Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚(Chi-Yang Chao)
dc.contributor.authorChung-Hsiang Chaoen
dc.contributor.author趙崇翔zh_TW
dc.date.accessioned2021-06-15T04:10:52Z-
dc.date.available2010-02-04
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-28
dc.identifier.citation[1]Scientific American, Chinese version 2008, 72, 60-63.
[2]B. Tian, T. J. Kempa, C. M. Lieber, Chemical Society Reviews 2009, 38, 16-24.
[3]K. M. Coakley, M. D. McGehee, Chemistry of Materials 2004, 16, 4533-4542.
[4]R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, Polymer Reviews 2008, 48, 531-582.
[5]H. Spanggaard, F. C. Krebs, Solar Energy Materials & Solar Cells 2004, 83, 125-146.
[6]H.A.M. van Mullekom, J.A.J.M. Vekemansb, E.E. Havingab, E.W. Meijerb, Materials Science and Engineering 2001, 32, 1-40.
[7]T. A. Skotheim, J. R. Reynolds, Handbook of Conducting Polymers, 3PPrdPP ed., Taylor & Francis Group: Boca Raton, 2006.
[8]M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, J. Pielichowski, Macromolecules 1998, 31, 5051-5058.
[9]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, T. J. Marks, PNAS 2008, 105, 8, 2783-2787.
[10]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Advanced Functional Materials 2005, 15, 1617-1622.
[11]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Materials 2005, 4, 864-868.
[12]J. Roncali, Chemical Reviews 1997, 97, 173-205.
[13]C. Winder, N. S. Sariciftci, Journal of Materials Chemistry 2004, 14, 1077-1086.
[14]Y. Zhou, K. Tvingstedt, F. Zhang, C. Du, W. X. Ni, M. R. Andersson, O. Inganäs, Advanced Functional Materials 2009, 19, 3293-3299.
[15]W. Mammo, S. Admassie, A. Gadisa, F. Zhang,O. Inganäs, M. R. Andersson, Solar Energy Materials & Solar Cells 2007, 91, 1010-1018.
[16]W. C. Wu, C. L. Liu, W. C. Chen, Polymer 2006, 47, 527-538.
[17]G. E. Gunbas, P. Camurlu , I. M. Akhmedov, C. Tanyeli, A. M. Önal, L. Toppare, Journal of Electroanalytical Chemistry 2008, 615, 75-83.
[18]C. L. Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer 2006, 47, 699-708.
[19]G. Zotti, S. Zecchin, G. Schiavon, B. Vercelli, A. Zanelli, Chemistry of Materials 2004, 16, 3667-3676.
[20]B. C. Thompson, L. G. Madrigal, M. R. Pinto, T. S. Kang, L. S. Schanze, J. R. Reynolds, Journal of Polymer Science: Part A: Polymer Chemistry 2005, 43, 1417-1431.
[21]L. Zhang, Q.Y. Zhang, H. Yan, J. P. Zhang, J. W. Gu, H. P. Zhang, F. G. Guo, Synthetic Metals 2009, 159, 2038-2042.
[22]T. Yasuda, T. Yamamoto, Macromolecules 2003, 36, 7513-7519.
[23]X. Zhang, T. T. Steckler, R. R. Dasari, S. Ohira, W. J. Potscavage. Jr, S. P. Tiwari, S. Coppée, S. Ellinger, S. Barlow, J. L. Brédas, B. Kippelen, J. R. Reynolds, S. R. Marder, Journal of Materials Chemistry 2010, 20, 123-134.
[24] L. Zhang, Q. Zhang, H. Ren, H. Yan, J. Zhang, H. Zhang, J. Gu, Solar Energy Materials & Solar Cells 2008, 92, 581-587.
[25]M. Pomerantz, B. Chaloner-Gill, L. O. Harding, J. J. Tseng, W. J. Pomerantz, Journal of the Chemical Society, Chemical Communications 1992, 22, 1672-1673.
[26]D. D. Kenning, S. C. Rasmussen, Macromolecules 2003, 36, 6298-6299.
[27]K. F. Cheng, C. L. Liu, W. C. Chen, Journal of Polymer Science: Part A: Polymer Chemistry 2007, 45, 5872-5883.
[28]Y. Zhu, R. D. Champion, S. A. Jenekhe, Macromolecules 2006, 39, 8712-8719.
[29]A. P. Kulkarni, Y. Zhu, S. A. Jenekhe, Macromolecules 2008, 41, 339-345.
[30]M. C. Stefan, A. E. Javier, I. Osaka, R. D. McCullough, Macromolecules 2009, 42, 30-32.
[31]A. Krasovskiy, P. Knochel, Angewandte Chemie International Edition 2004, 43, 3333-3336.
[32]http://www.organic-chemistry.org/namedreactions/suzuki-coupling.shtm
[33]N. Miyaura, A. Suzuki, Chemical Reviews 1995, 95, 2457-2483.
[34]http://www.organic-chemistry.org/namedreactions/stille-coupling.shtm
[35]B. Pal, W. C. Yen, J. S. Yang, W. F. Su, Macromolecules 2007, 40, 8189-8194.
[36]D. D. Kenning, K. A. Mitchell, T. R. Calhoun, M. R. Funfar, D. J. Sattler, S. C. Rasmussen, Journal of Organic Chemistry 2002, 67, 9073-9076.
[37]L. Wen, S. C. Rasmussen, Journal of Chemical Crystallography 2007, 37, 6, 387-398.
[38]B. A. Dombrow, N. J. Harrison, U.S. Patent 1950, 764253.
[39]Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, W. Yang, Y. Cao, Macromolecular Chemistry and Physics 2006, 207, 511-520.
[40]W. C. Wu, W. C. Chen, Journal of Polymer Research 2006, 13, 441-449.
[41]K. F. Cheng, C. C. Chueh, C. H. Lin, W. C. Chen, Journal of Polymer Science: Part A: Polymer Chemistry 2008, 46, 6305-6316.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45252-
dc.description.abstract本論文是利用不同的聚合方式(GRIM、Universal GRIM、Suzuki偶合)合成含不同電子予體-受體比例的低能隙共聚高分子,以調整共聚高分子的電子結構與光物理特性。共聚高分子的電子予體為3-hexylthiophene (3HT),而電子受體單元為2,3-diethylthieno[3,4-b]pyrazine (ETP);每一個單元皆具有長碳鏈碗基做側鏈修飾,以提升共聚物的溶解度。以GRIM與Universal GRIM的方法僅能有效聚合P3HT,但並無法有效活化含有ETP的雙溴修飾單體,以致於無法得到含有ETP的共聚高分子;而藉由Suzuki偶合則成功的合成出3HT:ETP = 1:1~4:1 (P3HTETP-1-1 ~ -4-1)及fluorene與ETP的共聚高分子(PBF)。共聚高分子皆可溶解於trichlorobenzene中,溶解度隨著3HT比例的增加而增加。各共聚高分子的裂解溫度(Td)在271 ~ 446oC,且隨著3HT的含量上升而較穩定。
各共聚高分子在溶液中的紫外光/可見光的最大吸收(λsol, max)位於580 ~ 730nm,相較於P3HT(440nm)有明顯的紅移,可歸因於主鏈內顯著的電子予體-受體效應。光學能隙(Eg, opt)在1.27eV~1.77eV,隨著ETP比例的增加而下降。共聚高分子的固態吸收則較溶液吸收有不同程度的紅移,取決於共聚高分子的組成。由循環伏安測得各共聚物的電子最高填滿分子軌域(HOMO)在-4.64eV ~ -4.90eV、電子最低未填滿分子軌域(LUMO)在-2.69 eV~ -3.11eV;隨著ETP在共聚高分子內的比例上升,HOMO與LUMO分別上升及下降,但LUMO下降較HOMO上升明顯,電化學能隙(Eg, CV)為1.52 eV~ 2.19eV。這些低能隙的共聚高分子預期將可應用於高分子太陽能電池以提昇太陽光吸收的效率。
zh_TW
dc.description.abstractIn this research, we employed GRIM, Universal GRIM and Suzuki coupling to synthesize low band conjugated copolymers consisting of electron-donating units (3-hexylthiophene, 3HT) and electron-accepting units (2,3-diethylthieno[3,4-b] pyrazine, ETP) in different ratios in order to adjust the electronic structure and photophysical properties of the copolymers. Each unit was decorated with long alkyl chains as side substitutions to enhance the solubility. GRIM and universal GRIM only successfully synthesized poly(3-hexylthiophene) (P3HT) but failed to synthesize any copolymers consisting of ETP owing to the failure in activating di-brominated monomers containing ETP. Copolymers containing 3HT and ETP in 1:1 to 4:1 molar ratio (P3HTETP-1-1 ~ -4-1) as well as fluorene and ETP (PBF) were successfully obtained via Suzuki coupling. These copolymers showed reasonable solubility in TCB while the solubility increased with increasing 3HT to ETP ratio. Decomposition temperatures ranges from 271oC to 446oC and the thermal stability enhanced with increasing 3HT content.
Absorption maxima of these copolymers in TCB solution were extended to longer wavelengths (565~690nm) compared to P3HT (440nm) due to strong intramolecular donor-acceptor interaction. Optical band gaps were 1.27eV~1.77eV, decreasing with increasing ETP ratio in the copolymers. The absorptions in solid state showed red shifts in different magnitudes in comparison with the absorptions in solution, depending on the composition of the copolymers. HOMO levels (-4.64eV ~ -4.90eV) and LUMO levels(-2.69eV ~ -3.11eV), obtained from cyclic voltametry, were raised and lowered respectively with increasing ETP ratio in the copolymer. The change in LUMO was more significant than that in HOMO. These ETP containing low band gap copolymers are potential candidates for polymer solar cells to enhance the light harvesting.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:10:52Z (GMT). No. of bitstreams: 1
ntu-99-R96527016-1.pdf: 2982962 bytes, checksum: 46b7b9d9e9cfd8310135be4f7d8a7bff (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
總目錄 V
圖索引 VII
表索引 IX
第一章、緒論 1
第二章、文獻回顧 5
2-1 導電高分子與太陽能電池工作原理和特性 5
2-1-1 工作原理 5
2-1-2 有機和無機太陽能電池之比較 7
2-1-3 特徵係數 9
2-1-4 能階調整與最適化 9
2-2 P3HT簡介 10
2-2-1 聚合規則排列P3AT的方式 12
2-2-2 鎳催化偶合聚合機制 14
2-2-3 規則排列比例之鑑定 15
2-2-4 紫外/可見光吸收特性 16
2-3 低能隙高分子設計原則 17
2-4 TP文獻回顧 20
2-5 聚合方式 26
2-5-1 Universal GRIM 27
2-5-2 Suzuki偶合 28
2-5-3 Stille偶合 29
2-6 研究動機 29
第三章、實驗方法 31
3-1 實驗藥品 31
3-2 實驗儀器 33
3-3 實驗步驟 34
3-3-1 單體合成 34
3-3-1-1 Br-3HT-Br合成 34
3-3-1-2 Br-ETP-Br合成 35
3-3-1-3 Br-3HT-ETP-3HT-Br合成 37
3-3-1-4 B-3HT-B合成 38
3-3-1-5 B-B3HT-B合成 38
3-3-1-6 B-F-B合成 39
3-3-2 GRIM聚合高分子 40
3-3-2-1 P3HT合成 40
3-3-2-2 PETP與P3HTETP合成 40
3-3-3 Universal GRIM聚合高分子 41
3-3-4 Suzuki偶合聚合高分子 42
3-4 特徵鑑定方法 43
第四章、結果與討論 44
4-1 單體合成與鑑定 44
4-1-1 Br-3HT-Br的合成 44
4-1-2 Br-ETP-Br合成 46
4-1-3 Br-3HT-ETP-3HT-Br的合成 50
4-1-4 B-3HT-B的合成 53
4-1-5 B-B3HT-B的合成 54
4-1-6 B-F-B的合成 55
4-2 GRIM聚合高分子 56
4-2-1 P3HT合成 56
4-2-2 PETP與P3HTETP之合成 59
4-3 Universal GRIM聚合高分子 59
4-3-1 P3HT合成 59
4-3-2 PETP與P3HTETP-2-1之合成 60
4-4 Suzuki偶合聚合高分子 62
4-5 熱裂解分析 63
4-6 光物理特性與電子結構 64
4-6-1 PETP與ETP的紫外/可見光光譜 64
4-6-2 共聚高分子的紫外/可見光光譜 65
4-6-3 電化學分析 69
第五章、結論 72
第六章、建議與未來工 73
第七章、參考文獻 74
dc.language.isozh-TW
dc.title含3-hexylthiophene與2,3-diethylthieno[3,4-b]pyrazine之低能隙共聚高分子開發與研究zh_TW
dc.titleLow Bandgap Conjugated Copolymer containing 3HT and 2,3-dETPen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su),戴子安(Chi-An Dai),陳錦地(Chin-Ti Chen)
dc.subject.keyword低能隙共聚高分子,Poly(3-hexylthiophene),電子最高填滿分子軌域,電子最低未填滿分子軌域,高分子太陽能電池,電子結構工程,zh_TW
dc.subject.keywordlow bandgap,conjugated copolymer,poly(3-hexylthiophene),HOMO,LUMO,polymer solar cell,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2010-01-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved