Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高文媛
dc.contributor.authorChia-Chuan Tsaien
dc.contributor.author蔡佳娟zh_TW
dc.date.accessioned2021-06-15T04:07:21Z-
dc.date.available2010-02-24
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-07
dc.identifier.citation李松柏。2007。台灣水生植物圖鑑,初版,晨星出版有限公司,台中,台灣。
楊遠波、顏聖紘、林仲剛。2001。台灣水生植物圖誌,修訂版,行政院農業委員會,台北,台灣。
Adams III, W. W., C. R. Zarter, V. Ebbert, and B. Demmig-Adams. 2004. Photoprotective strategies of overwintering evergreens. Bioscience 54:41-49.
Adams, W. W., K. Winter, U. Schreiber, and P. Schramel. 1990. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. Plant Physiology 92:1184-1190.
Adams III, W.W., and B. Demmig-Adams. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. Pages 583–604 in G. C. Papageorgiou and Govindjee, editors. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Berlin, Germany.
Albert, N. W., D. H. Lewis, H. Zhang, L. J. Irving, P. E. Jameson, and K. M. Davies. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191-2202.
Allen, D. J., and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6:36-42.
Anderson, J. M. 1986. Photoregulation of the composition, function, and structure of thylakoid membranes. Annual Review of Plant Physiology 37:93-136.
Aro, E. M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta- Bioenergetics 1143:113-134.
Arora, A., and P. K. Singh. 2003. Comparison of biomass productivity and nitrogen fixing potential of Azolla spp. Biomass and Bioenergy 24:175-178.
Bai, J., D. H. Xu, H. M. Kang, K. Chen, and G. Wang. 2008. Photoprotective function of photorespiration in Reaumuria soongorica during different levels of drought stress in natural high irradiance. Photosynthetica 46:232-237.
Berry, J., and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491-543.
Björkman, O. 1987. Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition. Pages 123-144 in D. J. Kyle, C. B. Osmond, and C. J. Arntzen, editors. Photoinhibition. Elsevier, New York, U.S.A.
Brown, B. E., I. Ambarsari, M. E. Warner, W. K. Fitt, R. P. Dunne, S. W. Gibb, and D. G. Cummings. 1999. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99-105.
Butler, W. L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annual Review of Plant Physiology 29:345-378.
Cary, P. R., and P. G. J. Weerts. 1992. Growth and nutrient composition of Azolla pinnata R. Brown and Azolla filiculoides Lamarck as affected by water temperature, nitrogen and phosphorus supply, light intensity and pH. Aquatic Botany 43:163-180.
Christie, P. J., M. R. Alfenito, and V. Walbot. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549.
Close, D. C., and C. L. Beadle. 2003. The ecophysiology of foliar anthocyanin. The Botanical Review 69:149-161.
Close, D. C., and C. L. Beadle. 2005. Xanthophyll-cycle dynamics and rapid induction of anthocyanin synthesis in Eucalyptus nitens seedlings transferred to photoinhibitory conditions. Journal of Plant Physiology 162:37-46.
Dai, L. P., Z. T. Xiong, Y. Huang, and M. J. Li. 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environmental Toxicology 21:505-512.
Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant and Cell Physiology 39:474-482.
Demmig-Adams, B., and W. W. Adams III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology 43:599-626.
Demmig-Adams, B., and W. W. Adams III. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1:21-26.
Demmig, B., and O. Björkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171-184.
Devol, C. E. 1994. Azollaceae. Pages 541-542 in T.C. Huang, editor-in-chief. Flora of Taiwan, Vol. 1, second Edition. Editorial Committee of the flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.
Durand, L. Z., and G. Goldstein. 2001. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345-354.
Feild, T. S., D. W. Lee, and N. M. Holbrook. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology 127:566-574.
Fleischer, W. E. 1935. The relation between chlorophyll content and rate of photosynthesis. The Journal of General Physiology 18:573-597.
Gould, K. S. 2004. Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology 2004:314-320.
Gould, K. S., D. N. Kuhn, D. W. Lee, and S. F. Oberbauer. 1995. Why leaves are sometimes red. Nature 378:241-242.
Gould, K. S., K. R. Markham, R. H. Smith, and J. J. Goris. 2000. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany 51:1107-1115.
Gould, K. S., T. C. Vogelmann, T. Han, and M. J. Clearwater. 2002. Profiles of photosynthesis within red and green leaves of Quintinia serrata. Physiologia Plantarum 116:127-133.
Greer, D. H., and W. A. Laing. 1992. Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Changes in susceptibility to photoinhibition and recovery during the growth season. Planta 186:418-425.
Hatier, J. H. B., and K. S. Gould. 2007. Black coloration in leaves of Ophiopogon planiscapus 'Nigrescens'. Leaf optics, chromaticity, and internal light gradients. Functional Plant Biology 34:130-138.
Hikosaka, K. 2004. Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research 117:481-494.
Hoch, W. A., E. L. Singsaas, and B. H. McCown. 2003. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiology 133:1296-1305.
Holaday, A. S., W. Martindale, R. Alred, A. L. Brooks, and R. C. Leegood. 1992. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiology 98:1105-1114.
Holst, R. W. 1977. Anthocyanins of Azolla. American Fern Journal 67:99-100.
Horton, P., A. V. Ruban, and R. G. Walters. 1996. Regulation of light harvesting in green plants. Annual Review of Plant Biology 47:655-684.
Hu, L., Z. Wang, and B. Huang. 2009. Photosynthetic responses of bermudagrass to drought stress associated with stomatal and metabolic limitations. Crop Science 49:1902-1909.
Hughes, N. M., H. S. Neufeld, and K. O. Burkey. 2005. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytologist 168:575-587.
Hughes, N. M., and W. K. Smith. 2007a. Seasonal photosynthesis and anthocyanin production in 10 broadleaf evergreen species. Functional Plant Biology 34:1072-1079.
Hughes, N. M., and W. K. Smith. 2007b. Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. American Journal of Botany 94:784-790.
Huner, N. P. A., G. Öquist, and F. Sarhan. 1998. Energy balance and acclimation to light and cold. Trends in Plant Science 3:224-230.
Ishikura, N. 1982. 3-Desoxyanthocyanin and other phenolics in the water fern Azolla. Journal of Plant Research 95:303-308.
Janes, R. 1998. Growth and survival of Azolla filiculoides in Britain. I. Vegetative reproduction. New Phytologist 138:367-375.
Jayakumar, M., M. Eyini, K. Lingakumar, and G. Kulandaivelu. 2002. Effects of enhanced ultraviolet-B (280–320 nm) radiation on growth and photosynthetic activities in aquatic fern Azolla Microphylla Kaulf. Photosynthetica 40:85-89.
Jayakumar, M., M. Eyini, P. Selvinthangadurai, K. Lingakumar, A. Premkumar, and G. Kulandaivelu. 1999. Changes in pigment composition and photosynthetic activity of aquatic fern (Azolla microphylla Kaulf.) exposed to low doses of UV-C (254 nm) radiation. Photosynthetica 37:33-38.
Johnson, G. N., A. J. Young, J. D. Scholes, and P. Horton. 1993. The dissipation of excess excitation energy in British plant species. Plant, Cell and Environment 16:673-679.
Kao, W. Y., and I. N. Forseth. 1992. Dirunal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant, Cell and Environment 15:703-710.
Kao, W. Y., C. N. Shih, and T. T. Tsai. 2004. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina. Tree Physiology 24:859-864.
Kao, W. Y., T. T. Tsai, and W. H. Chen. 1998. Response of photosynthetic gas exchange and chlorophyll a fluorescence of Miscanthus floridulus (Labill) warb. to temperature and irradiance. Journal of Plant Physiology 152:407-412.
Karageorgou, P., and Y. Manetas. 2006. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiology 26:613-621.
Karst, A. L., and M. J. Lechowicz. 2007. Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist 173:306-312.
Kasahara, M., T. Kagawa, K. Oikawa, N. Suetsugu, M. Miyao, and M. Wada. 2002. Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829-832.
Krause, G.. H., and K. Winter. 1996. Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps. A chlorophyll fluorescence study. Botanica Acta 109:456-462.
Kong, J. M., L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64:923-933.
Krol, M., G. R. Gray, N. P. A. Huner, V. M. Hurry, G. Öquist, and L. Malek. 1995. Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany 73:1119-1127.
Kyparissis, A., G. Grammatikopoulos, and Y. Manetas. 2007. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera. Tree Physiology 27:849-857.
Kytridis, V. P., P. Karageorgou, E. Levizou, and Y. Manetas. 2008. Intra-species variation in transient accumulation of leaf anthocyanins in Cistus creticus during winter: Evidence that anthocyanins may compensate for an inherent photosynthetic and photoprotective inferiority of the red-leaf phenotype. Journal of Plant Physiology 165:952-959.
Lambers, H., F. S. Chapin III, and T. L. Pons. 1998. Plant physiological ecology. Springer-Verlag, New York, U.S.A.
Lee, D. W., J. O’Keefe, N. M. Holbrook, and T. S. Feild. 2003. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecological Research 18:677-694.
Leng, P., H. Itamura, H. Yamamura, and X. M. Deng. 2000. Anthocyanin accumulation in apple and peach shoots during cold acclimation. Scientia Horticulturae 83:43-50.
Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67:59-64.
Lizana, C., M. Wentworth, J. P. Martinez, D. Villegas, R. Meneses, E. H. Murchie, C. Pastenes, B. Lercari, P. Vernieri, and P. Horton. 2006. Differential adaptation of two varieties of common bean to abiotic stress. I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany 57:685-697.
Logan, B. A., B. Demmig-Adams, T. N. Rosenstiel, and W. W. Adams III. 1999. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209:213-220.
Long, S. P., S. Humphries, and P. G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology 45:633-662.
Lumpkin, T. A., and D. L. Plucknett. 1980. Azolla: botany, physiology, and use as a green manure. Economic Botany 34:111-153.
Mancinelli, A. L. 1990. Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiology 92:1191-1195.
Manetas, Y. 2006. Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163-177.
Manetas, Y., Y. Petropoulou, G. K. Psaras, and A. Drinia. 2003. Exposed red (anthocyanic) leaves of Quercus coccifera display shade characteristics. Functional Plant Biology 30:265-270.
Maxwell, K., and G. N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51:659-668.
Metzgar, J. S., H. Schneider, and K. M. Pryer. 2007. Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae). International Journal of Plant Sciences 168:1045-1053.
Morales, F., A. Abadia, J. Abadia, G. Montserrat, and E. Gil-Pelegrin. 2002. Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees 16:504-510.
Mostafa, E. M., and A. M. A. Hassan. 2006. Effect of chilling on growth and nitrogen assimilation in Azolla caroliniana. Biologia Plantarum 50:641-646.
Muller, P., X. P. Li, and K. K. Niyogi. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology 125:1558-1566.
Murchie, E. H., and P. Horton. 1997. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant, Cell and Environment 20:438-448.
Nagaraj, N., J. C. Reese, M. B. Kirkham, K. Kofoid, L. R. Campbell, and T. M. Loughin. 2002. Relationship between chlorophyll loss and photosynthetic rate in greenbug (Homoptera: Aphididae) damaged sorghum. Journal of the Kansas Entomological Society 75:101-109.
Neill, S., and K. S. Gould. 1999. Optical properties of leaves in relation to anthocyanin concentration and distribution. Botany 77:1777-1782.
Neill, S. O., and K. S. Gould. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology 30:865-873.
Nguyen, P., and V. D. Cin. 2009. The role of light on foliage colour development in coleus (Solenostemon scutellarioides (L.) Codd). Plant Physiology et Biochemistry 47:934-945.
Niyogi, K. K. 1999. Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology 50:333-359.
Noctor, G., D. Rees, A. Young, and P. Horton. 1991. The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochimica et Biophysica Acta-Bioenergetics 1057:320-330.
Nozzolillo, C., P. Isabelle, and G. Das. 1990. Seasonal changes in the phenolic constituents of jack pine seedlings (Pinus banksiana) in relation to the purpling phenomenon. Canadian Journal of Botany 68:2010-2017.
Öquist, G., W. S. Chow, and J. M. Anderson. 1992. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186:450-460.
Pastenes, C., P. Pimentel, and J. Lillo. 2005. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany 56:425-433.
Peters, G. A., R. E. Toia Jr, W. R. Evans, D. K. Crist, B. C. Mayne, and R. E. Poole. 1980. Characterization and comparisons of five N2-fixing Azolla-Anabaena associations, I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant, Cell and Environment 3:261-269.
Pietrini, F., M. A. Iannelli, and A. Massacci. 2002. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell and Environment 25:1251-1259.
Pietrini, F., and A. Massacci. 1998. Leaf anthocyanin content changes in Zea mays L. grown at low temperature: significance for the relationship between the quantum yield of PSII and the apparent quantum yield of CO2 assimilation. Photosynthesis Research 58:213-219.
Reid, J. D., G. M. Plunkett, and G. A. Peters. 2006. Phylogenetic relationships in the heterosporous fern genus Azolla (Azollaceae) based on DNA sequence data from three noncoding regions. International Journal of Plant Sciences 167:529-538.
Savitch, L. V., A. Massacci, G. R. Gray., and N. P. A. Huner 2000. Acclimation to low temperature or high light mitigates sensitivity to photoinhibition: roles of the Calvin cycle and the Mehler reaction. Australian Journal of Plant Physiology 27:253-264.
Schreiber, U., and W. Bilger. 1987. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. Pages 27-53 in J. Tenhunen, F. M. Catarino, O. L. Lange, and W. C. Oechel, editors. Plant Response to Stress. Springer, Berlin, Germany.
Šestak, Z. 1966. Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biologia Plantarum 8:336-346.
Shi, D. J., and D. O. Hall. 1988. The Azolla-Anabaena association: historical perspective, symbiosis and energy metabolism. The Botanical Review 54:353-386.
Siegelman, H. W., and S. B. Hendricks. 1958. Photocontrol of anthocyanin synthesis in apple skin. Plant Physiology 33:185-190.
Sims, D. A., and R. W. Pearcy. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. American Journal of Botany 79:449-455.
Solecka, D. 1997. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum 19:257-268.
Solovchenko, A. E., and M. N. Merzlyak. 2008. Screening of visible and UV radiation as a photoprotective mechanism in plants. Russian Journal of Plant Physiology 55:719-737.
Smillie, R. M., and S. E. Hetherington. 1999. Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36:451-463.
Steyn, W. J., S. J. E. Wand, D. M. Holcroft, and G. Jacobs. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155:349-361.
Thiele, A., G. H. Krause, and K. Winter. 1998. In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Australian Journal of Plant Physiology 25:189-196.
Timmins, G. S., N. M. Holbrook, and T. S. Feild. 2002. Le rouge et le noir: Are anthocyanins plant melanins? Advances in Botanical Research 37:17-35.
Tung, H. F., and I. Watanabe. 1983. Differential response of Azolla-Anabaena associations to high temperature and minus phosphorus treatments. New Phytologist 93:423-431.
Uheda, E., S. Kitoh, and N. Shiomi. 1999. Response of six Azolla species to transient high-temperature stress. Aquatic Botany 64:87-92.
van Mieghem, F., K. Brettel, B. Hillman, A. Kamlowski, A. W. Rutherford, and E. Schlodder. 1995. Charge recombination reactions in photosystem II. 1. Yields, recombination pathways, and kinetics of the primary pair. Biochemistry 34:4798-4813.
Volkova, L., M. Tausz, L. T. Bennett, and E. Dreyer. 2009. Interactive effects of high irradiance and moderate heat on photosynthesis, pigments, and tocopherol in the tree-fern Dicksonia antarctica. Functional Plant Biology 36:1046-1056.
Vu, V. V., H.W. Wong Fong Sang, J. W. Kijne, K. Planque, and R. Kraayenhof. 1986. Effects of temperature, pH and bound nitrogen on photosynthesis and nitrogen-fixation of Azolla pinnata (Xanh, Vietnam) and Azolla filiculoides Lam. Photosynthetica 20:67-73.
Watanabe, I., K. Z. Bai, N. S. Berja, C. R. Espinas, O. Ito, and B. P. R. Subudhi. 1981. The Azolla-Anabaena complex and its use in rice culture. International Rice Research Institute (IRRI) Research Paper Series 69:1-11.
Watanabe, I., and N. S. Berja. 1983. The growth of four species of Azolla as affected by temperature. Aquatic Botany 15:175-185.
Watanabe, I., C. R. Espinas, N. S. Berja, and B. V. Alimagno. 1977. Utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. International Rice Research Institute (IRRI) Research Paper Series 11: 1-15
Watkins Jr, J. E., A. Y. Kawahara, S. A. Leicht, J. R. Auld, A. J. Bicksler, and K. Kaiser. 2006. Fern laminar scales protect against photoinhibition from excess light. American Fern Journal 96:83-92.
Wilson, G., and S. Al-Hamdani. 1997. Effects of chromium (VI) and humic substances on selected physiological responses of Azolla caroliniana. American Fern Journal 87:17-27.
Wintermans, J. F., and A. De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et Biophysica Acta 109:448-453.
Woodall, G., and G. Stewart. 1998. Short communication. Do anthocyanins play a role in UV protection of the red juvenile leaves of Syzygium? Journal of Experimental Botany 49:1447-1450.
Yakovleva, I. M., and E. A. Titlyanov. 2001. Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress, photoinhibition and protective mechanisms. Aquatic Botany 71:47-61.
Yano, S., and I. Terashima. 2004. Developmental process of sun and shade leaves in Chenopodium album L. Plant, Cell and Environment 27:781-793.
Zeliou, K., Y. Manetas, and Y. Petropoulou. 2009. Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis. Journal of Experimental Botany 60:3031-3042.
Zhao, W. Y., S. Xu, J. L. Li, L. J. Cui, Y. N. Chen, and J. Z. Wang. 2008. Effects of foliar application of nitrogen on the photosynthetic performance and growth of two fescue cultivars under heat stress. Biologia Plantarum 52:113-116.
Zimmerman, W. J. 1985. Biomass and pigment production in 3 isolates of Azolla Ⅱ. Response to light and temperature stress. Annals of Botany 56:701-709.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45171-
dc.description.abstract滿江紅是水生蕨類,在冬天或夏天時葉面常累積花青素而呈現紅色。台灣有兩種滿江紅,分別為日本滿江紅(Azolla japonica Fr. et Sav)與羽葉滿江紅(Azolla pinnata R. brown),前者較常見呈現紅色,後者偶而也會形成紅色。本研究比較此兩種滿江紅在不同溫度與光度下其花青素合成能力,並使用葉綠素螢光儀測定其在不同溫度和光度下葉綠體PSⅡ之最大光使用效率(Fv/Fm值),以檢驗以下假設:一、強光、低溫的環境會造成滿江紅光合作用系統受到光抑制(Fv/Fm值下降);二、在強光、低溫環境下綠色的A. japonica植株較A. pinnata容易受到光抑制;三、在強光、低溫環境下A. japonica較A. pinnata容易生成花青素;四、花青素含量增加可降低A. japonica植株受到光抑制的危險性。
比較含低量花青素的滿江紅在短期溫度(15/13℃、25/20℃、35/30℃)或光度(全光照、遮光)變化時的Fv/Fm值發現:兩種滿江紅在高光照下皆受到明顯的光抑制,並且在15/13℃時其正午Fv/Fm值下降最多並且恢復最慢。當曝露在高光照下時,A. japonica植株的Fv/Fm值顯著低於或等於A. pinnata植株的Fv/Fm值,顯示在某些情況下A. japonica植株比A. pinnata植株易受到光抑制。
將滿江紅培養在不同光度、溫度環境時,在高光照、低溫環境下的植株容易累積花青素,代表高光照以及低溫確實會誘導滿江紅合成花青素;又結果顯示在高光照、低溫環境下A. japonica花青素累積量及累積速率都比A. pinnata高(或快)。相較於花青素含量低的植株,花青素含量較高的植株其正午Fv/Fm值下降幅度較小,這樣的現象A. japonica較A. pinnata明顯。將具不同花青素含量的滿江紅放置在相同光度溫度環境中,同一種滿江紅,尤其是A. japonica,其花青素含量高的植株Fv/Fm值顯著高於花青素含量低的植株;隨著光度減弱,花青素含量越高的植株其Fv/Fm值恢復程度越高。
因此花青素合成可以降低滿江紅在高光、低溫環境下所受的光抑制程度,並且幫助植株在低溫環境中受到光抑制後快速恢復其光合作用效率,此現象A. japonica尤其明顯。比較種間差異時,即使A. japonica比A. pinnata有顯著較多的花青素,但放置在光度高於800 μmolm-2s-1時,其所受到的光抑制程度仍比A. pinnata高或沒有顯著差異,不同的結果可能跟兩種滿江紅葉綠素含量以及花青素總量的多寡有關。
zh_TW
dc.description.abstractAzolla, a genus of aquatic fern, often turn reddish in winter or in hot summer due to the accumulation of anthocyanin. There are two species of Azolla in Taiwan, Azolla pinnata R. brown and Azolla japonica Fr. et Sav. A. japonica is often found turning red while reddish A. pinnata is not that common. In this study, I compared the ability of accumulating anthocyanin in these two species of Azolla under different light and temperature treatments. The ratio of variable to maximum fluorescence (Fv/Fm) was also measured to quantify the maximum PSⅡ quantum use efficiency. Under light illumination, reduction in Fv/Fm indicates photoinhibition. Following hypotheses were tested. (1) Azolla is susceptible to photoinhibition under high light and low temperature conditions. (2) Without anthocyanin accumulation, A. japonica exhibits greater photoinhibition than A. pinnata under high light and low temperature environments. (3) A. japonica accumulates more anthocyanin than A. pinnata under high light and low temperature conditions. (4) Anthocyanin accumulation can reduce the risk of photoinhibition in A. japonica.
The result revealed that both species had greater reduction in Fv/Fm values under high light environments than under shading conditions. The reduction in Fv/Fm was significantly higher at noon and the recovery of Fv/Fm was slower when plants were at lower air temperature (15/13℃) than at 25/20℃ and 35/30℃. A. japonica had equal or significantly lower Fv/Fm values than A. pinnata under high light environment. It indicates that A. japonica was more susceptible to photoinhibition than A. pinnata under some conditions.
High light and low temperature environments did induce Azolla to accumulate anthocyanin. The rate and content of anthocyanin accumulation was significantly faster or higher in A. japonica than in A. pinnata. Exposed Azolla with different amounts of anthocyanin to low temperature and high light, I found that Azolla with more anthocyanin had less reduction in Fv/Fm at noon and the recovery of Fv/Fm was faster than Azolla with less anthocyanin accumulation. This pattern was more apparent in A. japonica than in A. pinnata.
The results indicate that the accumulation of anthocyanin in Azolla, especially in A. japonica, can reduce the risk of plant being photoinhibited under high light and low temperature environment. Anthocyanin can also help Azolla’s photosynthetic efficiency to recover faster after being photoinhibited under low temperature. In comparison between two species, although A. japonica had higher anthocyanin content, it still suffered equal or higher photoinhibition level than A. pinnata under same light environment. The content of chlorophyll and anthocyanin are important factors determine the differential extent of photoinhibition between both species.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:07:21Z (GMT). No. of bitstreams: 1
ntu-99-R96B44018-1.pdf: 14127915 bytes, checksum: 59da1414cbc473b91a13be68fe98f676 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄 I
圖表目錄 V
中文摘要 IX
英文摘要 XI
一、前言 1
二、材料與方法 11
(一)實驗材料 11
(二)短期環境因子變化對綠色植株(含低量花青素)PSⅡ最大光使用效率(Fv/Fm)的影響 11
1. 植株在不同光度下的反應 11
1.1 不同光度下PSⅡ最大光使用效率(Fv/Fm)測定 11
1.2 葉片葉綠素含量之測定 12
1.3 葉片花青素含量之測定 12
2. 植株在不同溫度下的反應 13
(三)生長光度對花青素合成和PSⅡ最大光使用效率的影響 14
1. 葉片色素含量之比較 14
2. PSⅡ最大光使用效率之比較 14
2.1 在不同生長光度環境下的反應 14
2.2 具不同量花青素植株在相同光度環境下的反應 15
(四)生長溫度對花青素合成和PSⅡ最大光使用效率的影響 16
1. 葉片色素含量之比較 16
2. PSⅡ最大光使用效率之比較 16
2.1 在不同生長溫度下的反應 16
2.2 比較在不同溫度下生長植株,在相同環境下的反應 17
(五)不同色素含量植株的碳氮含量及PSⅡ光化學效能之比較 17
1. 葉片色素含量、碳氮含量之測定 17
2. PSⅡ光化學效能之比較 18
(六)統計分析 18
三、結果 21
(一)短期環境因子變化對綠色植株(含低量花青素)PSⅡ最大光使用效率比較 21
1. 短期光度變化的影響 21
2. 短期溫度變化的影響 24
(二)生長光度對花青素合成和PSⅡ最大光使用效率的影響 31
1. 色素合成的比較 31
2. PSⅡ最大光使用效率的比較 37
2.1 在不同光度環境下的反應 37
2.2不同量花青素植株在相同光度環境下的反應 38
(三)生長溫度對花青素合成和PSⅡ最大光使用效率的影響 46
1. 色素合成的比較 46
2. PSⅡ最大光使用效率的比較 54
2.1在不同光度環境下的反應 54
2.2在相同光照、氣溫環境下的比較 55
(四)不同色素含量植株的碳氮含量及PSⅡ光化學效能之比較 63
四、討論 67
(一)高光、低溫是否會使滿江紅受到光抑制? 67
(二)A. japonica在高光、低溫下是否較A. pinnata易受到光抑制? 68
(三)在高光低溫環境下A. japonica是否較A. pinnata容易合成花青素? 70
(四)花青素含量的增加是否可降低A. japonica受到光抑制的危險性? 72
1. 光度實驗 72
2. 溫度實驗 74
(五)未來研究方向 75
五、結論 77
六、參考文獻 79
七、附錄 93
dc.language.isozh-TW
dc.title兩種滿江紅花青素生成與PSⅡ光化學效能之研究zh_TW
dc.titleAnthocyanin production and PSⅡ photochemical efficiency in two species of Azollaen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐邦達,葉德銘,吳俊宗
dc.subject.keyword滿江紅,花青素,Fv/Fm,光抑制,高光,低溫,zh_TW
dc.subject.keywordAzolla,anthocyanin,Fv/Fm,photoinhibition,high light,low temperature,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2010-02-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
13.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved