Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁儷禎
dc.contributor.authorKeng-Lin Leeen
dc.contributor.author李庚霖zh_TW
dc.date.accessioned2021-06-15T04:12:56Z-
dc.date.available2013-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-22
dc.identifier.citation楊志堅、蔡良庭(2008)。評估取樣權重於檢定Likert問卷之測量恆等性研究。 「中華心理學刊」,50,257-269。
Bentler, P. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.
Bollen, K. A. (1989). Structural equations with latent variables. Oxford, England: John Wiley & Sons.
Brannick, M. T. (1995). Critical comment on applying covariance structure modeling. Journal of Organizational Behavior, 16, 201-213.
Byrne, B. M., Shavelson, R. J., & Muthen, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456-466.
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464-504.
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233-255.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
D'Agostino, R. B. (1971). Second look at analysis of variance on dichotomous data. Journal of Educational Measurement, 8, 327-333.
Ding, L., Velicer, W. F., & Harlow, L. L. (1995). Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2, 119-144.
French, B. F., & Finch, W. H. (2006). Confirmatory factor analytic procedures for the determination of measurement invariance. Structural Equation Modeling, 13, 378-402.
Hertzog, C., van Alstine, J., Usala, P. D., Hultsch, D. F., & Dixon, R. (1990). Measurement properties of the Center for Epidemiological Studies Depression Scale (CES-D) in older populations. Psychological Assessment, 2, 64-72.
Horn, J. L., & McArdle, J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18, 117-144.
Hu, L.-T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424-453.
Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409-426.
Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631-639.
Kaplan, D. (1989). Power of the likelihood ratio test in multiple group confirmatory factor analysis under partial measurement invariance. Educational and Psychological Measurement, 49, 579-586.
Kelloway, E. (1995). Sturctural equation modelling in perspective. Journal of Organizational Behavior, 16, 215-224.
Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fits in structural equation modeling. Structural Equation Modeling, 10, 333-351.
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li., W. (2005). Applied Linear Statistical Models (5 ed.). New York: McGraw-Hill.
Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: Practical and theoretical issues. Multivariate Behavioral Research, 32, 53-76.
Lunney, G. H. (1970). Using analysis of variance with a dichotomous dependent variable: An empirical study. Journal of Educational Measurement, 7, 263-269.
McDonald, R. P. (1989). An index of goodness-of-fit based on noncentrality. Journal of Classification, 6, 97-103.
Meade, A. W., & Bauer, D. J. (2007). Power and precision in confirmatory factor analytic tests of measurement invariance. Structural Equation Modeling, 14, 611-635.
Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93, 568-592.
Meade, A. W., & Lautenschlager, G. J. (2004). A monte-carlo study of confirmatory factor analytic tests of measurement equivalence/invariance. Structural Equation Modeling, 11, 60-72.
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525-543.
Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical Care, 44, S69-S77.
Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin, 114, 552-566.
Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 27, 229-239.
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507-514.
Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24, 148-169.
Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W. R. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. Journal of Business Research, 58, 935-943.
Steenkamp, J.-B. E., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25, 78-90.
Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-square statistics. Psychometrika, 50, 253-263.
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4-69.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45296-
dc.description.abstract使用一份量表比較不同組群受測者之分數時,應先檢測此量表是否具有測量恆等性。倘若該量表具有測量恆等性,則量表分數方能不受樣本特性或其他因素的影響,正確反應不同組群受測者的真實特質。多組群驗證性因素分析為研究者常用以檢驗測量恆等性之方法,而卡方差異檢定與適合度指標之用途即評估各恆等性層次之指標。Chen(2007)曾建議,當△CFI值低於或等於-.01且△SRMR值高於或等於.03,或是△CFI值低於或等於-.01且△RMSEA值高於或等於.015時,表示該量表不具有因素負荷量恆等性。Meade等人(2008)則認為應採用△CFI指標,而以-.002作為參照標準。前述學者建議的參照標準不盡相同,且Chen建議的雙指標可能會受因素數目之影響。本研究即藉由操弄每組樣本人數、變項因素比、因素數目、因素負荷量、不恆等比例、及不恆等形式以評估卡方差異檢定、Chen及Meade等人建議的適合度指標參照標準於因素負荷量恆等性檢驗之表現。研究結果顯示,卡方差異檢定能正確進行因素負荷量恆等性檢驗,僅在每組樣本數為150人的情境表現較差;Chen建議的雙指標僅在單因素且因素負荷量為.6時方能給予正確的結果;Meade等人建議的△CFI指標之實徵檢定力雖有良好的表現,但有過高的實徵型一錯誤率,僅在每組樣本人數為500人且因素負荷量為.6時,方能給予正確的結果。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T04:12:56Z (GMT). No. of bitstreams: 1
ntu-99-R93227102-1.pdf: 457942 bytes, checksum: bb035d976433d7ea76da9ec2ccd596eb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents第一章 緒論 1
第一節 前言 1
第二節 測量恆等性之定義與層次 4
第三節 因素負荷量恆等性檢驗方法 7
第四節 影響因素負荷量恆等性檢驗表現之因子 15
第二章 研究方法 25
第一節 研究變項 25
第二節 模擬資料產生歷程與分析 28
第三章 研究結果 31
第一節 模擬資料之分配 31
第二節 模型參數估計未收斂情形 32
第三節 適合度指標於結構恆等性檢驗之表現 33
第四節 適合度指標於因素負荷量恆等性檢驗之實徵型一錯誤率的表現 34
第五節 適合度指標於因素負荷量恆等性檢驗之實徵檢定力的表現 37
第四章 結論與討論 45
第一節 各適合度指標實徵型一錯誤率與實徵檢定力之表現 45
第二節 建議 48
第三節 研究限制與未來研究方向 49
參考文獻 51
附錄 55
dc.language.isozh-TW
dc.subject適合度指標參照標準zh_TW
dc.subject因素負荷量恆等性zh_TW
dc.subject多組群驗證性因素分析zh_TW
dc.subject卡方差異檢定zh_TW
dc.subjectcutoff of fit indexen
dc.subjectMetric invarianceen
dc.subjectmultigroup confirmatory factor analysisen
dc.subjectchi-square difference testen
dc.title因素負荷量恆等性檢驗:平衡設計下適合度指標參照標準之評估zh_TW
dc.titleTesting Metric Invariance: Evaluation of the Cutoffs of Fit Indices under Balanced Designen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊志堅,姚開屏,蔡蓉青
dc.subject.keyword因素負荷量恆等性,多組群驗證性因素分析,卡方差異檢定,適合度指標參照標準,zh_TW
dc.subject.keywordMetric invariance,multigroup confirmatory factor analysis,chi-square difference test,cutoff of fit index,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2010-01-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
447.21 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved