Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45402
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福(King-Fu Lin)
dc.contributor.authorShun-Hsiang Changen
dc.contributor.author張舜翔zh_TW
dc.date.accessioned2021-06-15T04:18:14Z-
dc.date.available2012-12-29
dc.date.copyright2009-12-29
dc.date.issued2009
dc.date.submitted2009-12-01
dc.identifier.citation[1] Martin A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution.” Prog. Photovolt: Res. Appl. 2009, 17,183–189.
[2] M. Grätzel. “Photovoltaic and photoelectrochemical conversion of solar energy.” Phil. Trans. R. Soc. A, 2007, 365, 993–1005.
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables.” Prog. Photovolt: Res. Appl. 2009, 17, 85–94
[4] M. Grätzel, “Photoelectrochemical cells.” Nature, 2001, 414, 338.
[5] L. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells.” Appl. Phys. Lett., 2004, 84, 2433.
[6] E. Barsoukov, J. R. Macdonald, “Impedance spectroscopy; Theory, experiment, and applications” 2nd ed, Wiley interscience, 2005.
[7] W. West, Proc. Vogel Centennial Symp., Photogr. Sci. Eng. 1984, 18, 35.
[8] H. Tsubomura, M. Matsumura, Y. Noyamura, T. Amamyiya, “Dye sensitized zinc-oxide-aqueous-electrolyte-platinum photocell.” Nature, 1976, 261, 402.
[9] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film.” Nature, 1991, 353, 737.
[10] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 Solar Cells.” J. Phys. Chem. B 1997, 101, 2576-2582.
[11] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, M. Grätzel, “Acid-base equilibria of (2,2’-bipyridyl-4,4’-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania.” Inorg. Chem, 1999, 38, 6298-6305.
[12] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 Solar Cell.” J. Phys. Chem. B, 2003, 107, 8981-8987.
[13] Md. K. Nazeeruddin, P. Péchy, M. Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex.” Chem. Commun, 1997, 1705.
[14] A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems.” Chem. Rev, 1995, 95, 49-68.
[15] A. Hagfeldt, M. Grätzel, “Molecular photovoltaics.” Acc. Chem. Res. 2000, 33, 269-277.
[16] S. M. Zakeeruddin, Md. K. Nazeeruddin, R. Humphry-Baker, P. Péchy, P. Quagliotto, C. Barolo, G. Viscardi, M. Grätzel, “Design, synthesis, and spplication of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films.” Langmuir 2002, 18, 952-954.
[17] P. Wang, S. M. Zakeeruddin, J. E. Moser, Md. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte.” nature materials, 2003, 2, 402-403.
[18] S. Uchida, “http://kuroppe.tagen.tohoku.ac.jp/~dsc/dye/collection.htm” Associate Professor of Research Center for Advanced Science and Technology, 2009.
[19] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, “Highly efficient sensitization of titanium dioxide.” J. Am. Chem. Soc. 1985, 107, 2988-2990.
[20] N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 Solar Cells.” J. Phys. Chem. B 2000, 104, 8989-8994.
[21] N. -G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. -J. Shin, “Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films.” Adv. Mater. 2005, 17, 2349-2353.
[22] S. Uchida, M. Tomiha, N. Masaki, A. Miyazawa, H. Takizawa, “Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28GHz microwave irradiation.” Sol. Energy Mater. Sol. Cells, 2004, 81 135–139.
[23] H. Lindström, A. Holmberg, E. Magnusson, S. -E. Lindquist, L. Malmqvist, A. Hagfeldt, “A new method for manufacturing nanostructured electrodes on plastic substrates.” Nano Lett., 2001, 1, 97-100.
[24] T. Miyasaka, M. Ikegami, Y. Kijitori, “Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania.” J. Electrochem. Soc., 2007, 154 , A455-A461.
[25] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes.” Chem. Commun., 2007, 4767–4769.
[26] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, “A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate.” Sol. Energy Mater. Sol. Cells, 2006, 90, 574–581.
[27] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel row cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells.” Sol. Energy Mater. Sol. Cells, 2001, 70, 85-101
[28] P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, M. Grätzel, “A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells.” J. Am. Chem. Soc. 2004, 126, 7164-7165.
[29] J. E. Bara, S. Lessmann, C. J. Gabriel, E. S. Hatakeyama, R. D. Noble, D. L. Gin, “Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes” Ind. Eng. Chem. Res. 2007, 46, 5397-5404.
[30] Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Grätzel, “The 2,2,6,6-tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells.” Adv. Funct. Mater. 2008, 18, 341–346.
[31] S. Günes, N. S. Sariciftci, “Hybrid solar cells.” Inorganica Chimica Acta, 2008, 361, 581–588.
[32] K. Tennakone, G. R. R. A Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, “A dye-sensitized nano-porous solid-state photovoltaic cell.” Semicond. Sci. Tech., 1995, 10, 1689.
[33] K. Tennakone, G. K. R. Senadeera, D. B. R. A. De Silva, I. R. M. Kottegoda, Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector.” Appl. Phys. Lett., 2000, 77, 2367.
[34] .R.R.A. Kumaraa, A. Konnoa, G.K.R. Senadeerab, P.V.V. Jayaweerab, D.B.R.A. De Silvab, K. Tennakoneb, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propylsulphide.” Sol. Energy Mater. Sol. Cells, 2001, 69, 195–199.
[35] L. S. Mende, M. Grätzel, “TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells.” Thin Solid Films, 2006, 500, 296 – 301.
[36] Wendy U. Huynh, J. J. D., A. Paul Alivisatos, “Hybrid Nanorod-Polymer Solar Cells.” Science, 2002, 295, 2425.
[37] D. B.Gebeyehu, C.J., N.S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, “Hybrid solar cells base on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials.” Synth. Met. 2002, 125, 279.
[38] T. M. Takenobu, Y. Iwasa, T. Mitani, “Synthesis of low melting hole conductor systems base on triarylamines and application in dye sensitized solar cells.” Synth. Met. 2001, 121, 1573.
[39] A. F. Nogueira, J. R. Durrant, M. A. De Paoli, “Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte.” Adv. Mater., 2001, 13, 11, 826.
[40] E. Stathatos, P. Lianos, U. L. Stangar, B. Orel, “A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol-gel route.” Adv. Mater., 2002, 14, 5, 354.
[41] T. C. Wei, C. C. Wan, Y. Y. Wang, “Preparation and characterization of a micro-porous polymer electrolyte with cross-linking network structure for dye-sensitized solar cell.” Sol. Energy Mater. Sol. Cells, 2007, 91, 1892.
[42] P. J. Li, J. H. Wu, M. L. Huang, S. C. Hao, Z. Lan, Q. H. Li, S. J. Kang, “The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature.” Electrochim. Acta, 2007, 53, 903.
[43] P. Petrov, I. Berlinova, C. B. Tsvetanov, S. Rosselli, A. Schmid, A. B. Zilaei, T. Miteva, M. Dürr, A. Yasuda, G. Nelles, “High-molecular-weight polyoxirane copolymers and their use in high-performance dye-sensitized solar cells.” Macromol. Mater. Eng., 2008, 293, 598.
[44] C. W. Tu, K. Y. Liu, A. T. Chien, M. H. Yen, T. H. Weng, K. C. Ho, K. F. Lin, “Enhancement of photocurrent of polymer-gelled dye-sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets.” J. Polym. Sci. A, 2008, 46, 47.
[45] C. W. Tu, K. Y. Liu, A. T. Chien, C. H. Lee, K. C. Ho, K. F. Lin, “Performance of gelled-type dye-sensitized solar cells associated with glass transition temperature of the gelatinizing polymers.” Euro. Polym. J., 2008, 44, 608.
[46] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells.” Electrochimica Acta 2001, 46, 3457–3466.
[47] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder.” Sol. Energy Mater. Sol. Cells, 1996 44 99-117.
[48] T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black cunter electrodes.” J. Electrochem. Soc., 2006, 153, 12, A2255-A2261.
[49] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I-/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells.” J. Photochem. Photobiol. A, 2004, 164, 153–157.
[50] R. Senadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium.” Chem. Commun., 2005, 2259–2261.
[51] P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800.
[52] F. H. Hurley, T. P. Wier, “Electrodeposition of metals from fused quaternary ammonium salts.” J. Electrochem. Soc., 1951, 98, 203-206.
[53] P. T. Anastas, J. B. Zimmerman, “Peer Reviewed: Design Through the 12 Principles of Green Engineering.” Environ. Sci. Technol., 2003, 37, 94A.
[54] Roger Sheldon, “Catalytic reactions in ionic liquids.” Chem. Commun. 2001, 2399 – 2407.
[55] Y. Chauvin, H. Olivier-Bourbigou, CHEMTECH, 1995, 25, 26.
[56] T. Welton, “Room-temperature ionic liquids. solvents for synthesis and catalysis.” Chem. Rev., 1999, 99, 2071.
[57] Y. Ishida, H. Miyauchi, K. Saigo, “Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality.” Chem. Commun., 2002, 2240.
[58] K. Qiao, Y. Deng, “Alkylations of benzene in room temperature ionic liquids modified with HCl.” J. Mol. Catal. A, 2001, 171, 81–84.
[59] M. J. Earle, P. B. McCormac, K. R. Seddon “Regioselective alkylation in ionic liquids.” Chem. Commun., 1998, 2245 – 2246.
[60] D. A. Jaeger, C. E. Tucker, “Diels-alder reactions in ethylammonium nitrate, a low-melting fused salt.” Tetrahedron lett., 1989, 30, 1785.
[61] S. Park, R. J. Kazlauskas “Biocatalysis in ionic liquids – advantages beyond green technology.” Curr. Opin. Biotecnol., 2003, 14, 432.
[62] J. G. Huddleston, H. D. Willauer, Richard P. Swatloski, Ann E. Visser, Robin D. Rogers, “Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction.” Chem. Commun., 1998, 16, 1765.
[63] C. E. Song, E. J. Roh, “Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid.” Chem. Commun., 2000, 837–838.
[64] S.K. Poole, C.F. Poole, “Chemical interactions as a possible limitation on the useful solvent properties of liquid alkylammonium salts.” J. Chromatogr., 1988, 435, 17.
[65] S. C.-Broch, A. Berthod, D. W. Armstrong, “Ionic matrices for matrix-assisted laser desorption ionization time-of-flight detection of DNA oligomers.” Rapid Commum. Mass Spectrom., 2003, 17, 553.
[66] H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, “An electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt.” J. Am. Chem. Soc., 1975, 97, 3264.
[67] M. Doyle, S. K. Choi, G. Proulx, “High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites.” J. Electrochem. Soc. 2000, 147, 34.
[68] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator.” Chem. Commun., 2002, 374.
[69] R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, “Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid.” J. Fluorine Chem., 1999, 99, 1-3.
[70] P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Grätzel, “A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells.” J. Phys. Chem. B, 2003, 107, 13280.
[71] D.W. Schaefer, J.E. Mark, “Polymer based molecular composites.” MRS Symposium Proceedings, Pittsburgh, 1990, 171, 45-50.
[72] K.P. Bhattacharyya, S.S. Gupta, “Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review.” Adv. Colloid Interfac. Sci. 2008, 140, 114-131.
[73] C. J. Barbé, F. Árendse., P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic application.” J. Am. Cera. Soc., 1997, 80, 3157.
[74] 翁頂翔,“高分子及其蒙托石奈米複合材料在膠態光敏型太陽能電池上的應用”,國立臺灣大學高分子科學與工程學研究所, 碩士論文, 2007.
[75] Q. Wang, J.-E. Moser, M. Grätzel,“ Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.” J. Phys. Chem. B, 2005, 109, 14945-14953.
[76] K. M. Lee, V. Suryanarayanan, K. C. Ho, “ A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene).” Journal of Power Sources, 2008, 185, 1605–1612.
[77] K. Y. Liu, C. L. Hsu, S. H.Chang, J. G. Chen, K. C. Ho, K. F. Lin, “Synthesis and characterization of cross-linkable ruthenium complex dye and its application of dye-sensitized solar cells.” J. Polym. Sci. A. (Accept)
[78] D. Wei, H. E. Unalan, D. Han, Q. Zhang, L. Niu, G. Amaratunga, T. Ryhanen,“ A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate.” Nanotechnology, 2008, 19, 424006.
[79] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, “Low viscosity ionic liquids based on organic salts of the dicyanamide anion.” Chem. Commun., 2001, 16, 1430.
[80] Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Grätzel, P. Wang, “Dye-sensitized solar cells with solvent-free ionic liquid electrolytes.” J. Phys. Chem. C, 2008, 112, 13775–13781.
[81] C. H. Lee, “Novel applications of the exfoliated montmorillonite on nanocomposites.” National Taiwan University Graduate Institute of Materials Science and Engineering College of Engineering, Master Thesis, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45402-
dc.description.abstract本研究主要分為兩大部份,第一個部份利用本實驗室所研發帶有交聯官能基的染料Ru-C,與本論文中所合成的帶有丙烯酸基的離子液體1-methyl- 3-[2-[(1-oxo-2-propenyl)oxy]-ethyl]-imidazilium iodide (DIL)單體在二氧化鈦薄膜上行聚合反應,達到二氧化鈦表層聚合改質的目的,並以元件測試來觀察其差異。第二部份主要在於膠化離子液體的部份,利用帶丙烯酸基離子液體聚合以及共聚合成高分子製作成膠態電解質,並利用其膠態電解質製作太陽能電池元件。
在第一部份中利用帶丙烯酸基離子液體單體與帶有乙烯交聯官能基的染料Ru-C結合,使得Ru-C染料可以在二氧化鈦表面聚合,不易從二氧化鈦表面脫附,在元件效率方面,利用1-methyl-3-propylimidazolium iodide(MPII)以及乙腈(Acetonitrile, ACN)兩種不同的電解質系統,以及利用DIL和1-methyl-3- [2-[(1-oxo-2-propenyl)oxy]-ethyl]-imidazilium dicyanamide (DILdca)兩種帶不同負離子的DIL單體在二氧化鈦表面聚合。在利用MPII的系統中,其效率並沒有明顯的提昇,而在利用乙腈的系統中,DIL濃度在10-3M的時候可以達到5.35%的效率,但利用DILdca離子液體單體在二氧化鈦表層聚合,效率下降至4.87%。
第二部份利用DIL單體聚合,形成帶有離子液體官能基的PDIL高分子,將之分別加入MPII以及1-methyl-3-ethylimidzolium dicyanamide (MEIdca)離子液體中,形成膠態離子液體電解質,觀察其在染料敏化太陽能電池(DSSC)中效率的差異及變化,而在這個系統中最高可以達到5.34%。由於PDIL的玻璃轉化溫度(Τg)略高於室溫,因此在DIL中加入低Tg的丙烯酸甲酯(Methyl acrylate, MA)單體進行共聚合反應,得到較低Tg的高分子後,測試到其在膠態DSSC中光電轉換效率,但結果不如預期,效率反而下降至3.52%。
zh_TW
dc.description.abstractThis research mainly focused on the application of new type ionic liquid monomer carrying acrylate functional groups on dye sensitized solar cell (DSSC). There are two major parts in this research. For the first part, we synthesized 1-methyl-3- [2-[(1-oxo-2-propenyl)oxy]- ethyl]-imidazilium iodide (DIL), an ionic liquid monomer carrying acrylic functional group, and polymerized it with the crosslinkable ruthenium dye Ru-C on the titanium dioxide porous surface. It was expected that owing to the crosslinking of Ru-C dye with DIL, the fabricated DSSC would have not only better stability but also higher conversion efficiency. For the second part, we used the polymerized DIL (PDIL) to gel the ionic liquids and prepared the gel-type electrolyte system for DSSC.
In the first part of this research, 1-methyl-3-[2-[(1-oxo-2-propenyl)oxy] -ethyl]-imidazilium iodide (DIL) was successfully synthesized and characterized. By copolymerizing with crosslinkable Ruthenium, Ru-C, it formed a stable and functional layer on the TiO2 thin film, which was able to withstand the dissolution by NaOH aqueous solution. The performance of fabricated DSSC was studied by using the liquid electrolyte systems with acetonitrile(ACN) volatile solvent and with 1-methyl-3-propyl-imidazolium iodide (MPII) ionic liquid solvent respectively. Although there was no significant change of performance for the MPII system, the efficiency was increased slightly from 5.26% to 5.35% for the ACN system as the DIL concentration was 10-3M. Besides, when the counterion of DIL was changed to dicyanamide, the efficiency droped to 4.87%.
In the second part, DIL was polymerized and used to gel the PMII and 1-methyl-3-ethylimidzolium dicyanamide (MEIdca) ionic liquid electrolyte systems, respectively for DSSC. The highest conversion efficiency of farbricated DSSC reached to 5.34% with MPII and 4.51% with MEIdca. In order to lower the Tg of PDIL, DIL was copolymerized with methyl acrylate (MA). However, although the Tg was decreased, the conversion efficiency also dropped to 3.52%.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:18:14Z (GMT). No. of bitstreams: 1
ntu-98-R96527045-1.pdf: 4728549 bytes, checksum: 36cb4edca7e1d16ace145e3f26cd94c1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsCHAPTER 1 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
I 無機太陽能電池 2
II 有機太陽能電池 3
1.3 文獻回顧與原理 7
1.3.1 太陽能電池之檢測 7
1.3.2 染料敏化太陽能電池 16
1.4 離子液體簡介 35
1.5 實驗動機與架構 41
CHAPTER 2 實驗設備與方法 43
2.1 實驗材料 43
2.2 實驗設備 44
2.3 合成方法 45
2.3.1 1-Methyl-3-[2-[(1-oxo-2-propenyl)oxy]-ethyl]-imidazilium iodide (DIL)的製備[29] 45
2.3.2 1-Methyl-3-propylimidazolium iodide(MPII)的製備 47
2.3.3 1-Methyl-3-ethylimidzolium dicyanamide (MEIdca)的製備 47
2.3.4 DIL的聚合製備 48
2.3.5 二氧化鈦鍍液的製備 48
2.4 試片準備 48
2.4.1 測量紫外光/可見光吸收光譜儀樣品製備 48
2.4.2 NMR之樣品製備 49
2.4.3 DSC之樣品製備 49
2.4.4 工作電極二氧化鈦表面塗布PDIL的製備 49
2.4.5 薄膜電極的製備 49
2.4.6 液態電解質之製備 52
2.4.7 膠態電解質的製備 53
2.4.8 元件組裝 53
2.4.9 元件封裝 55
2.5 太陽能電池光電化學測試 55
2.5.1 光電流-電壓特徵曲線(Photocurrent-Voltage Characterization) 55
2.5.2 交流阻抗分析(AC Impedance ) 56
CHAPTER 3 結果與討論 57
3.1 DIL與PDIL之結構鑑定 57
3.2 利用DIL與RU-C染料表面交聯 58
3.2.1 紫外光/可見光吸收光譜儀檢測 59
3.2.2 表面聚合改質元件探討 61
3.3 PDIL在電解質中的應用 72
3.3.1 以PDIL製作膠態電解質 72
3.3.2 PDIL與MA共聚合製作膠態電解質 81
3.4 元件長效性測試 84
CHAPTER 4 結論 87
CHAPTER 5 參考文獻 89
附錄 99
交流阻抗測試模擬對照圖 99
蒙托土 113
脫層之奈米片狀蒙托石水溶液的製備[81] 115
利用脫層蒙托石膠化離子液體 115
dc.language.isozh-TW
dc.title帶丙烯酸基離子液體單體在染料敏化太陽能電池上的應用zh_TW
dc.titleApplications of Ionic Liquid Monomers Affixing Acrylic Group on Dye-sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川(Kun-Chuan Ho),廖文彬(Wen-Bin Liau)
dc.subject.keyword染料敏化太陽能電池,膠態電解質,離子液體,可交聯染料,聚合離子液體,zh_TW
dc.subject.keyworddye-sensitized solar cells,ionic liquid,gel electrolyte,crosslinkable dye,polymerized ionic liquid,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2009-12-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
4.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved