Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45295
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.authorChing Linen
dc.contributor.author林倞zh_TW
dc.date.accessioned2021-06-15T04:12:53Z-
dc.date.available2010-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-22
dc.identifier.citation1. B. C. Thompson and J. M. J. Frechet, Angew. Chem. Int. Ed. 2008, 47, 58.
2. B. Oregan, M. Gratzel, Nature 1991, 353, 737.
3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
4. C. J. Brabec, Sol. Energy Mater. Sol. Cells 2004, 83, 273-292.
5. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
6. V. D. Mihailetchi, H. –X. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, and P. W. M. Blom, Appl. Phys. Lett. 2006, 89, 012107.
7. K. M. Coakley and M. D. McGehee, Chem. Mater. 2004, 16, 4533.
8. W. –L. Ma, C. –Y. Yang, X. –O. Gong, K. –H. Lee, and A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
9. S. Berson, R. De Bettignies, S. Bailly, and S. Guillerez, Adv. Funct. Mater. 2007, 17, 1377.
10. A. J. Moule and K. Meerholz, Adv. Mater. 2008, 20, 240.
11. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. –H. Lee, A. J. Heeger, Nat. Photonics 2009, 3, 297.
12. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 70, 1789.
13. H. –H. Liao, L. –M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303.
14. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater., 2006, 16, 2016.
15. a) W. –L. Ma, C. –Y. Yang, X. Gong, K. –H. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617; b) P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater., 2006, 16, 1669.
16. K. –G. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Adv. Mater., 2007, 19, 2445.
17. C. –W. Chu, H. –C. Yang, W. –J. Hou, J. –S. Huang, G. Li, and Y. Yang, Appl. Phys. Lett., 2008, 92, 103306.
18. P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater., 2006, 16, 1669.
19. a) C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, Nano Lett., 2008, 8, 2806; b) B. Zimmermann, U. Wurfel, M. Niggemann, Sol. Energy Mater. Sol. Cells 2009, 93, 491; c) Y. –H. Chang, S. –R. Tseng, C. –Y. Chen, H. –F. Meng, E. –C. Chen, S. –F. Horng, C. –S. Hsu, Org. Electron. 2009, 10, 741.
20. W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 2007, 90, 253511.
21. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2008, 92, 686.
22. X Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 2005, 5, 579.
23. B. Paci, A. Generosi, V. R. Albertini, R. Generosi, P. Perfetti, R. De Bettignies, and C. Sentein, J. Phys. Chem. C, 2008, 112, 9931.
24. J. A. Hauch, P. Schilinsky, S. A. Choulis, S. Rajoelson, and C. J. brabec, Appl. Phys. Lett. 2008, 93, 103306.
25. a) S. Miyanishi, K. Tajima, K. Hashimoto, Macromolecules 2009, 42, 1610-1618; b) J. A. Hauch, P. Schilinsky, S. A. Choulis, S. Rajoelson, C. J. Brabec, Appl. Phys. Lett. 2008, 93, 103306; c) B. Paci, A. Generosi, V. Rossi Albertini, R. Generosi, P. Perfetti, R. de Bettignies, C. Sentein, J. Phys. Chem. C 2008, 112, 9931-9936; d) C. –Y. Chang, C. –T. Chou, Y. –J. Lee, M. –J. Chen, F. –Y. Tsai, Org. Electron. 2009, 10, 1300-1306.
26. (a) K. Kalyanasundaram, M. Gratzel, Coordin. Chem. Rev., 1998, 177, 347; (b) J. –H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nuesch, F. De Angelis, M. Gratzel, M. K. Nazeeruddin, J. Am. Chem. Soc., 2007, 129, 4680.
27. J. R. Durrant, S. A. Haque, E. Palomares, Coordin. Chem. Rev., 2004, 248, 1247.
28. (a) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, Chem. Commun. 2002, 1464; (b) E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc., 2003, 125, 475.
29. (a) A. Zaban, S. G. Chen, S. Chappel and B. A. Gregg, Chem. Commun., 2000, 2231; (b) J. Xia, N. Masaki, K. Jiang and S. Yanagida, Chem. Commun., 2007, 138
30. K. M. P. Bandaranayake, M. K. Indika Senevirathna, P. M. G. M. Prasad Weligamuwa and K. Tennakone, Coordin. Chem. Rev., 2004, 248, 1277.
31. (a) S. Ito, N.-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chem. Commun., 2006, 4004; (b) X. Liu, Y. Luo, H. Li, Y. Fan, Z. Yu, Y. Lin, L. Chen and Q. Meng, Chem. Commun., 2007, 2847.
32. S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes and J. R. Durrant, Chem. Commun., 2003, 3008.
33. M. Durr, S. Rosselli, A. Yasuda, and G. Nelles, J. Phys. Chem. B, 2006, 110, 21899.
34. T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A-Appl. Mat. 1998, 165, R5
35. M. Katayama, S. Ikesaka, J. Kuwano, H. Koinuma, Y. Matsumoto, Appl. Phys. Lett. 2008, 92, 132107.
36. (a) M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater. 2005, 4, 455-459; (b) A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, Nano Lett. 2007, 7, 2183-2187.
37. M. Durr, S. Rosselli, A. Yasuda, and G. Nelles, J. Phys. Chem. B, 2006, 110, 21899.
38. A. Petrozza, C. Groves, and H. J. Snaith, J. Am. Chem. Soc., 2008, 130, 12912.
39. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nat. Mater., 2005, 4, 607.
40. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, and Michael Gratzel, Thin Solid Films, 2008, 516, 4613.
41. S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and Michael Gratzel, Chem. Commun., 2006, 4004.
42. J. Peet, J. –Y. Kim, N. E. Coates,W. –L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497-500.
43. M. Scharrer, X. Wu, A. Yamilov, H. Cao and R. P. H. Chang, Appl. Phys. Lett., 2005, 86, 151113.
44. M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater., 2004, 16, 639.
45. (a) M. Ritala and M. Leskela, Nanotechnology, 1999, 10, 19; (b) L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen and M. Nieminen, Phys. Stat. Sol. (a), 2004, 201, 1443.
46. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B, 2006, 110, 22652.
47. Y. S. Kim, S. J. Yun, J. Cryst. Growth, 2005, 274, 585.
48. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett., 2005, 86, 151113.
49. T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, J. Phys. Chem. C, 2008, 112, 10303.
50. a) C. –T. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. M. J. Frechet, Appl. Phys. Lett. 2005, 86, 122110; b) V. D. Mihailetchi, H. –X. Xie, B. de Boer, J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699-708; c) V. Shrotriya, Y. Yao, G. Li, Y. Yang, Appl. Phys. Lett. 2006, 89, 063505; d) T. –Y. Chu, O. –K. Song, Appl. Phys. Lett. 2007, 90, 203512.
51. a) G. Li, Y. Yao, H. –C. Yang, V. Shrotriya, G. –W. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636; b) S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 2007, 17, 1377; c) W. –L. Ma, J. –Y. Kim, K. –H. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776; d) S. S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 2009, 9, 507.
52. M. Sundberg, O. Inganas, S. Stafstrom, G. Gustafsson, B. Sjogren, Solid State Commun. 1989, 71, 435-439.
53. a) G. Li, V. Shrotriya, J. –S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864-868; b) A. J. Moule, K. Meerholz, Adv. Mater. 2008, 20, 240-245; c) J. Jo, S. –I. Na, S. –S. Kim, T. –W. Lee, Y. –S. Chung, S. –J. Kang, D. –J. Vak, D. –Y. Kim, Adv. Funct. Mater. 2009, 19, 2398-2406; d) Y. Zhao, S. –Y. Shao, Z. –Y. Xie, Y. –H. Geng, L. –X. Wang, J. Phys. Chem. C 2009, 113, 17235-17239; e) J. –H. Park, J. –S. Kim, J. –H. Lee, W. –H. Lee, K. –W. Cho, J. Phys. Chem. C 2009, 113, 17579-17584; f) S. Bertho, W. D. Oosterbaan, V. Vrindts, J D’Haen, T. J. Cleij, L. Lutsen, J. Manca, D. Vanderzande, Org. Electron. 2009, 10, 1248-1251; g) J. –Y. Ouyang, Y. –J. Xia, Sol. Energy Mater. Sol. Cells 2009, 93, 1592-1597.
54. M. Brinkmann, J. –C. Wittmann, Adv. Mater., 2006, 18, 860-863.
55. J. Jo, S. –S. Kim, S. –I. Na, B. –K. Yu, D. –Yu. Kim, Adv. Funct. Mater. 2009, 19, 866-874.
56. W. –L. Ma, J. –Y. Kim, K. –H. Lee, and A. J. Heeger, Macro. Rap. Commun., 2007, 28, 1776.
57. A. Zaban, S. Ferrere, J. Sprague and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 55.
58. (a) M. Ylilammi, Thin Solid Films, 1996, 279, 124; (b) R. L. Puurunen, J. Appl. Phys., 2005, 97, 121301.
59. (a) V. Shklover, M.-K. Nazeeruddin, S. M. Zakeeruddin, C. Barbe, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen and M. Gratzel, Chem. Mater., 1997, 9, 430; (b) V. Shklover, Yu. E. Ovchinnikov, L. S. Braginsky, S. M. Zakeeruddin and M. Gratzel, Chem. Mater., 1998, 10, 2533.
60. J. R. Durrant, S. A. Haque and E. Palomares, Coordin. Chem. Rev., 2004, 248, 1247.
61. (a) A. Hagfeldt and M. Gratzel, Chem. Rev., 1995, 95, 49; (b) D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, J. Phys. Chem. B, 2000, 104, 2053; (c) Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, J. Phys. Chem. B, 2001, 105, 7424; (d) J. Bisquert, J. Phys. Chem. B, 2004, 108, 2323; (e) H. J. Snaith and L. Schmidt-Mende, Adv. Mater., 2007, 19, 3187.
62. G. Liu and W. Jaegermann, J. Phys. Chem. B, 2002, 106, 5814.
63. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle and D. Cahen, J. Phys. Chem. B, 2001, 105, 6347.
64. B. Karunagaran, S. J. Chung, E. –K. Suh, D. Mangalaraj, Physica B 2005, 369, 129 – 134.
65. T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A-Appl. Mat. 1998, 165, R5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45295-
dc.description.abstract在此研究中,我們致力於解決有機太陽能電池的重要議題;我們的貢獻包括 (1) 提升高分子太陽能電池的穩定性和效率,及(2) 降低染料敏化電池中的電荷再結合率與提升其電荷傳遞效能。我們提出並驗證了,-5 oC低溫乾燥接著熱退火可提升以3甲基嘧啶與富勒烯衍生物的混合層製成的高分子電池中3甲基嘧啶與富勒烯衍生物的介面數量,進而達成高的電池效率;同時因為促使3甲基嘧啶高度結晶,其結晶阻礙了富勒烯衍生物與3甲基嘧啶之間的相分離,而提升了電池的穩定度。延伸應用方面,我們刻意模擬了高分子電池混合層因不適當的溶劑所造成成膜失敗而降低電池效率;經由上述低溫乾燥接著熱退火的技術,我們大大改善了其成膜性與電池效率。對染料敏化電池的貢獻方面,針對以多孔二氧化鈦上鍵結染料所製成的電池,我們利用原子層沈積技術在其多孔二氧化鈦上生成厚度為一埃的高能隙氧化鋁,成功阻擋了二氧化鈦與染料或與電解質之間的電荷再結合;另一方面,我們利用原子層沈積技術在電池的多孔二氧化鈦上生成高純度銳鈦礦,提升其電池的電子傳遞能力。zh_TW
dc.description.abstractIn this study, we conducted multipronged research to address the key issues of organic solar cells; our accomplishments include (1) improved efficiency and stability of polymer solar cell (PSC) by developing a novel low-temperature film-forming process which can be used with halogen-less solvents, and (2) reduced charge recombination and enhanced charge transport in dye-sensitized solar cell (DSSC) by developing interface-modifying thin films formed by low-temperature atomic layer deposition processes. In our PSC work, we demonstrated a film-forming process invloving low-temperature drying (-5 oC) and subsequent annealing for the active layer composed of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The low-temperature process enhanced nucleation of P3HT crystals, producing ample PCBM/P3HT bulk-heterojunction area to improve the efficiency, and forming a P3HT crystal network which served as an immobile frame to prevent PCBM/P3HT phase separation and the corresponding device degradation. Moreover, the low-temperature process could be used with a halogen-less solvent, tetralin, to obtain PSCs with similar device performance as that with the typical halogen-containing solvents. In our DSSC work, we demonstrated significant reduction in charge recombination with a 1 A Al2O3 formed with atomic layer deposition (ALD) on the porous TiO2 electrode, and correlated the improvement to the increase in Fermi level caused by the ALD film. Additionally, we improved the efficiency of DSSCs made with low-temperature sintering by ~70% by overcoating the porous TiO2 electrode with a 2 nm TiO2 film grown by ALD, which had significantly higher electron mobility than the porous TiO2 electrode.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:12:53Z (GMT). No. of bitstreams: 1
ntu-99-D94527009-1.pdf: 15610028 bytes, checksum: 0fc61bb042e8bd5fa27cef3b2eded90a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌..........................II
摘要..........................III
Abstract..........................IV
Table of Contents..........................V
List of Tables..........................VII
List of Figures..........................VIII
Chapter 1 Introduction..........................1
1.1 Overview..........................1
1.1.1 Importance of organic solar cells..........................1
1.1.2 Basics of organic solar cells..........................2
1.1.2.1 Solar energy conversion in organic solar cells..........................2
1.1.2.2 Power conversion efficiency..........................3
1.1.2.3 Standard measurement procedure of PCE..........................5
1.1.2.4 Sources of errors in the PCE measurement..........................6
1.2 Polymer solar cells..........................7
1.2.1 Requirements for high PCE..........................8
1.2.2 Blend of P3HT and PCBM..........................9
1.2.3 Morphology manipulation via film-forming processes..........................10
1.2.4 Effects of blending ratio, solvent, and thickness on PCE..........................11
1.2.5 Lifetime of polymer solar cells..........................12
1.3 Dye-sensitized solar cells..........................14
1.3.1 Working principle..........................14
1.3.2 Keys to enhancing PCE of DSSCs..........................15
1.3.2.1 Charge recombination..........................15
1.3.2.2 Charge transport..........................17
1.3.2.3 Flexibility and portability..........................17
1.4 Objective..........................18
1.4.1 Improving efficiency and stability of PSCs..........................18
1.4.2 Improving efficiency and processibility of DSSCs..........................19
1.4.2.1 Charge recombination barriers for DSSCs..........................19
1.4.2.2 Enhancing charge transport in DSSCs..........................20
Chapter 2 High thermal stability and efficiency of polymer bulk-heterojunction solar cells by low-temperature drying of the active layer..........................22
2.1 Experimental..........................22
2.2 Results and discussion..........................24
2.2.1 Device characteristics..........................24
2.2.2 Morphology of the active layer..........................27
2.2.3 Mechanism of the LT process..........................32
2.3 Summary..........................36
Chapter 3 High-efficiency polymer solar cells fabricated with halogen-less solvent and low-temperature drying..........................38
3.1 Experimental..........................38
3.2 Results and discussion..........................39
3.3 Summary..........................46
Chapter 4 Enhanced performance of dye-sensitized solar cells by an ALD Al2O3 charge-recombination barrier..........................48
4.1 Experimental..........................48
4.2 Results and discussion..........................49
4.3 Summary..........................61
Chapter 5 Enhanced electron transport in low-temperature-processed DSSCs by ALD TiO2 films..........................63
5.1 Experimental..........................63
5.2 Results and discussion..........................64
5.3 Future work..........................68
5.4 Summary..........................69
Chapter 6 Conclusions..........................70
Chapter 7 References..........................73
dc.language.isoen
dc.subject原子層沈積zh_TW
dc.subject太陽能電池zh_TW
dc.subject高分子zh_TW
dc.subject奈米結構zh_TW
dc.subject有機電子元件zh_TW
dc.subjectAtomic Layer Deposition (ALD)en
dc.subjectPhotovoltaic Devicesen
dc.subjectConjugated Polymersen
dc.subjectOrganic Electronicsen
dc.subjectSolar Cellsen
dc.subjectNanostructuresen
dc.title有機太陽能電池之介面與表面形態工程zh_TW
dc.titleInterface and Morphology Engineering for Organic Photovoltaicsen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su),何國川(Kuo-Chuan Ho),王立義(Lee-Yih Wang),薛景中(Jing-Jong Shyue)
dc.subject.keyword太陽能電池,有機電子元件,高分子,奈米結構,原子層沈積,zh_TW
dc.subject.keywordPhotovoltaic Devices,Conjugated Polymers,Organic Electronics,Solar Cells,Nanostructures,Atomic Layer Deposition (ALD),en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2010-01-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
15.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved