuss the behavior of the physical quantities we

are interested. In this chapter, we focus on the transient current �owing from the left

bath and the right bath. The de�nition of current is Iλ = −ednλdt = −e ddt 〈Nλ(t)〉. In

section 4.2, it takes us several pages to demonstrate the detailed derivation of the current

formula. In the bottom of section4.2, we deduce that:

OL2 = OR2 = O2,

OL1 = OR1 = O1,

by some arguments. We propose the assumption of the Grassman average of the

O1 , O2 operators, Q1 ,Q2:

Q1(t, s) ≡M [O1(t, s, z∗, w∗)Pt] = A∗1(t, s)cρ(t) +A∗2(t, s)ρ(t)c,
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4 Transient Current into a Single-Energy-Level Quantum Dot

Q2(t, s) ≡M [O2(t, s, z∗, w∗)Pt] = B2(t, s)c+ρ(t) +B1(t, s)ρ(t)c+.

with A1 ,A2 , B1 , B2 to be determined. Although we have derived the time evolution

equation of Oλ1 and Oλ2, it is not so convenient to use due to the fact that there is Oλ2

term in the equation of Oλ1 and vice versa. In other words, the time evolution equation

of Oλ1(Oλ2) is mixed with the term Oλ2(Oλ1). In section 4.3, we refer to part 2. D in

[25] to derive the pure time evolution equation for O1 and O2. The method used in [25]

is mainly dealing with the propagator. Through this method, we can derive the time

evolution equation of the undetermined coe�cients A1 ,A2 , B1 , B2 and �nally solve Q1

and Q2 operators.

4.2 The Transient Current

We apply the NMQSD to the research on the transient current through the single

quantum dot. The current �owing from the λ-side lead is as follows:

Iλ = −e d
dt

〈
NH
λ (t)

〉

= −e d
dt

(TrS⊗R[NH
λ (t)ρH ]). (4.2.1)

Here we use the Heisenberg picture for the convenience that the density operator in

the Heisenberg picture is time-independent. Eq. (4.2.1) then becomes:

−eTrS⊗R[
dNH

λ (t)

dt
ρH ]

=
−e
i~
TrS⊗R([NH

λ (t) , HH(t)]ρH). (4.2.2)
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4 Transient Current into a Single-Energy-Level Quantum Dot

Because we use interaction picture in the previous text, we introduce the transforma-

tion betweern the Heisenberg picture and the bath interaction picture as follows:

OH = Ũ+OI Ũ , (4.2.3)

ρH = Ũ+ρI Ũ , (4.2.4)

where Ũ ≡ e
i
~
� t
0 H
′
R(τ)dτ (Te−

i
~
� t
0 H
′
(τ)dτ ). This is the Hermitian conjugate of the trans-

formation operator between the Schrödinger picture and the bath interaction picture

U+
B times the transformation operator between the Schrödinger picture and the Heisen-

berg picture U . Then we use Eq. (4.2.3) and Eq. (4.2.4) to transfrom Eq. (4.2.2) to

Iλ = ie
~ TrS⊗R[[N I

λ(t), HI(t)]ρI(t)] easily. We now ignore the superscript I and adopt the

bath interaction picture in the followings: HI(t) → H(t) , N I
λ(t) → Nλ(t) but still use

ρI(t) =
∣∣ΨI

t (t)
〉 〈

ΨI
t (t)
∣∣→ |Ψt(t)〉 〈Ψt(t)| in order to distinguish from the reduced density

operator ρ(t). The next step is to deal with Iλ. We now brie�y calculate the operators

in Iλ:

Nλ(t) = e
i
~
� t
0 H
′
R(τ)dτ

∑
k

(d+
λkdλk + eλke

+
λk)e

− i
~
� t
0 H
′
R(τ)dτ

=
∑
k

(d+
λkdλk + eλke

+
λk), (4.2.5)

H(t) = e
i
~
� t
0 H
′
R(τ)dτ (HS(t) +H

′
R(t) +H

′
SR(t))e−

i
~
� t
0 H
′
R(τ)dτ .

The e
i
~
� t
0 H
′
R(τ)dτ (HS(t)+H

′
SR(t))e−

i
~
� t
0 H
′
R(τ)dτ term is exactly theHT (t) in Eq. (2.3.23)

and H
′
R(t) =

∑
λk[~ωλk(t)(d

+
λkdλk + eλke

+
λk)]. So,

H(t) = HT (t) + e
i
~
� t
0 H
′
R(τ)dτH

′
R(t)e−

i
~
� t
0 H
′
R(τ)dτ
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4 Transient Current into a Single-Energy-Level Quantum Dot

= HS(t)+
∑
λ′k′

(gλ′k′ (t)
√

1− nλ′k′ c
+dλ′k′e

−i ω
λ
′
k
′ (t)+gλ′k′ (t)

√
nλ′k′e

−i ω
λ
′
k
′ (t)e+

λ′k′
c++H.c.)+H

′
R(t).

(4.2.6)

The commutator

[Nλ(t) , H(t)]

= [
∑
k

(d+
λkdλk + eλke

+
λk) ,

∑
λ′k′

(gλ′k′ (t)
√

1− nλ′k′ c
+dλ′k′e

−i ω
λ
′
k
′ (t)

+gλ′k′ (t)
√
nλ′k′e

−i ω
λ
′
k
′ (t)e+

λ′k′
c+ +H.c.)]

=
∑
λ′ ,k,k′

[d+
λkdλk + eλke

+
λk , gλ′k′ (t)

√
1− nλ′k′ c

+dλ′k′e
−i ω

λ
′
k
′ (t)

+gλ′k′ (t)
√
nλ′k′e

−i ω
λ
′
k
′ (t)e+

λ′k′
c+ +H.c.] (4.2.7)

In Eq. (4.2.7), [d+
λkdλk + eλke

+
λk , c

+dλ′k′ ] = [d+
λkdλk , c

+dλ′k′ ]. If λ 6= λ
′
or k 6= k

′
,

then [d+
λkdλk , c

+dλ′k′ ] = 0. If λ = λ
′
and k = k

′
, [d+

λkdλk , c
+dλk] = −c+dλk. So

[d+
λkdλk + eλke

+
λk , c

+dλ′k′ ] = −c+dλkδλλ′ δkk′ . Similarly, [d+
λkdλk + eλke

+
λk , e

+
λ′k′

c+] =

−e+
λkc

+δλλ′ δkk′ . For the Hermitian conjugate part, we introduce a small mathematical

trick so that we don't really calculate them. The trick is that: if A is a Hermitian

operator, then [A,B+] = [A+, B+] = −([A,B])+. We can use this to simplify the

Hermitian conjugate part of Eq. (4.2.7). For the sake of the Hermicity of d+
λkdλk +

eλke
+
λk, [d+

λkdλk + eλke
+
λk, d

+
λ
′
k
′ c] = −(−c+dλkδλλ′ δkk′ )

+ = d+
λkcδλλ′ δkk′ and [d+

λkdλk +

eλke
+
λk , ceλ′k′ ] = −(−e+

λkc
+δλλ′ δkk′ )

+ = ceλkδλλ′ δkk′ .

Through the above argument, Eq. (4.2.7) is reduced to:
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4 Transient Current into a Single-Energy-Level Quantum Dot

[Nλ(t) , H(t)]

=
∑
k

(−gλk(t)
√

1− nλkc+dλke
−i ωλk(t) − gλk(t)

√
nλke

−i ωλk(t)e+
λkc

+

+g∗λk(t)
√

1− nλkd+
λkce

i ωλk(t) + g∗λk(t)
√
nλke

i ωλk(t)ceλk). (4.2.8)

Using Eq. (4.2.8), the current of the λ-side lead is:

Iλ =
ie

~
TrS⊗R[−

∑
k

gλk(t)
√

1− nλkc+dλke
−i ωλk(t)ρI(t)]

+
ie

~
TrS⊗R[−

∑
k

gλk(t)
√
nλke

−i ωλk(t)e+
λkc

+ρI(t)]

+
ie

~
TrS⊗R[

∑
k

g∗λk(t)
√

1− nλkd+
λkce

i ωλk(t)ρI(t)]

+
ie

~
TrS⊗R[

∑
g∗λk(t)

√
nλke

i ωλk(t)ceλkρ
I(t)] (4.2.9)

After some calculation and simpli�cation (see Appendix 6 for details), the current then

becomes:

Iλ =
ie

~
TrS [−

∑
k

gλk(t)
√

1− nλke−i ωλk(t)c+TrR(dλkρ
I(t))]
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+
ie

~
TrS [−

∑
k

gλk(t)
√
nλke

−i ωλk(t)c+TrR(ρI(t)e+
λk)]

+
ie

~
TrS [

∑
k

g∗λk(t)
√

1− nλkcei ωλk(t)TrR(ρI(t)d+
λk)]

+
ie

~
TrS [

∑
g∗λk(t)

√
nλke

i ωλk(t)cTrR(eλkρ
I(t))]

So next we need to deal with the terms TrR(dλkρ
I(t)), TrR(ρI(t)e+

λk), TrR(ρI(t)d+
λk),

TrR(eλkρ
I(t)). We leave it in Appendix 7 and only list the results of them:

TrR(dλkρ
I(t)) = M [zλkPt], (4.2.10)

TrR(ρI(t)d+
λk) = −M [Ptz

∗
λk], (4.2.11)

TrR(eλkρ
I(t)) = M [wλkPt], (4.2.12)

TrR(ρI(t)e+
λk) = −M [Ptw

∗
λk]. (4.2.13)

So the current formula becomes:

Iλ =
ie

~
TrS [−

∑
k

gλk(t)
√

1− nλke−i ωλk(t)c+M [zλkPt]]

− ie
~
TrS [−

∑
k

gλk(t)
√
nλke

−i ωλk(t)c+M [Ptw
∗
λk]]
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− ie
~
TrS [

∑
k

g∗λk(t)
√

1− nλkcei ωλk(t)M [Ptz
∗
λk]]

+
ie

~
TrS [

∑
g∗λk(t)

√
nλke

i ωλk(t)cM [wλkPt]] (4.2.14)

Through Eq. (2.3.31) and Eq. (2.3.32), Eq. (4.2.14) becomes:

Iλ = − e
~
TrS [c+M [zλ(t)Pt]]−

e

~
TrS [c+M [Ptw

∗
λ(t)]]+

e

~
TrS [cM [Ptz

∗
λ(t)]]+

e

~
TrS [cM [wλ(t)Pt]].

Here, we are not willing to deal with the annoying noise term M [zλ(t)Pt], M [Ptw
∗
λ(t)],

M [Ptz
∗
λ(t)], M [wλ(t)Pt]. Instead, we use Novikov theorem to transform these terms into

other terms with O operator, that is, we transform the current formula into:

Iλ = − e
~
TrS [c+M [Oλ1Pt]]+

e

~
TrS [c+M [PtO

+
λ2]]− e

~
TrS [cM [PtO

+
λ1]]+

e

~
TrS [cM [Oλ2Pt]].

(4.2.15)

In Eq. (4.2.15), we know that Oλn(t, z∗, w∗) ≡
� t

0 αλn(t, s)Oλn(t, s, z∗, w∗)ds, O
+
λn =

O
+
λn(t,−z,−w) ≡

� t
0 α
∗
λn(t, s)O+

λn(t, s,−z,−w)ds, O+
λn = O+

λn(t, s,−z,−w) n = 1 , 2. As

a result,

M [OλnPt]

=

�
dz2dw2e−z

2−w2

� t

0
αλn(t, s)Oλn(t, s, z∗, w∗)dsPt

=

� t

0
αλn(t, s)M [OλnPt]ds. (4.2.16)
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M [PtO
+
λn]

=

�
dz2dw2e−z

2−w2
Pt

� t

0
α∗λn(t, s)O+

λn(t, s,−z,−w)ds

=

� t

0
α∗λn(t, s)M [PtO

+
λn]ds. (4.2.17)

Now we de�neM [Oλn(t, s, z∗, w∗)Pt] asQλn(t, s) andQ+
λn(t, s) = M [PtO

+
λn(t, s,−z,−w)].

After we de�ne Q operator, we jump to Eq. (2.4.7) and Eq. (2.4.8) and discover that

OR1 and OL1 have the same time evolution equation. Besides, OR1 and OL1 have the

same initial condition: OR1(t, t, z∗, w∗) = OL1(t, t, z∗, w∗) = c
~ [15]. As a consequence,

we can conclude that OR1 = OL1 = O1 by the uniqueness of the solution of the dif-

ferential equation. Likewise, for the sake of the initial condition OR2(t, t, z∗, w∗) =

OL2(t, t, z∗, w∗) = c+

~ [15] and the same time evolution equations of OR2 and OL2.

we can derive the same conclusion that OR2 = OL2 = O2. By the above argument,

we can simplify: Q1(t, s) = M [O1(t, s, z∗, w∗)Pt] , Q2(t, s) = M [O2(t, s, z∗, w∗)Pt] and

Q+
1 (t, s) = M [PtO

+
1 (t, s,−z,−w)] , Q+

2 (t, s) = M [PtO
+
2 (t, s,−z,−w)]. In the �nal step

in this section, we get the current formula after numerous calculation:

Iλ = − e
~
TrS [c+

� t

0
αλ1(t, s)Q1(t, s)ds] +

e

~
TrS [c+

� t

0
α∗λ2(t, s)Q+

2 (t, s)ds]

− e
~
TrS [c

� t

0
α∗λ1(t, s)Q+

1 (t, s)ds] +
e

~
TrS [c

� t

0
αλ2(t, s)Q2(t, s)ds]. (4.2.18)

The unknown part of Eq. (4.2.18) is the Q operator. Fortunately, in [15], we �nd that

the Q operator is as follows:

~Q1(t, s) = A∗1(t, s)cρ(t) +A∗2(t, s)ρ(t)c, (4.2.19)
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~Q2(t, s) = B1(t, s)ρ(t)c+ +B2(t, s)c+ρ(t). (4.2.20)

The A1 ,A2 , B1 , B2 are the undetermined coe�cients. We then substitute Eq. (4.2.19)

and Eq. (4.2.20) into Eq. (4.2.18):

Iλ(t) = − e

~2
Γ∗λ1(t)TrS [c+cρ(t)]− e

~2
Γ∗λ2(t)TrS [c+ρ(t)c]− e

~2
Γλ1(t)TrS [cρ(t)c+]− e

~2
Γλ2(t)TrS [cc+ρ(t)].

(4.2.21)

where the time-dependent coe�cients are:

Γλ1(t) =

� t

0
(α∗λ1(t, s)A1(t, s)− αλ2(t, s)B1(t, s))ds, (4.2.22)

Γλ2(t) =

� t

0
(α∗λ1(t, s)A2(t, s)− αλ2(t, s)B2(t, s))ds. (4.2.23)

The trace over system degrees of freedom can be easily evaluated:

TrS [c+cρ(t)] =
∑
n

〈n| c+cρ(t) |n〉 = 〈0| c+cρ(t) |0〉+ 〈1| c+cρ(t) |1〉

= 0 + 〈1| ρ(t) |1〉

= ρ11(t), (4.2.24)

TrS [c+ρ(t)c] = TrS [cc+ρ(t)] =
∑
n

〈n| cc+ρ(t) |n〉 = 〈0| cc+ρ(t) |0〉+ 〈1| cc+ρ(t) |1〉
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= 〈0| ρ(t) |0〉+ 0

= ρ00(t), (4.2.25)

TrS [cρ(t)c+] = TrS [c+cρ(t)] = ρ11(t), (4.2.26)

TrS [cc+ρ(t)] = ρ00(t). (4.2.27)

Thus we can get the simpli�ed current formula as:

Iλ(t) = − e

~2
(Γλ1(t) + Γ∗λ1(t))ρ11(t)− e

~2
(Γλ2(t) + Γ∗λ2(t))ρ00(t). (4.2.28)

Besides Eq. (4.2.28), we can also bring Eq. (4.2.19) and Eq. (4.2.20) into the master

equation of Eq. (3.2.6) and get the simpler form of Eq. (3.2.6):

∂ρ(t)

∂t
=
−i
~

[HS(t), ρ(t)] +
1

~2

∑
λ

Γλ1(t)[c, ρ(t)c+]− 1

~2

∑
λ

Γ∗λ1(t)[c+, cρ(t)]

+
1

~2

∑
λ

Γλ2(t)[c, c+ρ(t)]− 1

~2

∑
λ

Γ∗λ2(t)[c+, ρ(t)c]. (4.2.29)

The �rst term in Eq. (4.2.29) is the free evolution of the system and other terms are

caused by the interaction with the baths. The memory e�ects of the baths are embedded

in the time-dependent coe�cients Γλ1(t) , Γλ2(t). This is the case because Γλ1(t) , Γλ2(t)

are integrals including all the history of the baths.
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4.3 Heisenberg Approach to the On Operator

In section 2.3.2, we learn that the total state of the system plus the bath is factorized:

|Ψt(0)〉 = |ψ0〉⊗ |0〉 and 〈zw |Ψt(t)〉 = 〈zw|Ut |Ψt(0)〉 = (〈zw|Ut |0〉) |ψ0〉. Ut is the time

evolution operator at time t of the total system. Here we de�ne Gt(z
∗, w∗) = 〈zw|Ut |0〉

as the stochastic propagator for the state |φ(t, z∗, w∗)〉. Our mathod is that we �rst want

to prove that:

〈zw|Utc+(s) |0〉 = ~O2(t, s, z∗, w∗)Gt(z
∗, w∗), (4.3.1)

〈zw|Utc(s) |0〉 = ~O1(t, s, z∗, w∗)Gt(z
∗, w∗). (4.3.2)

Here, c(s) ≡ U+
s cUs, c

+(s) = U+
s c

+Us. Next, we take the di�erentiation of Eq. (4.3.1)

and Eq. (4.3.2) with respect to time s and get the new time evolution equation of O1

and O2. To achieve this goal, we �rst �nd the time evolution equation of Gt(z
∗, w∗).

4.3.1 The Time Evolution of Gt(z
∗, w∗)

The time evolution of Gt is:

i~
∂Gt
∂t

= i~ 〈zw| ∂Ut
∂t
|0〉 .

By the Schrödinger-like equation in the bath interaction picture: i~∂Ut|Ψt(0)〉
∂t = i~∂Ut∂t |Ψt(0)〉 =

HT (t)Ut |Ψt(0)〉 → i~∂Ut∂t = HT (t)Ut,

i~
∂Gt
∂t

= 〈zw|HT (t)Ut |0〉
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= HSGt+
∑
λk

(gλk(t)
√

1− nλkc+e−i ωλk(t) 〈zw| dλkUt |0〉+
∑
λk

gλk(t)
√
nλke

−i ωλk(t)w∗λkc
+Gt

+
∑
λk

g∗λk(t)
√

1− nλkei ωλk(t)z∗λkcGt +
∑
λk

g∗λk(t)
√
nλke

i ωλk(t)c 〈zw| eλkUt |0〉 . (4.3.3)

In order to get the time evolution equation ofGt with onlyGt term rather than 〈zw| dλkUt |0〉

and 〈zw| eλkUt |0〉, we need to transform them. The transformation techinique is as fol-

lows.

First, we de�ne dλk(t) ≡ U+
t dλkUt and eλk(t) ≡ U

+
t eλkUt and di�erentiate them:

i~
∂dλk(t)

∂t
= i~(

∂U+
t

∂t
)dλkUt + i~U+

t dλk(
∂Ut
∂t

)

= U+
t [dλk , HT ]Ut

= g∗λk(t)
√

1− nλkei ωλk(t)c(t), (4.3.4)

i~
∂eλk(t)

∂t
= U+

t [eλk , HT ]Ut

= gλk(t)
√
nλke

−i ωλk(t)c+(t). (4.3.5)

Eq. (4.3.3) is thus converted to:
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i~
∂Gt
∂t

= HSGt+
∑
λk

(gλk(t)
√

1− nλkc+e−i ωλk(t) 〈zw|Utdλk(t) |0〉−
∑
λk

gλk(t)
√
nλke

−i ωλk(t)c+w∗λkGt

−
∑
λk

g∗λk(t)
√

1− nλkei ωλk(t)cz∗λkGt +
∑
λk

g∗λk(t)
√
nλke

i ωλk(t)c 〈zw|Uteλk(t) |0〉 . (4.3.6)

Second, we integrate Eq. (4.3.4) and Eq. (4.3.5):

dλk(t) = dλk −
i

~

� t

0
g∗λk(s)

√
1− nλkei ωλk(s)c(s)ds, (4.3.7)

eλk(t) = eλk −
i

~

� t

0
gλk(s)

√
nλke

−i ωλk(s)c+(s)ds. (4.3.8)

Equations (4.3.7) and (4.3.8) are what we exactly want for the reason that dλk(eλk) |0〉 =

0. We then put Eq. 4.3.7 and Eq. 4.3.8 into Eq. 4.3.6 and get:

i~
∂Gt
∂t

= HSGt −
i

~
c+
∑
λ

� t

0
(αλ1(t, s) 〈zw|Utc(s) |0〉)ds

−i
∑
λ

c+w∗λ(t)Gt − i
∑
λ

cz∗λ(t)Gt

− i
~
c
∑
λ

� t

0
(αλ2 〈zw|Utc+(s) |0〉)ds. (4.3.9)

Here, ωλk(t−s) ≡ ωλk(t)−ωλk(s). We know that Gt ≡ 〈zw|Ut |0〉, |φ〉 = 〈zw|Ut |0〉 |ψ0〉.

Hence, i~∂|φ〉∂t = i~∂Gt∂t |ψ0〉. By comparing Eq. (2.4.9) and Eq. (4.3.9), we can immedi-

ately obtain Eq. (4.3.1) and Eq. (4.3.2):
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〈zw|Utc(s) |0〉 = ~O1(t, s, z∗, w∗)Gt(z
∗, w∗),

〈zw|Utc+(s) |0〉 = ~O2(t, s, z∗, w∗)Gt(z
∗, w∗).

A noted point in Eq. (4.3.1) and Eq. (4.3.2) is that if s = t, we �nd that:

c 〈zw|Ut |0〉 = ~O1(t, t, z∗, w∗)Gt(z
∗, w∗),

c+ 〈zw|Ut |0〉 = ~O2(t, t, z∗, w∗)Gt(z
∗, w∗).

Because 〈zw|Ut |0〉 = Gt, we can immediately get: ~O1(t, t, z∗, w∗) = c and ~O2(t, t, z∗, w∗) =

c+. These are exactly the initial conditions in section 4.2.

4.3.2 The Time Evolution Equation of O1(t, s, z
∗, w∗)

We �rst di�erentiate Eq. (4.3.2) with respect to time s and will get the time evolution

equation of operator O1 later.

〈zw|Ut
∂c(s)

∂s
|0〉 = ~

∂O1(t, s, z∗, w∗)

∂s
Gt(z

∗, w∗)

∂c(s)

∂s
=

∂

∂s
(U+

s cUs) =
∂U+

s

∂s
cUs + U+

s c
∂Us
∂s

=
i

~
U+
s [HT (s), c]Us.

HereHT (s) = ~ωS(s)c+c+
∑

λk(gλk(s)
√

1− nλke−i ωλk(s)c+dλk+gλk(s)
√
nλke

−i ωλk(s)e+
λkc

++

g∗λk(s)
√

1− nλkei ωλk(s)d+
λkc+ g∗λk(s)

√
nλke

i ωλk(s)ceλk) and

[c+c, c] = −c,
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[c+dλk, c] = −dλk,

[e+
λkc

+, c] = e+
λk,

[d+
λkc, c] = [ceλk, c] = 0.

So,

∂c(s)

∂s
=
i

~
U+
s (−~ωS(s)c+

∑
λk

(−gλk(s)
√

1− nλke−i ωλk(s)dλk+gλk(s)
√
nλke

−i ωλk(s)e+
λk))Us

= −iωS(s)c(s) +
i

~
∑
λk

(−gλk(s)
√

1− nλke−i ωλk(s)dλk(s) + gλk(s)
√
nλke

−i ωλk(s)e+
λk(s)).

(4.3.10)

〈zw|Ut
∂c(s)

∂s
|0〉 = ~

∂O1

∂s
Gt = −iωS(s) 〈zw|Utc(s) |0〉

− i
~
∑
λk

gλk(s)
√

1− nλke−i ωλk(s) 〈zw|Utdλk(s) |0〉+
i

~
∑
λk

gλk(s)
√
nλke

−i ωλk(s) 〈zw|Ute+
λk(s) |0〉

(4.3.11)

By the same technique in obtaining Eq. (4.3.7) and Eq. (4.3.8), we have

dλk(s) = dλk −
i

~

� s

0
g∗λk(s

′
)
√

1− nλkei ωλk(s”)c(s
′
)ds

′
, (4.3.12)
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e+
λk(t) = e+

λk(s) +
i

~

� t

s
g∗λk(s

′
)
√
nλke

i ωλk(s
′
)c(s

′
)ds

′
. (4.3.13)

Then we put Eq. (4.3.12) and Eq. (4.3.13) into Eq. (4.3.11), replace 〈zw|Utc(s
′
) |0〉

by ~O1(t, s
′
, z∗, w∗)Gt and get:

~
∂O1

∂s
Gt = −i~ωS(s)O1Gt−

1

~
∑
λk

(1−nλk)
� s

0
gλk(s)g

∗
λk(s

′
)e−i ωλk(s−s′ )O1(t, s

′
, z∗, w∗)ds

′
Gt

+
i

~
∑
λk

gλk(s)
√
nλke

−i ωλk(s) 〈zw|Ut(e+
λk(t)−

i

~

� t

s
g∗λk(s

′
)
√
nλke

i ωλk(s
′
)c(s

′
)ds

′
) |0〉

= −i~ωS(s)O1Gt −
1

~
∑
λk

(1− nλk)
� s

0
gλk(s)g

∗
λk(s

′
)e−i ωλk(s−s′ )O1(t, s

′
, z∗, w∗)ds

′
Gt

+
i

~
∑
λk

gλk(s)
√
nλke

−i ωλk(s)w∗λkGt+
1

~
∑
λk

� t

s
gλk(s)g

∗
λk(s

′
)nλke

−i ωλk(s−s′ )O1(t, s
′
, z∗, w∗)ds

′
Gt

Finally, we arrive at the time evolution equation of O1:

∂O1

∂s
= −iωS(s)O1 −

1

~2

∑
λ

w∗λ(s)− 1

~2

∑
λ

� s

0
αλ1(s, s

′
)O1(t, s

′
, z∗, w∗)ds

′

+
1

~2

∑
λ

� t

s
αλ2(s

′
, s)O1(t, s

′
, z∗, w∗)ds

′
. (4.3.14)
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4.3.3 The Time Evolution Equation of O2(t, s, z
∗, w∗)

We �rst di�erentiate Eq. (4.3.1) with respect to time s and will get the time evolution

equation of operator O2.

〈zw|Ut
∂c+(s)

∂s
|0〉 = ~

∂O2(t, s, z∗, w∗)

∂s
Gt(z

∗, w∗)

∂c+(s)

∂s
= (

∂c(s)

∂s
)+

= iωS(s)c+(s) +
i

~
∑
λk

(g∗λk(s)
√

1− nλkei ωλk(s)d+
λk(s)− g

∗
λk(s)

√
nλke

i ωλk(s)eλk(s)).

(4.3.15)

〈zw|Ut
∂c+(s)

∂s
|0〉 = ~

∂O2

∂s
Gt = iωS(s) 〈zw|Utc+(s) |0〉

+
i

~
∑
λk

g∗λk(s)
√

1− nλkei ωλk(s) 〈zw|Utd+
λk(s) |0〉−

i

~
∑
λk

g∗λk(s)
√
nλke

i ωλk(s) 〈zw|Uteλk(s) |0〉

(4.3.16)

By the same technique in obtaining Eq. (4.3.7) and Eq. (4.3.8), we get

eλk(s) = eλk −
i

~

� s

0
gλk(s

′
)
√
nλke

−i ωλk(s”)c+(s
′
)ds

′
, (4.3.17)

d+
λk(t) = d+

λk(s) +
i

~

� t

s
gλk(s

′
)
√

1− nλke−i ωλk(s
′
)c+(s

′
)ds

′
. (4.3.18)

Then, we put Eq. (4.3.17) and Eq. (4.3.18) into Eq. (4.3.16), replace 〈zw|Utc+(s
′
) |0〉

by ~O2(t, s
′
, z∗, w∗)Gt and get:
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~
∂O2

∂s
Gt = i~ωS(s)O2Gt −

1

~
∑
λk

nλk

� s

0
g∗λk(s)gλk(s

′
)ei ωλk(s−s′ )O2(t, s

′
, z∗, w∗)ds

′
Gt

+
i

~
∑
λk

g∗λk(s)
√

1− nλkei ωλk(s) 〈zw|Ut(d+
λk(t)−

i

~

� t

s
gλk(s

′
)
√

1− nλke−i ωλk(s
′
)c+(s

′
)ds

′
) |0〉

= i~ωS(s)O2Gt −
1

~
∑
λk

nλk

� s

0
g∗λk(s)gλk(s

′
)ei ωλk(s−s′ )O2(t, s

′
, z∗, w∗)ds

′
Gt

+
i

~
∑
λk

g∗λk(s)
√

1− nλkei ωλk(s)z∗λkGt+
1

~
∑
λk

� t

s
g∗λk(s)gλk(s

′
)(1−nλk)ei ωλk(s−s′ )O2(t, s

′
, z∗, w∗)ds

′
Gt

Finally, we arrive at the time evolution equation of O2 by the same technique as O1:

∂O2

∂s
= iωS(s)O2 −

1

~2

∑
λ

z∗λ(s)− 1

~2

∑
λ

� s

0
αλ2(s, s

′
)O2(t, s

′
, z∗, w∗)ds

′

+
1

~2

∑
λ

� t

s
αλ1(s

′
, s)O2(t, s

′
, z∗, w∗)ds

′
. (4.3.19)

4.4 Time Evolution of Undetermined Coe�cients

A1 ,A2 , B1 , B2

We made the assumption of Eq. (4.2.19) and Eq. (4.2.20),

~Q1(t, s) = A∗1(t, s)cρ(t) +A∗2(t, s)ρ(t)c,
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~Q2(t, s) = B1(t, s)ρ(t)c+ +B2(t, s)c+ρ(t).

If we want to know the time evolution equation of A1 ,A2 , B1 , B2, we need to �nd

the time evolution of Q1 and Q2 �rst. It is not a di�cult task for the reason that we

have now the time evolution of O1, O2, and Q1(t, s) = M [O1(t, s, z∗, w∗)Pt] , Q2(t, s) =

M [O2(t, s, z∗, w∗)Pt] actually.

The time evolution equations of Q1 and Q2 are:

∂Q1

∂s
= M [

∂O1

∂s
Pt]

= −iωS(s)Q1+
1

~2

∑
λ

� t

s
αλ2(s

′
, s)Q1(t, s

′
)ds

′− 1

~2

∑
λ

� s

0
αλ1(s, s

′
)Q1(t, s

′
)ds

′− 1

~2

∑
λ

M [w∗λ(s)Pt],

(4.4.1)

∂Q2

∂s
= M [

∂O2

∂s
Pt]

= iωS(s)Q2+
1

~2

∑
λ

� t

s
αλ1(s

′
, s)Q2(t, s

′
)ds

′− 1

~2

∑
λ

� s

0
αλ2(s, s

′
)Q2(t, s

′
)ds

′− 1

~2

∑
λ

M [z∗λ(s)Pt].

(4.4.2)

We use Novikov theorem to deal with M [w∗λ(s)Pt] , M [z∗λ(s)Pt]:

M [z∗λ(s)Pt] = −M [PtÕ
+

λ1(t, s,−z,−w)], (4.4.3)

M [w∗λ(s)Pt] = −M [PtÕ
+

λ2(t, s,−z,−w)]. (4.4.4)

Here Õ
+

λ1(t, s,−z,−w) =
� t

0 α
∗
λ1(s, s

′
)O+

1 (t, s
′
,−z,−w)ds

′
and Õ

+

λ2(t, s,−z,−w) =
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� t
0 α
∗
λ2(s, s

′
)O+

2 (t, s
′
,−z,−w)ds

′
. The proof of Eq. (4.4.3) and Eq. (4.4.4) is similar

to the proof in section 5.5. We note that the time in z∗λ(s) , w∗λ(s) is s. Thus the cor-

relation functions inside the integrals are α∗λ1(s, s
′
) and α∗λ2(s, s

′
), respectively. By Eq.

(4.4.3) and Eq. (4.4.4), we can simplify Eq. (4.4.1) and Eq. (4.4.2) as :

∂Q1

∂s
= −iωS(s)Q1 +

1

~2

∑
λ

� t

s
αλ2(s

′
, s)Q1(t, s

′
)ds

′

− 1

~2

∑
λ

� s

0
αλ1(s, s

′
)Q1(t, s

′
)ds

′
+

1

~2

∑
λ

� t

0
α∗λ2(s, s

′
)Q+

2 (t, s
′
), (4.4.5)

∂Q2

∂s
= iωS(s)Q2 +

1

~2

∑
λ

� t

s
αλ1(s

′
, s)Q2(t, s

′
)ds

′

− 1

~2

∑
λ

� s

0
αλ2(s, s

′
)Q2(t, s

′
)ds

′
+

1

~2

∑
λ

� t

0
α∗λ1(s, s

′
)Q+

1 (t, s
′
)ds

′
. (4.4.6)

Next we take Eq. (4.2.19) and Eq. (4.2.20) into Eq. (4.4.5) and (4.4.6) respectively

and obtain

∂A∗1(t, s)

∂s
cρ(t) +

∂A∗2(t, s)

∂s
ρ(t)c = −iωS(s)(A∗1(t, s)cρ(t) +A∗2(t, s)ρ(t)c)

+
1

~2

∑
λ

� t

s
αλ2(s

′
, s)(A∗1(t, s

′
)cρ(t) +A∗2(t, s

′
)ρ(t)c)ds

′

− 1

~2

∑
λ

� s

0
αλ1(s, s

′
)(A∗1(t, s

′
)cρ(t) +A∗2(t, s

′
)ρ(t)c)ds

′

+
1

~2

∑
λ

� t

0
α∗λ2(s, s

′
)(B∗1(t, s

′
)cρ(t) +B∗2(t, s

′
)ρ(t)c)ds

′
, (4.4.7)
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∂B1(t, s)

∂s
ρ(t)c+ +

∂B2(t, s)

∂s
c+ρ(t) = iωS(s)(B1(t, s)ρ(t)c+ +B2(t, s)c+ρ(t))

+
1

~2

∑
λ

� t

s
αλ1(s

′
, s)(B1(t, s

′
)ρ(t)c+ +B2(t, s

′
)c+ρ(t))ds

′

− 1

~2

∑
λ

� s

0
αλ2(s, s

′
)(B1(t, s

′
)ρ(t)c+ +B2(t, s

′
)c+ρ(t))ds

′

+
1

~2

∑
λ

� t

0
α∗λ1(s, s

′
)(A1(t, s

′
)ρ(t)c+ +A2(t, s

′
)c+ρ(t))ds

′
. (4.4.8)

Since cρ(t) , ρ(t)c , ρ(t)c+ , c+ρ(t) are linealy independent. We can get the time evo-

lution of A1 , A2 , B1 , B2 through the coe�cients of cρ(t) , ρ(t)c , ρ(t)c+ , c+ρ(t).

For Q1:

cρ(t):

∂A1(t, s)

∂s
= iωS(s)A1(t, s)− 1

~2

∑
λ

� s

0
(αλ1(s

′
, s) + αλ2(s, s

′
))A1(t, s

′
)ds

′

+
1

~2

∑
λ

� t

0
αλ2(s, s

′
)(B1(t, s

′
) +A1(t, s

′
))ds

′
. (4.4.9)

ρ(t)c:

∂A2(t, s)

∂s
= iωS(s)A2(t, s)− 1

~2

∑
λ

� s

0
(αλ1(s

′
, s) + αλ2(s, s

′
))A2(t, s

′
)ds

′

+
1

~2

∑
λ

� t

0
αλ2(s, s

′
)(A2(t, s

′
) +B2(t, s

′
))ds

′
. (4.4.10)
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4 Transient Current into a Single-Energy-Level Quantum Dot

For Q2:

c+ρ(t):

∂B1(t, s)

∂s
= iωS(s)B1(t, s)− 1

~2

∑
λ

� s

0
(αλ1(s

′
, s) + αλ2(s, s

′
))B1(t, s

′
)ds

′

+
1

~2

∑
λ

� t

0
αλ1(s

′
, s)(A1(t, s

′
) +B1(t, s

′
))ds

′
. (4.4.11)

ρ(t)c+:

∂B2(t, s)

∂s
= iωS(s)B2(t, s)− 1

~2

∑
λ

� s

0
(αλ1(s

′
, s) + αλ2(s, s

′
))B2(t, s

′
)ds

′

+
1

~2

∑
λ

� t

0
αλ1(s

′
, s)(A2(t, s

′
) +B2(t, s

′
))ds

′
. (4.4.12)

Finally, we get the time evolution of A1 ,A2 , B1 , B2. We have used the fact that

α∗λn(s
′
, s) = αλn(s, s

′
). This can be easily proved. Because the initial condition of

Q1(t, s) and Q2(t, s) are:

Q1(t, t) = M [O1(t, t, z∗, w∗)Pt] = cρ(t),

Q2(t, t) = M [O2(t, t, z∗, w∗)Pt] = c+ρ(t).

We can get the initial condition as follows:

A1(t, t) = B2(t, t) = 1, (4.4.13)

A2(t, t) = B1(t, t) = 0. (4.4.14)
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4 Transient Current into a Single-Energy-Level Quantum Dot

4.5 Summary

In the begining of this chapter, we start from the de�nition of the transient current

�owing into the quantum dot. We calculate it in the Heisenberg picture for the conve-

nience that the density operator in the Heisenberg picture is time-independent. After

we calculate it in the Heisenberg picture, we transform the result back into the bath

interaction picture. By the average of dλk , d
+
λk , eλk , e

+
λk

TrR(dλkρ
I(t)) = M [zλkPt],

T rR(ρI(t)d+
λk) = −M [Ptz

∗
λk],

T rR(eλkρ
I(t)) = M [wλkPt],

T rR(ρI(t)e+
λk) = −M [Ptw

∗
λk],

and the Novikov theorem, we can get the �nal current form as

Iλ(t) = − e

~2
(Γλ1(t) + Γ∗λ1(t))ρ11(t)− e

~2
(Γλ2(t) + Γ∗λ2(t))ρ00(t). (4.5.1)

In Eq. (4.5.1),

Γλ1(t) =

� t

0
(α∗λ1(t, s)A1(t, s)− αλ2(t, s)B1(t, s))ds,

Γλ2(t) =

� t

0
(α∗λ1(t, s)A2(t, s)− αλ2(t, s)B2(t, s))ds.

In section 4.3, we use Heisenberg approach to obtain another time evolution equation
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4 Transient Current into a Single-Energy-Level Quantum Dot

for O1 and O2. Through the time evolution equation for O1 and O2, we can then derive

the time evolution equation of the undetermined coe�cients A1 , A2 , B1 , B2. Thus both

of the exact master equation and the current formula with time-dependent bias voltage,

external time-dependent gate voltage and time-dependent transmission coe�cient can be

exactly determined.
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5 Modeling of Time-dependent Coupling

strength

5.1 Introduction

In section 3.3, we have introduced the e�ective transmission coe�cent V λ(t). This term

will also determine the behavior of αλ1(t, s) and αλ2(t, s). Thus, we have to determine

the form of V λ(t). We use the barrier controlled by the gate voltage to vary V λ(t). In

our setup, the bias voltage, the system energy, the gate voltage are all time-dependent.

For this reason, we need to calculate the tunneling problem which is not stationary.

Our system contains the left lead, left barrier, central system, right barrier and right

lead. The the method to calculate the e�ective transmission through the left barrier is

the same as that for the right side. Hence we demonstrate the left part in this section.

Figures 5.1.1 is a schematic illustration of our physical model. We refer to Ref. [16]

as our prototype. In that paper, only the barrier is controlled by time-dependent gate

voltage and the scattering wave function solved in that paper is approximated under the

assumption that ∆
~ω � 1, where ∆ is the amplitude of the time-dependent voltage and ω

is the oscillating frequency of the time-dependent voltage. In Ref. [26], the wave function

and transmission coe�cient is calculated by scattering matrix and Floquet theorem and

the wavefunction solved in Ref. [26] is more accurate. In our model, we use the same

approximation of wavefunction as in Ref. [16] with three regions controlled by time-
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5 Modeling of Time-dependent Coupling strength

dependent voltage.

Figure 5.1.1: This is the �gure of our model. The left lead region is controlled by the bias
voltage. The left barrier region is controlled by the left gate voltage. The
central system is controlled by the gate voltage. We only consider the left
hand side of our physical model. The setup is the same as the right hand
side. All the voltages are time-dependent. In the following sections, we call
the left lead region1, the left barrier region2 and the system(quantum dot)
region3.

5.2 Simple Model constructed by M. Büttiker and R.

Landauer

In Ref. [16], the Hamiltonian of the barrier region is simply: H(t) = − ~2
2m

∂
∂x2

+ V0 +

V1cos(ωt). By solving the Schrödinger equation: H(t)ψ(x, t) = i~∂ψ(x,t)
∂t , we can easily

get the wavefunction ψ(x, t, E)

ψ(x, t, E) = (Beκx + Ce−κx)e−i
Et
~ e−i

V1
~ω sin(ωt). (5.2.1)

E is the incident energy. e−i
V1
~ω sin(ωt) can be expanded as

∞∑
n=−∞

Jn( V1~ω )e−inωt [27],

where Jn(x) is the Bessel function. ψ(x, t, E) is thus (Beκx+Ce−κx)
∞∑

n=−∞
Jn( V1~ω )e

−i(n~ω+E)t
~ .

We can see that if the wavefunction is incident from the left lead with energy E,

it will be transferred to another sideband E + n~ω. Because there are now other
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5 Modeling of Time-dependent Coupling strength

sidebands in the barrier (Beκx + Ce−κx)Jn( V1~ω )e
−i(n~ω+E)t

~ , we need to add the term

(Bne
κnx +Cne

−κnx)e
−i(n~ω+E)t

~ , where κn ≡
√

2m(V0−(E+n~ω))
~2 . This is an analogy to the

stationary quantum tunneling. The generation of sidebands in the barrier will produce

re�ected waves and transmitted waves at the energies E+n~ω. The general wavefunction

solutions in regions 1, 2, 3: ψ1 , ψ2 , ψ3 are, respectively,

ψ1(x, t) = (eikx +Ae−ikx)e−i
Et
~ +

∞∑
n=−∞,n6=0

(Ane
−iknxe

−i(n~ω+E)t
~ ), (5.2.2)

ψ2(x, t) = (Beκx+Ce−κx)

∞∑
n=−∞

Jn(
V1

~ω
)e
−i(n~ω+E)t

~ +

∞∑
n=−∞,n6=0

(Bne
κnx+Cne

−κnx)e
−i(n~ω+E)t

~ ,

(5.2.3)

ψ3(x, t) = Deikxe−i
Et
~ +

∞∑
n=−∞,n6=0

(Dne
iknxe

−i(n~ω+E)t
~ ), (5.2.4)

where k =
√

2mE
~2 , kn ≡

√
2m(E+n~ω)

~2 . In the model of the paper of Ref. [16],

the potentials in region 1 and 3 are 0 as in Fig. 5.2.1. By the boundary condi-

tion: ψ1(0, t) = ψ2(0, t), ψ2(L, t) = ψ3(L, t), ∂ψ1(x,t)
∂x |x=0 = ∂ψ2(x,t)

∂x |x=0,
∂ψ2(x,t)
∂x |x=L =

∂ψ3(x,t)
∂x |x=L and the linear independence of e

−i(n~ω+E)t
~ , we can solve the coe�cients

A , B , C , D , An ,Bn , Cn , Dn. We now take a look on a simple property of Bessel

function. We know from Ref. [28] that

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!
(
x

2
)n+2s, (5.2.5)

J−n(x) = (−1)nJn(x), (5.2.6)

where n is an integer. Therefore, if V1
~ω � 1, Jn( V1~ω ) ≈ 1

n!(
V1

2~ω )n and J−n( V1~ω ) ≈

(−1)n 1
n!(

V1
2~ω )n for n ≥ 0. Thus,
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ψ2(x, t) ≈ (Beκx + Ce−κx)(
∞∑
n=0

1

n!
(
V1

2~ω
)ne

−i(n~ω+E)t
~ +

∞∑
n=1

(−1)n
1

n!
(
V1

2~ω
)ne

−i(−n~ω+E)t
~ )

+

∞∑
n=−∞,n6=0

(Bne
κnx + Cne

−κnx)e
−i(n~ω+E)t

~

≈ (Beκx+Ce−κx)e−i
Et
~ (1+

V1

2~ω
e
−i(~ω+E)t

~ − V1

2~ω
e
−i(−~ω+E)t

~ )+(B1e
κ1x+C1e

−κ1x)e
−i(~ω+E)t

~

+(B−1e
κ−1x + C−1e

−κ−1x)e
−i(−~ω+E)t

~ . (5.2.7)

In other words, we can for V1 � ~ω consider only the contribution from n = −1 to

n = 1, and the wavefunctionsψ1 and ψ3 are then

ψ1(x, t) ≈ (eikx +Ae−ikx)e−i
Et
~ +A1e

−i (~ω+E)t
~ e−ik1x +A−1e

−i (−~ω+E)t
~ e−ik−1x, (5.2.8)

ψ3(x, t) ≈ Deikxe−i
Et
~ +D1e

−i (~ω+E)t
~ eik1x +D−1e

−i (−~ω+E)t
~ eik−1x (5.2.9)

This approximation can greatly simplify the problem. We will �nd its bene�t when

this method is applied in our model in section 5.3.
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Figure 5.2.1: This is the �gure of the model of M. Büttiker and R. Landauer. The left
lead region and the central system is at zero potential. The left barrier
region is controlled by the time-dependent left gate voltage.

5.3 Model of Calculating E�ective Transmission Coe�cient

V λ(t)

In this section, we generalize the method described in section 5.2. That is, the po-

tentials at regions 1, 2, 3 are all time-dependent as in Fig. 5.1.1. In our model we add

time-dependent potentials VL = ∆1cos(ω1t), VGL = ∆2cos(ω2t) and ε(t) = ∆3cos(ω3t)

on regions 1, 2, 3, respectively. Similar to section 5.2, we can write

the wavefunction ψ1(x, t) as

ψ1(x, t) = (eik1x+Ae−ik1x)e−i
µLt

~ (1+
∆1

2~ω1
e−iω1t− ∆1

2~ω1
eiω1t)+A11,1e

−ik11,1xe−i
(µL+~ω1)t

~

+A11,−1e
−ik11,−1xe−i

(µL−~ω1)t
~ +A21,1e

−ik21,1xe−i
(µL+~ω2)t

~ +A21,−1e
−ik21,−1xe−i

(µL−~ω2)t
~
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+A31,1e
−ik31,1xe−i

(µL+~ω3)t
~ +A31,−1e

−ik31,−1xe−i
(µL−~ω3)t

~ , (5.3.1)

the wavefunction ψ2(x, t) as

ψ2(x, t) = (Beκ2x + Ce−κ2x)e−i
µLt

~ (1 +
∆2

2~ω2
e−iω2t − ∆2

2~ω2
eiω2t)

+(B22,−1e
κ22,−1x+C22,−1e

−κ22,−1x)e−i
(µL−~ω2)t

~ +(B32,1e
κ32,1x+C32,1e

−κ32,1x)e−i
(µL+~ω3)t

~

+(B32,−1e
κ32,−1x+C32,−1e

−κ32,−1x)e−i
(µL−~ω3)t

~ +(B12,1e
κ12,1x+C12,1e

−κ12,1x)e−i
(µL+~ω1)t

~

+(B12,−1e
κ12,−1x+C12,−1e

−κ12,−1x)e−i
(µL−~ω1)t

~ +(B22,1e
κ22,1x+C22,1e

−κ22,1x)e−i
(µL+~ω2)t

~

(5.3.2)

and the wavefunction ψ3(x, t) as

ψ3(x, t) = Deik3xe−i
µLt

~ (1 +
∆3

2~ω3
e−iω3t − ∆3

2~ω3
eiω3t) +D33,1e

ik33,1xe−i
(µL+~ω3)t

~

+D33,−1e
ik33,−1xe−i

(µL−~ω3)t
~ +D23,1e

ik23,1xe−i
(µL+~ω2)t

~ +D23,−1e
ik23,−1xe−i

(µL−~ω2)t
~

+D13,1e
ik13,1xe−i

(µL+~ω1)t
~ +D13,−1e

ik13,−1xe−i
(µL−~ω1)t

~ (5.3.3)
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in regions 1, 2, 3 respectively. Here, k1 =
√

2mµL
~2 , κ2 =

√
2m(V0−µL)

~2 , k3 =
√

2m(µL−ε0)
~2 kn1,±1 =√

2m(µL±~ωn)
~2 , κn2,±1 =

√
2m(V0−(µL±~ωn))

~2 , and kn3,±1 =
√

2m(µL±~ωn−ε0)
~2 . In section

5.2, we know that the oscillating potential will produce re�ected waves and transmitted

waves at the energies E + ~ω, E − ~ω. In this section, we apply time-dependent poten-

tials in regions 1, 2, 3. Thus, the oscillating potential in region 1 will produce sideband

contributions on region 2: (B12,1e
κ12,1x + C12,1e

−κ12,1x)e−i
(µL+~ω1)t

~ + (B12,−1e
κ12,−1x +

C12,−1e
−κ12,−1x)e−i

(µL−~ω1)t
~ and on region 3: D13,1e

ik13,1xe−i
(µL+~ω1)t

~ +D13,−1e
ik13,−1xe−i

(µL−~ω1)t
~ ,

the oscillating potential in region 3 will produce sideband contributions on region 1:

A31,1e
−ik31,1xe−i

(µL+~ω3)t
~ + A31,−1e

−ik31,−1xe−i
(µL−~ω3)t

~ and on region 2: (B32,1e
κ32,1x +

C32,1e
−κ32,1x)e−i

(µL+~ω3)t
~ +(B32,−1e

κ32,−1x+C32,−1e
−κ32,−1x)e−i

(µL−~ω3)t
~ and the oscillat-

ing potential in region 2 will produce sideband contrivutions on region 1: A21,1e
−ik21,1xe−i

(µL+~ω2)t
~ +

A21,−1e
−ik21,−1xe−i

(µL−~ω2)t
~ and on region 3: D23,1e

ik23,1xe−i
(µL+~ω2)t

~ +D23,−1e
ik23,−1xe−i

(µL−~ω2)t
~ .

The coe�cients in Eq. (5.3.1), Eq. (5.3.2) and Eq. (5.3.3) can be solved similar

to section 5.2 by the boundary condition: ψ1(0, t) = ψ2(0, t), ψ2(L, t) = ψ3(L, t),

∂ψ1(x,t)
∂x |x=0 = ∂ψ2(x,t)

∂x |x=0,
∂ψ2(x,t)
∂x |x=L = ∂ψ3(x,t)

∂x |x=L and the linear independence of

e
−i(±~ωm+µL)t

~ . Recall now that in quantum mechanics [29], the transmission coe�cient

is de�ned as T ≡
√

J3
J1
. J1 is the incident probability current density and J3 is the prob-

ability current density after tunneling. Here we �nd the e�ective transmission coe�cient

by the same de�nition as before.

V λ(t) =

√
J3

J1
|x=L (5.3.4)

J3 =
~

2m
(iψ3

∂ψ∗3
∂x

+ c.c), (5.3.5)

J1 =
~

2m
(iψ1i

∂ψ∗1i
∂x

+ c.c), (5.3.6)
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where ψ1i = eikxe−i
µLt

~ (1 + ∆1
2~ω1

e−iω1t − ∆1
2~ω1

eiω1t) is the incident wavefunction.

5.4 Summary

In this chapter, we have found the e�ective transmission coe�cients. We �rst introduce

how M. Büttiker and R. Landauer dealt with the tunneling problem with an oscillating

barrier. We imitate their method, that is, we only consider the contributions from the

sidebands n = −1 , n = 1 under the approximation ∆1
~ω1

, ∆2
~ω2

, ∆3
~ω3
� 1, and apply it to

our model in section 5.3. In the general case, we should consider all the sidebands and

the coe�cients of e−inωt in the expansion e−i
V
~ω sin(ωt) =

∞∑
n=−∞

Jn( V~ω )e−inωt. However,

we can still use this method to discuss the current under this approximation. There is

another approximation in Ref. [30]. In that paper, if the oscillation of the potential is not

so rapid: ωτ � 1, τ is the traversal time through the potential barrier [16], the tunneling

problem can be treated as quasi-stationary. In the quasi-stationary approximation, one

can just use the result in stationary tunneling problem and change the time-independent

potential to time-dependent case, i.e., V → V (t). In Eq. 5.3.4,
√

J3
J1

is in general

a function of x and t. We take its value at x = L, which is just the position the

wavefunction tunnel through the barrier as our transmission coe�cient. Our method is

an approximated method to discuss the time-dependent e�ective transmission and we can

get more accurate result by taking into account more terms in the sideband contributions.
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6 Numerical Result and Discussion

6.1 Numerical method

In this chapter, we use nature unit ~ = e = kB = 1 for simplicity. From Eq. (4.2.28)

and Eq. (4.2.29), we know the current is:

Iλ(t) = −(Γλ1(t) + Γ∗λ1(t)− Γλ2(t)− Γ∗λ2(t))ρ11(t)− (Γλ2(t) + Γ∗λ2(t)). (6.1.1)

∂ρ11(t)

∂t
= −

∑
λ

(Γλ1(t) + Γ∗λ1(t)− Γλ2(t)− Γ∗λ2(t))ρ11(t)− (Γλ2(t) + Γ∗λ2(t)) (6.1.2)

Here we have used the fact that TrS(ρ(t)) = ρ00(t) +ρ11(t) = 1. Therefore, if we know

ρ11(t) , Γλ1(t) + Γ∗λ1(t)− Γλ2(t)− Γ∗λ2(t) , Γλ2(t) + Γ∗λ2(t), we can exactly determine the

current. Fortunately, we �nd in [9] that the current is as follows:

Iλ(t) = −(λλ(t) + λ∗λ(t) + (κλ(t) + κ∗λ(t))ρ11(t)). (6.1.3)

We can get that κλ(t) + κ∗λ(t) = Γλ1(t) + Γ∗λ1(t)− Γλ2(t)− Γ∗λ2(t) and λλ(t) + λ∗λ(t) =

Γλ2(t)+Γ∗λ2(t). Hence if we solve κλ(t) and λλ(t), we can get the current. The numerical

details can be found in [9], [31] and [30]. We ignore the lengthy calculation here.
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6.2 Numerical Result

Here, m is the e�ective mass in GaAs 0.067me, me is the rest mass of electron and the

energy unit Γ = 1meV . In this section, we use all the controlling voltage as sine function

form. In this section, we do numerical analysis with high frequency bias voltage and high

frequency system voltage respectively and the e�ective transmission coe�cient.

6.2.1 Investigation of Wide Band Limit

In this subsection, we use asymmetric setup to see the relation between wideband limit

and Markovian limit. We use the asymmetric setup as Fig. 6.2.1.

Figure 6.2.1: The symbolic �gure of the asymmetric setup. µL = 3Γ, µR = 1Γ, ε0 = 2Γ

Here, we �x the chemical potential of the left lead: µL = 3Γ, the right lead: µR = 1Γ

and the system energy ε0 = 2Γ. In Fig. 6.2.2, we take the wideband limit, that is,

bandwidth WL = WR = 80Γand we compare it with Fig. 6.2.3, whcih has bandwidth

WL = WR = Γ. The blue curve is for IL(t), and the green one is for IR(t). In these

two �gures, you can �nd immediately that the currents IL(t) , IR(t) both decay more

rapidly in Fig. 6.2.2 than in Fig. 6.2.3. This manifests clearly the Markovian limit, that

is, without the memory e�ect of the bath, the current �owing into the system will reach

steady state more rapidly.
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Figure 6.2.2: IR (the green one) and IL (the blue one) with bandwith WL = WR = 80Γ,
chemical potential µL = 3Γ , µR = Γ and system energy ε0 = 2Γ

Figure 6.2.3: IR(the green one) and IL (the blue one) with bandwith WL = WR = Γ,
other parameters are the same as Fig. 6.2.2
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6.3 Investigation on Time-Dependent gate voltage on the

system

In this section, we discuss the behavior when we apply time-dependent gate voltage

on the system without applying time-dependent bias voltage. Here, we set the chemical

potential of the left lead µL = 3Γ, the chemical potential of the right lead µR = Γ

and apply gate voltage εs(t) = ε0 + εccos(ωst) on the system, εc is Γ such that the

maximum of εs(t) is equal to µL and the minimum of εs(t) is equal to µR. When εs(t)

reach its maximum, the current �owing from the left lead can be ignored when it is

compared with the current �owing from the system to the right lead. Thus the net

current Inet(t) ≡ IL(t) − IR(t) is dominated by IR(t). And due to the large value of

energy di�erence between εs(t) and µR, we can get the conclusion that the magnitude of

the net current has the maximum value. The case in Fig. 6.3.1 occurs at time t = 2nπ
ωs

,

with n a nonnegatice integer. These times correspond to the �rst peak of the net current

Inet(t).

Figure 6.3.1: The picture representing the �ow of the current when εs(t) reaches its max-
imum. The current between the left lead and the system is negligible com-
pared with the current �owing from the system into the right lead.

Similar to Fig. 6.3.1, in Fig. 6.3.2, when εs(t) reaches its minimum, the current �owing

from the right lead can be ignored when it is compared with the current �owing from

the left lead to the system. Thus the net current Inet(t) ≡ IL(t)− IR(t) is dominated by
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6 Numerical Result and Discussion

IL(t). And the net current has the maximum value in Fig. 6.3.2 for the same reason as

Fig. 6.3.1. The case in Fig. 6.3.2 occurs at time t = (2n−1)π
ωs

with n a positive integer

These times correspond to the second peak of the net current Inet(t).

Figure 6.3.2: The picture representing the �ow of the current when εs(t) reaches its min-
imum. The current between the right lead and the system is negligible
compared with the current �owing from the left lead to the system.

In the following, we do some numerical simulation to examine our argument. It can be

seen obviously in Fig. that when the magnitude of IR is minimum, the IL has maximum

and vice versa. In Fig. 6.3.4 and Fig. 6.3.5, we plot the net current and set the

bandwidth WL = WR = 5Γ. The chemical potential of the left, the right lead is µL = 3Γ

and µR = 1Γ respectively.

64



6 Numerical Result and Discussion

Figure 6.3.3: The IR(the green one) and IL(the blue one) when we apply time-dependent
gate voltage on the system εs(t) = ε0 + εccos(ωst), ε0 = 2Γ, εc = Γ, µL =
3Γ, µR = 1Γ. The other parameters are as follows: WL = WR = 5Γ,
ΓL = ΓR = 0.5Γ, ωs = 5Γ, β = 0.1

Γ
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6 Numerical Result and Discussion

Figure 6.3.4: The net current when we apply a time-dependent gate voltage on the system
εs(t) = ε0 + εccos(ωst), ε0 = 2Γ, εc = Γ, µL = 3Γ, µR = 1Γ. The other
parameters are as follows: WL = WR = 5Γ, ΓL = ΓR = 0.5Γ, ωs = 5Γ,
β = 0.1

Γ
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6 Numerical Result and Discussion

Figure 6.3.5: The picture showing the details of Fig. 6.3.4 from time t = 3
Γ to t = 10

Γ

In Fig. 6.3.4, the �rst local maximum is at t = 3.7845
Γ and the next local maximum are as

follows: t = 4.2349
Γ , 4.9662

Γ , 5.5463
Γ , 6.2005

Γ . These values are very close to 6π
5Γ ,

7π
5Γ , .... And

the minimum is at t = 3.3533
Γ ( (2∗6−1)π

2∗ωs = 11π
10Γ ≈ 3.4558

Γ ) , 4.0108
Γ (13π

10Γ ≈ 4.0841
Γ ) , 4.6168

Γ (15π
10Γ ≈

4.7124
Γ )... The result match our previous argument perfectly. In Fig. 6.3.6 and Fig. 6.3.7,

we plot IL , IR and Inet and �nd the net current reaches maximum at times very close

to 6π
5Γ ,

7π
5Γ , ... , which is the same as Fig. 6.3.4.
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6 Numerical Result and Discussion

Figure 6.3.6: The IR(the green one) and IL(the blue one) when we apply time-dependent
gate voltage on the system εs(t) = ε0 + εccos(ωst), ε0 = 4Γ, εc = 2Γ,
µL = 6Γ, µR = 2Γ. The other parameters are as follows: WL = WR = 5Γ,
ΓL = ΓR = 0.5Γ, ωs = 5Γ, β = 0.1

Γ
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6 Numerical Result and Discussion

Figure 6.3.7: The net current when we apply a time-dependent gate voltage on the system
εs(t) = ε0 + εccos(ωst), ε0 = 4Γ, εc = 2Γ, µL = 6Γ, µR = 2Γ. The other
parameters are as follows: WL = WR = 5Γ, ΓL = ΓR = 0.5Γ, ωs = 5Γ,
β = 0.1

Γ

6.4 Investigation on Time-Dependent E�cient Transmission

Coe�cient

In this section, we take a look at the behavior of the time-dependent transmission

coe�cient V λ(t) as the Fig. 6.4.1.
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6 Numerical Result and Discussion

Figure 6.4.1: The left barrier and the parameters are as follows L = 10−9m [26]

In the following, we only show the transmission coe�cient of the left barrier. The

transmission coe�cient of the right barrier can be obtained by the same method as the

left barrier. In Fig. 6.4.2, we choose ∆1 = Γ, ∆2 = 2Γ, ∆3 = Γ and ω1 = 4.22Γ,

ω2 = 5.275Γ, ω3 = 1.055Γ and we take the potential in region 1 as reference so that the

potential is 0 in region 1 and the potential in region 2 without bias voltage is V0, the

potential in region 3 without gate voltage is ε0.
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6 Numerical Result and Discussion

Figure 6.4.2: The e�ective transmission coe�cient with ∆1 = Γ, ∆2 = 2Γ, ∆3 = Γ and
ω1 = 4.22Γ, ω2 = 5.275Γ, ω3 = 1.055Γ and V0 = 5Γ, ε0 = Γ.

However, it contradicts our intuition that the transmission coe�cient > 1. It is because

that in this case ∆n
ωn

∼ 1, this does not obey our assumption that ∆n
ωn
� 1. If ∆n

ωn
∼ 1,

we need to consider more terms in section 5.3 so that we would not lose information of

the incident wave and the transmitted wave. In Fig. 6.4.3, we choose ∆1 = Γ, ∆2 = 2Γ,

∆3 = Γ and ω1 = 4220Γ, ω2 = 5275Γ, ω3 = 1055Γ and V0 = 5Γ so that these parameters

satisfy the condition ∆n
ωn
� 1.
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6 Numerical Result and Discussion

Figure 6.4.3: The e�ective transmission coe�cient with ∆1 = Γ, ∆2 = 2Γ, ∆3 = Γ and
ω1 = 4220Γ, ω2 = 5275Γ, ω3 = 1055Γ and V0 = 5Γ, ε0 = Γ.

6.5 Electron Switch

In this section, we control the left and the right barrier oscillating in a π phase shift,

that is, applying the left gate voltage and the right gate voltage VGL = ∆cos(ωt + π)

and VGR = ∆cos(ωt) on the left and the right barrier respectively. We �x the chemical

potential of the left lead µL = 2Γ, the chemical potential potential of the right lead

µR = 2Γand the quantum dot energy ε0 = 1Γ. ∆ = 2Γ and ω = 40Γ. Here, we plot the

IL, IR and Inet in Fig. 6.5.2 and Fig. 6.5.3. The pictures of IL, IR and Inet from the

time t = 8
Γ to the time t = 10

Γ are showed in Fig. and Fig.
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6 Numerical Result and Discussion

Figure 6.5.1: We apply the left gate voltage VGL = ∆cos(ωt + π) and the right gate
voltage VGR = ∆cos(ωt) on the left and the right barrier respectively. The
other parameters are µL = 2Γ, µR = 2Γ, ε0 = 1Γ. ∆ = 2Γ, ω = 40Γ,
WL = WR = 5Γ and ΓL = ΓR = 0.5Γ and the width of the left and the
right barrier are both L = 5nm

Figure 6.5.2: IR (green one) and IL (blue one) when we apply the left gate voltage VGL =
∆cos(ωt + π) and the right gate voltage VGR = ∆cos(ωt) on the left and
the right barrier respectively. The other parameters are µL = 2Γ, µR = 2Γ,
ε0 = 1Γ. ∆ = 2Γ, ω = 40Γ, WL = WR = 5Γ and ΓL = ΓR = 0.5Γ and the
width of the left and the right barrier are both L = 5nm
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6 Numerical Result and Discussion

Figure 6.5.3: Inet when we apply the left gate voltage VGL = ∆cos(ωt+ π) and the right
gate voltage VGR = ∆cos(ωt) on the left and the right barrier respectively.
The other parameters are µL = 2Γ, µR = 2Γ, ε0 = 1Γ. ∆ = 2Γ, ω = 40Γ,
WL = WR = 5Γ and ΓL = ΓR = 0.5Γ and the width of the left and the
right barrier are both L = 5nm

Figure 6.5.4: IR (green one) and IL (blue one) from the time t = 8
Γ to the time t = 10

Γ .
The other parameters are the same as Fig. 6.5.2.
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6 Numerical Result and Discussion

Figure 6.5.5: Inet from the time t = 8
Γ to the time t = 10

Γ . The other parameters are the
same as Fig. 6.5.3.

From Fig. 6.5.4, we can obtain that when IR reaches its maximum, IL reaches its

minimum and vice versa. Thus, we achieve our goal that we can control the current like

a switch. One noting point is that the shpae of IL is a di�erent from IR. There may be

two reasons for this. First, in our simulation, we need to expand our correlation function

αλ1(t, s) and it would take a long time to do this simulation. Thus, we only expand it

to 50 terms that is not enough. Second, although the left and the right gate voltage are

cosine functions with only a π phase shift, the wavefunctions in the left and the right

barrier would contain contributions from the sidebands. Thus, the behavior of IR and

IL would be di�erent.
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7 Conclusion and Future Work

In this thesis, we apply the fermionic NMQSD to describe the transport dynamics of

an open quantum dot under the time-dependent bias voltage on the left lead (drain)

and the right lead (source) and the time-dependent gate voltage on the single-energy-

level quantum dot (system). We not only derive the fermionic NMQSD but also use it

to obtain the exact master equation for transport dynamics. We then use the master

equation to derive the transient current formula.

In the numerical aspect, we have proved that the transient current formula is equivalent

to the Feynman-Vernon in�uence functional theorem. We also derive the time-dependent

e�ective transmission coe�cient so that we can deal with the transport problem with

time-dependent coupling strength. However, in this case, we assume the barrier potential,

system energy and bias energy have the same phase (we assume it to be 0). In the future

work, for more general cases, we need to obtain the e�cient transmission coe�cient under

the time-dependent voltages with di�erent phases.

With the derived master equation, one can then describe and then control the dynamics

of the quantum dot for various time-dependent voltage applied to the source and the

drain, to the energy level of the quantum dot system as well as to the tunnel barriers.
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8 Appendix

8.1 Markovian Limit

In the open quantum dynamics, the Markovian dynamics is easier under the Markovian

limit [32],

α(t, t
′
) ≡

〈
R̂i(t) R̂j(t

′
)
〉
R
∝ δ(t− t′) (8.1.1)

In this formula, α(t, t
′
) is de�ned as the two-time correlation of R̂i(t) and R̂j(t

′
), 〈∗〉R

means average over bath degrees, i.e. take trace of ∗over a set of basis states of the

bath. This means that R̂i(t) and R̂j(t
′
) have correlation only when t = t

′
.When t 6= t

′
,〈

R̂i(t) R̂j(t
′
)
〉
R

= 0 which means that the environmental bath at t won't be a�ected by

the previous bath at t
′
. As a result, the interaction of the system and the environmental

will not be a�ected by the previous bath, too. There will not be memory terms in the

time-evolution equation. We will see its simplicity in the non Markovian dynamics wich

has a memory kernel.

8.2 Transforming the Hamiltonian into the Interaction

Picture

We now shoe the detailed proof of HT in the interaction picture:
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HT = e
i
~
� t
0 dt
′
H
′
R(t
′
)(HS(t) +H

′
SR(t))e−

i
~
� t
0 dt
′
H
′
R(t
′
). (8.2.1)

H
′
R(t) =

∑
λ′k′

~ωλ′k′ (t)(d
+
λ′k′

dλ′k′ + eλ′k′e
+
λ′k′

) (8.2.2)

By de�nition ωλ′k′ (t) ≡
� t

0 dt
′
ωλ′k′ (t

′
)

HT = e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )(~ωS(t)c+c+

∑
λk

(
√
nλkg

∗
λkceλk+

√
1− nλkgλkc+

λ dλk +H.c))e
−i

∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ) (8.2.3)

Because [d+
λ′k′

dλ′k′ (eλ′k′e
+
λ′k′

) , c+c] = 0 and [d+
λ′k′

dλ′k′ (eλ′k′e
+
λ′k′

) , c+ (c)] = 0,

HT = ~ωS(t)c+c+ e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )(
∑
λk

(
√
nλkg

∗
λkceλk+

√
1− nλkgλkc+

λ dλk +H.c)e
−i

∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ) (8.2.4)

Now, we need to proof that:

[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][eλk][e

−i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )] = eiωλk(t)eλk

(8.2.5)
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Proof :

Because [d+
λ′k′

dλ′k′ , eλk] = 0 and [eλ′k′e
+
λ′k′

, eλk] = 0 for λ 6= λ
′
or k 6= k

′
. Hence, the

above equation can be written as:

[e
i(
∑
λ
′ 6=λ or k′ 6=k ωλ′k′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ))+d

+
λkdλk ][eiωλk(t)eλke

+
λk ][eλk][e

−iωλk(t)eλke
+
λk ]

∗[e−i(
∑
λ
′ 6=λ or k′ 6=k ωλ′k′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ))−d

+
λkdλk ]

We �rst deal with the λk part:

(eiωλk(t)eλke
+
λk)eλk(e

−iωλk(t)eλke
+
λk)

= (
∑
n

1

n!
(iωλk(t))

n(eλke
+
λk)

n)eλk(e
−iωλk(t)eλke

+
λk)

And

(eλke
+
λk)

neλk = (eλke
+
λk)

n−1(eλke
+
λk)eλk

= (eλke
+
λk)

n−1(1− e+
λkeλk)eλk
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= (eλke
+
λk)

n−1eλk.

. . . . . .

By the same step, we can get the same result of n− 2 , n− 3 , ... , 0. And �nally arrive

at:

= eλk for every n

So, the λk part is

(eiωλk(t)eλke
+
λk)eλk(e

−iωλk(t)eλke
+
λk)

= (
∑
n

1

n!
(iωλk(t))

n(eλke
+
λk)

n)eλk(e
−iωλk(t)eλke

+
λk)

=
∑
n

1

n!
(iωλk(t))

neλk(e
−iωλk(t)eλke

+
λk)

= eiωλk(t)eλk
∑
m

1

m!
(−iωλk(t))m(eλke

+
λk)

m

= eiωλk(t)eλk

Finally,
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[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][eλk][e

−i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )]

= [e
i(
∑
λ
′ 6=λ or k′ 6=k ωλ′k′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ))+d

+
λkdλk ]eiωλk(t)eλk

∗[e−i(
∑
λ
′ 6=λ or k′ 6=k ωλ′k′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ ))−d

+
λkdλk ]

= eiωλk(t)eλk qed

We prove that:

[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][eλk][e

−i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )] = eiωλk(t)eλk (8.2.5)

For dλk part is similar, we only simply manifest the part (eiωλk(t)d+λkdλk)dλk(e
−iωλk(t)d+λkdλk):

(eiωλk(t)d+λkdλk)dλk(e
−iωλk(t)d+λkdλk)

= (eiωλk(t)d+λkdλk)dλk(
∑
n

1

n!
(−iωλk(t))n(d+

λkdλk)
n)
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And

dλk(d
+
λkdλk)

n = dλk(d
+
λkdλk)(d

+
λkdλk)

n−1

= dλk(1− dλkd+
λk)(d

+
λkdλk)

n−1

= dλk(d
+
λkdλk)

n−1

. . . . . .

By the same step, we can get the same result of n− 2 , n− 3 , ... , 0. And �nally arrive

at:

= dλk for every n

So, the λk part is

(eiωλk(t)d+λkdλk)dλk(e
−iωλk(t)d+λkdλk)

= (eiωλk(t)d+λkdλk)dλk
∑
n

1

n!
(−iωλk(t))n

= dλke
−iωλk(t).
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So,

[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][dλk][e

−i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )] = dλke

−iωλk(t)

(8.2.6)

The Hermitian conjugate (H.c.) of Eq. (8.2.5) and Eq. (8.2.6) are

[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][e+

λk][e
−i

∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )] = e+

λke
−iωλk(t),

(8.2.7)

[e
i
∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )][d+

λk][e
−i

∑
λ
′
k
′ ω

λ
′
k
′ (t)(d

+

λ
′
k
′ dλ′k′+eλ′k′ e

+

λ
′
k
′ )] = eiωλk(t)d+

λk,

(8.2.8)

respectively. Through Eq. (8.2.5) and Eq. (8.2.6) and their Hermitian conjugate parts,

we can get the simpli�ed Hamiltonian HT in the interaction picture:

HT (t) = HS(t)+
∑
λk

(gλk(t)
√

1− nλkc+dλke
−i ωλk(t)+gλk(t)

√
nλke

−i ωλk(t)e+
λkc

++H.c.) qed

8.3 Derivation of the Fermionic Non-Markovian Quantum

State Di�usion

We are now to simplify the following equation:
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〈zw| ∂
∂t
|Ψt(t)〉 = −i1

~
〈zw|HT (t) |Ψt(t)〉

= −i1
~

(〈zw|HS(t)+
∑
λk

(gλk(t)
√

1− nλkc+dλke
−i ωλk(t)+gλk(t)

√
nλke

−i ωλk(t)e+
λkc

++H.c.) |Ψt(t)〉)

(8.3.1)

Because 〈zw|is independent of time t, 〈zw| ∂∂t |Ψt(t)〉 = ∂
∂t(〈zw| Ψt(t)〉). And |zw〉 is

the bath state vector, the HS(t) system Hamiltonian is only acting on the system state

vector, so |zw〉 and HS(t) are commute:

∂

∂t
|φ(t, z∗, w∗)〉 = − i

~
HS(t) |φ(t, z∗, w∗)〉

−i1
~

(〈zw|
∑
λk

(gλk(t)
√

1− nλkc+dλke
−i ωλk(t) + gλk(t)

√
nλke

−i ωλk(t)e+
λkc

+ +H.c.) |Ψt(t)〉)

(8.3.2)

To simplify Eq. (8.3.2), we need to introduce some properties when fermionic operators

act on the fermionic coherent states:

〈zw| d+
λk = 〈zw| z∗λk (8.3.3)

〈zw| dλk =
∂

∂z∗λk
〈zw| (8.3.4)

〈zw| e+
λk = 〈zw|w∗λk (8.3.5)

〈zw| eλk =
∂

∂w∗λk
〈zw| (8.3.6)
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the above equations can be easily proved by the de�nition of fermionic coherent state.

We don't put too much emphasis on it. Before we use Eq. (8.3.3) to (8.3.6) to simplfy

Eq. (8.3.2), we demonstrate how the memory e�ect rises by the functional derivative:

∂

∂z∗λk
=

� t

0
ds
∂z∗λ(s)

∂z∗λk

δ

δz∗λ(s)
=

� t

0
ds(−i

√
1− nλkg∗λk(s)eiωλk(s))

δ

δz∗λ(s)
(8.3.7)

∂

∂w∗λk
=

� t

0
ds
∂w∗λ(s)

∂w∗λk

δ

δw∗λ(s)
=

� t

0
ds(−i

√
nλkgλk(s)e

−iωλk(s))
δ

δw∗λ(s)
(8.3.8)

By Eq. (8.3.3) to (8.3.6), Eq. (8.3.7) and Eq. (8.3.8), we can �nally get the fermionic

NMQSD:

∂

∂t
|φ(t, z∗, w∗)〉 = − i

~
HS(t) |φ(t, z∗, w∗)〉 − 1

~
∑
λ

c+

� t

0
αλ1(t, s)

δ |φ(t, z∗, w∗)〉
δz∗λ(s)

ds

−1

~
∑
λ

c

� t

0
αλ2(t, s)

δ |φ(t, z∗, w∗)〉
δw∗λ(s)

ds−1

~
∑
λ

c+w∗λ(t) |φ(t, z∗, w∗)〉−1

~
∑
λ

cz∗λ(t) |φ(t, z∗, w∗)〉 .

(8.3.9)

8.4 The Transformation of the Reduced Density Operator

We now derive how the density operator ρ(t) = TrR(|Ψt(t)〉 〈Ψt(t)|) be transformed to

M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉].

ρ(t) = TrR(|Ψt(t)〉 〈Ψt(t)|)
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=
∑
n

〈n |Ψt(t)〉 〈Ψt(t)| n〉 (8.4.1)

To prove Eq. (3.2.1), we calculate M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉] and show that it is

the TrR(|Ψt(t)〉 〈Ψt(t)|).

Proof :

M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]

=

�
dz2dw2e−z

2−w2 〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉 (8.4.2)

Here, dz2 ≡
∏
λk dz

∗
λkdzλk, dw

2 ≡
∏
λk dw

∗
λkdwλk, e

−z2−w2 ≡ e−z∗λkzλke−w∗λkwλk

〈zw| = 〈0|
∏
λk

(1− eλkw∗λk)(1− dλkz∗λk)

= (⊗λk 〈0|λke (1− eλkw∗λk))⊗ (⊗λk 〈0|λkd (1− dλkz∗λk))

|−z − w〉 =
∏
k

(1 + zλkd
+
λk)
∏
l

(1 + wλke
+
λk) |0〉

= (⊗λk(1 + zλkd
+
λk) |0〉λkd)⊗ (⊗λk(1 + wλke

+
λk)) |0〉λke)

Here, we argue that the vaccum state is separable in di�erent modes: |0〉 = (⊗λk |0〉λkd)⊗

(⊗λk |0〉λke). It is resonable in the reason that there is no entanglement between di�erent

modes when the bath is in the vaccum state. So we can write the vaccum state |0〉 in a

separable way of di�erent modes. The above argument makes Eq. (8.4.2) become:

M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]
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=

�
dz2dw2e−z

2−w2
(⊗λk 〈0|λke (1− eλkw∗λk))⊗ (⊗λk 〈0|λkd (1− dλkz∗λk)) |Ψt(t)〉

〈Ψt(t)| (⊗λk(1 + zλkd
+
λk) |0〉λkd)⊗ (⊗λk(1 + wλke

+
λk)) |0〉λke). (8.4.3)

So that we can deal with the integral in the Hilbert space of di�erent modes respec-

tively. We demonstrate the calculation of one speci�c mode and the other modes can be

derived in the same way.

�
dz∗λkdzλk(1− z∗λkzλk) 〈0|λkd (1− dλkz∗λk) |Ψt(t)〉 〈Ψt(t)| (1 + zλkd

+
λk) |0〉λkd

=

�
dz∗λkdzλk(1−z∗λkzλk)(〈0|λkd |Ψt(t)〉−〈0|λkd dλkz

∗
λk |Ψt(t)〉)(〈Ψt(t) |0〉λkd+〈Ψt(t)| zλkd+

λk |0〉λkd)

=

�
dz∗λkdzλk(1− z∗λkzλk)(〈0|λkd |Ψt(t)〉 〈Ψt(t) |0〉λkd + 〈0|λkd |Ψt(t)〉 〈Ψt(t)| zλkd+

λk) |0〉

− 〈0|λkd dλkz
∗
λk |Ψt(t)〉 〈Ψt(t) |0〉λkd − 〈0|λkd dλkz

∗
λk |Ψt(t)〉 〈Ψt(t)| zλkd+

λk |0〉λkd)

= 〈0|λkd |Ψt(t)〉 〈Ψt(t) |0〉λkd + 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| d+
λk |0〉λkd . (8.4.4)

Here, the state d+
λk |0〉λkd is |1〉λkd. |1〉λkd represent the one particle state in the λk
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mode.

The next mode λ
′
k
′
becomes:

〈0|λkd
�
dz∗
λ′k′

dzλ′k′ (1−z
∗
λ′k′

zλ′k′ ) 〈0|λ′k′d (1−dλ′k′z
∗
λ′k′

) |Ψt(t)〉 〈Ψt(t)| (1+zλ′k′d
+
λ′k′

) |0〉λ′k′d |0〉λkd

+ 〈1|λkd
�
dz∗
λ′k′

dzλ′k′ (1−z
∗
λ′k′

zλ′k′ ) 〈0|λ′k′d (1−dλ′k′z
∗
λ′k′

) |Ψt(t)〉 〈Ψt(t)| (1+zλ′k′d
+
λ′k′

) |0〉λ′k′d |1〉λkd

= 〈0|λkd 〈0|λ′k′d |Ψt(t)〉 〈Ψt(t) |0〉λ′k′d |0〉λkd + 〈0|λkd 〈1|λ′k′d |Ψt(t)〉 〈Ψt(t) |1〉λ′k′d |0〉λkd

+ 〈1|λkd 〈0|λ′k′d |Ψt(t)〉 〈Ψt(t) |0〉λ′k′d |1〉λkd + 〈1|λkd 〈1|λ′k′d |Ψt(t)〉 〈Ψt(t) |1〉λ′k′d |1〉λkd

. . . . . .

By integrating all the modes in the zλk part, we can easily get:
∑

nz
〈nz |Ψt(t)〉 〈Ψt(t)| nz〉.

It's the same for the wλk part and we �nally get:

M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉] =
∑
nz ,nw

〈nz| 〈nw |Ψt(t)〉 〈Ψt(t)| nw〉 |nz〉 (8.4.5)

So Eq. (8.4.3) becomes:

∑
n

〈n |Ψt(t)〉 〈Ψt(t) n〉| (8.4.6)
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And eq, (8.4.6) is exactly
∑

n 〈n| Ψt(t)〉 〈Ψt(t) |n〉 = TrR(|Ψt(t)〉 〈Ψt(t)|) = ρ(t). Thus,

ρ(t) = M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]. Here, we de�ne Pt ≡ 〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉

so that ρ(t) = M [Pt] for simplicity.

8.5 Derivation of Eq. (3.2.6) and Novikov Theorem

∂ρ(t)

∂t
=
∂M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉]

∂t
=
∂M [|φ〉 〈φ|]

∂t
= M [|φ〉 ∂ 〈φ|

∂t
+
∂ |φ〉
∂t
〈φ|]

By Eq. (2.4.9):

∂ |φ〉
∂t

= − i
~
HS |φ〉 −

1

~
∑
λ

c+Oλ1(t, z∗, w∗) |φ〉 − 1

~
∑
λ

cOλ2(t, z∗, w∗) |φ〉

−1

~
∑
λ

c+w∗λ(t) |φ〉 − 1

~
∑
λ

cz∗λ(t) |φ〉 ,

and Eq. (3.2.5)

∂ 〈φ|
∂t

=
i

~
〈φ|HS −

1

~
∑
λ

〈φ|O+
λ1(t,−z,−w)c− 1

~
∑
λ

〈φ|O+
λ2(t,−z,−w)c+

+
1

~
∑
λ

〈φ|wλ(t)c+
1

~
∑
λ

〈φ| zλ(t)c+.

The master equation becomes:

∂ρ(t)

∂t
= − i

~
[HS , ρ(t)]−1

~
∑
λ

M [PtO
+
λ1]c−1

~
∑
λ

M [PtO
+
λ2]c++

1

~
∑

M [Ptλwλ(t)]c+
1

~
∑
λ

M [Ptzλ(t)]c+
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−1

~
∑
λ

c+M [Oλ1Pt]−
1

~
∑
λ

cM [Oλ2Pt]−
1

~
∑
λ

c+M [w∗λ(t)Pt]−
1

~
∑
λ

cM [z∗λ(t)Pt].

(8.5.1)

Because we don't need the troublesome noise term wλ(t), zλ(t), w∗λ(t), z∗λ(t), we now

introduce Novikov theorem that represent the relation between the noise and the O

operator:

Novikov theorem:

M [Ptzλ(t)] = M [Oλ1Pt] (8.5.2)

M [Ptwλ(t)] = M [Oλ2Pt] (8.5.3)

M [w∗λ(t)Pt] = −M [PtO
+
λ2] (8.5.4)

M [z∗λ(t)Pt] = −M [PtO
+
λ1] (8.5.5)

We only prove M [Ptzλ(t)] = M [Oλ1Pt]. To prove M [Ptzλ(t)] = M [Oλ1Pt], we �rst

prvoe that:

�
dz2dw2e−z

2−w2
Ptwλk =

�
dz2dw2e−z

2−w2 ∂Pt
∂w∗λk

It is obvious that for modes di�erent from λk, the left hand side is equal to the right

hand side. Thus, we only deal with the mode wλk:

The left hand side:
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�
dw∗λkdwλk(1− w∗λkwλk) 〈0| (1− eλkw∗λk) |Ψt(t)〉 〈Ψt(t)| (1 + wλke

+
λk) |0〉wλk

= 〈0| eλk |Ψt(t)〉 〈Ψt(t)| 0〉

The right hand side:

�
dw∗λkdwλk(1− w∗λkwλk) 〈0| eλk |Ψt(t)〉 〈Ψt(t)| (1 + wλke

+
λk) |0〉

= 〈0| eλk |Ψt(t)〉 〈Ψt(t)| 0〉 .

So the right hand side is equal to the left hand side and we prove that
�
dz2dw2e−z

2−w2
Ptwλk =

�
dz2dw2e−z

2−w2 ∂Pt
∂w∗λk

Then,

M [Ptwλ(t)] = i
∑
k

√
nλkg

∗
λk(t)e

iωλk(t)

�
dz2dw2e−z

2−w2
Ptwλk

= i
∑
k

√
nλkg

∗
λk(t)e

iωλk(t)

�
dz2dw2e−z

2−w2 ∂Pt
∂w∗λk

= i
∑
k

√
nλkg

∗
λk(t)e

iωλk(t)

�
dz2dw2e−z

2−w2
(

� t

0
ds
∂w∗λ(s)

∂w∗λk

δPt
δw∗λ(s)

)

= i
∑
k

√
nλkg

∗
λk(t)e

iωλk(t)

�
dz2dw2e−z

2−w2
(

� t

0
ds(−i

√
nλkgλk(s)e

−iωλk(s))
δPt

δw∗λ(s)
)

91



8 Appendix

=

�
dz2dw2e−z

2−w2
(

� t

0
ds(
∑
k

nλkg
∗
λk(t)gλk(s)e

iωλk(t−s))Oλ2Pt)

Here, (
� t

0 ds(
∑

k nλkg
∗
λk(t)gλk(s)e

iωλk(t−s))Oλ2 =
� t

0 dsαλ2(t, s)Oλ2=Oλ2. Thus,M [Ptwλ(t)] =
�
dz2dw2e−z

2−w2
Oλ2Pt) = M [Oλ2Pt].Similarly, M [Ptzλ(t)] = M [Oλ1Pt]. Then we deal

with M [w∗λ(t)Pt] = −M [PtO
+
λ2]. First we calculate:

(M [Ptwλ(t)])+ = (M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉wλ(t)])+

= M [w∗λ(t) 〈−z − w| Ψt(t)〉 〈Ψt(t)| zw〉]

= (M [Oλ2Pt])
+ = M [〈−z − w| Ψt(t)〉 〈Ψt(t)| zw〉O

+
λ2].

Then we change variables: zλk → −zλk , wλk → −wλk,

−M [w∗λ(t) 〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉] = M [〈zw| Ψt(t)〉 〈Ψt(t)| −z − w〉O
+
λ2]

→M [w∗λ(t)Pt] = −M [PtO
+
λ2(t,−z,−w)].

Finally, by substituting from Eq. (8.5.2) to Eq. (8.5.5) in Eq. (8.5.1), we can easily

get:

∂ρ(t)

∂t
=
−i
~

[HS(t), ρ(t)] +
1

~
∑
λ

([c,M [PtO
+
λ1(t,−z,−w)]]− [c+,M [Oλ1(t, z∗, w∗)Pt]]
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−[c,M [Oλ2(t, z∗, w∗)Pt]] + [c+,M [PtO
+
λ2(t,−z,−w)]]).

8.6 Simpli�cation of Eq. (4.2.9)

First, we use Tr(AB) = Tr(BA). Eq. (4.2.9) becomes:

Iλ =
ie

~
TrS⊗R[−

∑
k

gλk(t)
√

1− nλkc+dλke
−i ωλk(t)ρI(t)]

+
ie

~
TrS⊗R[−

∑
k

gλk(t)
√
nλke

−i ωλk(t)ρI(t)e+
λkc

+]

+
ie

~
TrS⊗R[

∑
k

g∗λk(t)
√

1− nλkei ωλk(t)ρI(t)d+
λkc]

+
ie

~
TrS⊗R[

∑
g∗λk(t)

√
nλke

i ωλk(t)ceλkρ
I(t)]

Then, by Eq. (3.1.2), the current �nally becomes:

Iλ =
ie

~
TrS [−

∑
k

gλk(t)
√

1− nλke−i ωλk(t)c+TrR(dλkρ
I(t))]

+
ie

~
TrS [−

∑
k

gλk(t)
√
nλke

−i ωλk(t)TrR(ρI(t)e+
λk)c

+]

+
ie

~
TrS [

∑
k

g∗λk(t)
√

1− nλkei ωλk(t)TrR(ρI(t)d+
λk)c]

+
ie

~
TrS [

∑
g∗λk(t)

√
nλke

i ωλk(t)cTrR(eλkρ
I(t))]
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8.7 Bath Ensemble Average of dλk , eλk , d
+
λk , e

+
λk

TrR(dλkρ
I(t)) = TrR(dλk |Ψt(t)〉 〈Ψt(t)|)

=
∑
n

〈n|
�
dz2dw2e−z

2−w2
dλk |zw〉 〈zw| |Ψt(t)〉 〈Ψt(t)| n〉 . (8.7.1)

As in appendix 5.4, we consider di�erent modes respectively. Eq. (8.7.1) in mode wλk

is :

∑
nλkd

〈n|λkd
�
dz∗λkdzλkzλk(1− zλkd+

λk) |0〉λkd 〈0|λkd (1− dλkz∗λk) |Ψt(t)〉 〈Ψt(t)| n〉λkd

= 〈0|λkd
�
dz∗λkdzλkzλk(1− zλkd+

λk) |0〉λkd 〈0|λkd (1− dλkz∗λk) |Ψt(t)〉 〈Ψt(t)| 0〉λkd

+ 〈1|λkd
�
dz∗λkdzλkzλk(1− zλkd+

λk) |0〉λkd 〈0|λkd (1− dλkz∗λk) |Ψt(t)〉 〈Ψt(t)| 1〉λkd

= 〈0|λkd |0〉λkd 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 0〉λkd+ 〈1|λkd |0〉λkd 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 1〉λkd

And we note that in mode wλk:

∑
nλkd

�
dz∗λkdzλkzλk 〈0|λkd (1− dλkz∗λk) |Ψt(t)〉 〈Ψt(t)| n〉λkd 〈n|λkd (1 + zλkd

+
λk) |0〉λkd
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= 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 0〉λkd 〈0|λkd |0〉λkd+ 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 1〉λkd 〈1|λkd |0〉λkd

= 〈0|λkd |0〉λkd 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 0〉λkd+〈1|λkd |0〉λkd 〈0|λkd dλk |Ψt(t)〉 〈Ψt(t)| 1〉λkd .

Because 〈0|λkd |0〉λkd and 〈1|λkd |0〉λkd are all just numbers. For the other modes, it is

just the case in the appendix 5.4. Thus we �nally prove that:

TrR(dλkρ
I(t)) =

�
dz2dw2e−z

2−w2
zλk
∑
n

〈zw |Ψt(t)〉 〈Ψt(t)| n〉 〈n| −z − w〉

=

�
dz2dw2e−z

2−w2
zλk 〈zw |Ψt(t)〉 〈Ψt(t)| −z − w〉

= M [zλkPt] (8.7.2)

by virtue of
∑

n |n〉 〈n| = I. Taking the Hermitian conjugate of Eq. (8.7.2):

TrR(ρI(t)d+
λk) = M [〈−z − w |Ψt(t)〉 〈Ψt(t)| zw〉 z∗λk].

Then we change variables: zλk → −zλk , wλk → −wλk,

T rR(ρI(t)d+
λk) = −M [〈zw |Ψt(t)〉 〈Ψt(t)| −z − w〉 z∗λk] = −M [Ptz

∗
λk].

Similarly,

TrR(eλkρ
I(t)) = TrR(eλk |Ψt(t)〉 〈Ψt(t)|)
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= M [wλkPt],

T rR(ρI(t)e+
λk) = −M [〈zw |Ψt(t)〉 〈Ψt(t)| −z − w〉w∗λk] = −M [Ptw

∗
λk].

96



Bibliography

[1] C. W. Gardiner and P. Zoller, �Quantum noise,� Springer, p. 133, 2004.

[2] A. P. Jauho, N. S. Wingreen, and Y. Meir, �Time-dependent transport in interacting

and noninteracting resonant-tunneling systems,� Physical Review B, vol. 50, pp.

5528�5544, 1994.

[3] J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, �Nonequilibrium green's function

method for quantum thermal transport,� Arxiv, no. 1303.7317, 2013.

[4] H. Haug and A. P. Jauho, �Quantum kinetics in transport and optics of semicon-

ductors,� Springer, 1997.

[5] A. O. Caldeira and A. J. Leggett, �Path integral approach to quantum brownian

motion,� Physica A, vol. 121A, pp. 587�616, 1983.

[6] R. P. Feynman and F. L. V. Jr., �The theory of a general quantum system interacting

with a linear dissipative system,� Annals of Physics, vol. 281, pp. 547�607, 2000.

[7] A. O. Caldeira and A. J. Leggett, �Quantum tunnelling in a dissipative system,�

Annals of Physics, vol. 149, pp. 374�456, 1983.

[8] M. W. Y. Tu and W. M. Zhang, �Non-markovian decoherence theory for a double-dot

charge qubit,� Physical Review B, vol. 78, no. 235311, 2008.

97



Bibliography

[9] J. S. Jin, M. W. Y. Tu, W. M. Zhang, and Y. Yan, �Non-equilibrium quantum theory

for nanodevices based on the feynmanvvernon in�uence functional,� New Journal of

Physics, vol. 12, no. 083013, 2010.

[10] L. Diósi, N. Gisin, and W. T. Strunz, �Non-markovian quantum state di�usion,�

Physical Review A, vol. 58, pp. 1699�1712, 1998.

[11] W. T. Strunz, L. Diósi, and N. Gisin, �Open system dynamics with non-markovian

quantum trajectories,� Physical Review Letter, vol. 82, pp. 1801�1805, 1999.

[12] L. Diósi and W. T. Strunz, �The non-markovian stochastic schrödinger equation for

open systems,� Physics Letters A, vol. 235, pp. 569�573, 1997.

[13] X. Zhao, W. Shi, L. A. Wu, and T. Yu, �Fermionic stochastic schrödinger equa-

tion and master equation: An open-system model,� Physical Review A, vol. 86, no.

032116, 2012.

[14] W. Shi, X. Zhao, and T. Yu, �Non-markovian fermionic stochastic schrödinger equa-

tion for open system dynamics,� Physical Review A, vol. 87, no. 052127, 2013.

[15] M. Chen and J. Q. You, �Non-markovian quantum state di�usion for an open quan-

tum system in fermionic environments,� Physical Review A, vol. 87, no. 052108,

2013.

[16] M. Büttiker and R. Landauer, �Traversal time for tunneling,� Physica Scripta,

vol. 32, pp. 429�434, 1985.

[17] Z. S. Gribnikov and G. I. Haddad, �Time-dependent electron tunneling through

time-dependent tunnel barriers,� Journal of Applied Physics, vol. 96, pp. 3831�3838,

2004.

[18] N. N. Bogolyubov, �On the theory of super�uidity,� Journal of Physics (USSR),

vol. 11, pp. 23�32, 1947.

98



Bibliography

[19] M. O. Scully and M. S. Zubairy, �Quantum optics,� Cambridge, pp. 48�54, 1997.

[20] A. Das, �Field theory: a path integral approach,� World Scienti�c, p. Chapter 5,

2006.

[21] K. E. Cahill and R. J. Glauber, �Density operators for fermions,� Physical Review

A, vol. 59, pp. 1538�1555, 1999.

[22] M. Combescure and D. Robert, �Fermionic coherent states,� Journal of Physics A,

vol. 45, no. 244005, 2012.

[23] K. Blum, �Density matrix theory and applications,� Springer, 2012.

[24] H. J. Carmichael, �Statistical methods in quantum optics volume 1,� Springer, p. 5,

2002.

[25] W. T. Strunz and T. Yu, �Convolutionless non-markovian master equations and

quantum trajectories: Brownian motion,� Physical Review A, vol. 69, no. 052115,

2004.

[26] W. Li and L. E. Reichl, �Floquet scattering through a time-periodic potential,�

Physical Review A, vol. 60, pp. 15 732�15 741, 1991.

[27] P. K. Tien and J. P. Gordon, �Multiphoton process observed in the interaction of

microwave �elds with the tunneling between superconductor �lms,� Physical Review,

vol. 129, pp. 647�651, 1963.

[28] G. B. Arfken and H. J. Weber, �Mathematical methods for physicists,� Elsevier

Academic Press, pp. 676�677, 2005.

[29] G. Auletta, M. Fortunato, and G. Parisi, �Quantum mechanics,� Cambridge, pp.

147�148, 2009.

99



Bibliography

[30] C. Y. Lin and W. M. Zhang, �Transient quantum transport theory in nanoelectronic

devices,� Master thesis, 2012.

[31] J. S. Jin, W. M. Zhang, X. Q. Li, and Y. J. Yan, �Noise spectrum of quantum trans-

port through quantum dots: a combined e�ect of non-markovian and cotunneling

processes,� Arxiv, no. 1105.0136, 2012.

[32] H. J. Carmichael, �Statistical methods in quantum optics volume 1,� Springer, p. 8,

2002.

[33] G. P. Berman, E. N. Bulgakov, D. K. Campbell, and A. F. Sadreev, �Resonant

tunneling in time-periodically modulated semiconductor nanostructures,� Physica

B, vol. 225, pp. 1�22, 1996.

100


