請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45153完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌 | |
| dc.contributor.author | Jhe-Cheng Wu | en |
| dc.contributor.author | 吳哲誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:06:36Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | 財團法人台灣癌症基金會 http://www.canceraway.org.tw/。
台灣地區 2009 年主要死因統計(2010)。取自:行政院衛生署衛生統計資訊 網http://www.doh.gov.tw。 邱依琇。2009。Pterostilbene 作為癌症化學預防試劑之分子機制。國立高雄海洋科技大學水產食品科學所碩士論文。 洪佳雯。2009。以荷瘤小鼠模式探討黃連解毒湯合併化學治療對大腸癌之影響。 國立中興大學獸醫學系碩士學位論文。 許倖華。2008。薏仁麩皮乙醇萃取之乙酸乙酯層區分物對DMH 誘發F344 鼠大 腸癌前期病變之預防效果。國立台灣大學食品科技研究所碩士論文。 郭宇薇。2007。黃豆皂素粗萃取物對於 1,2-dimethylhydrazine 誘導 F344 大鼠結腸癌前期病變異常腺窩灶的影響及機制之探討。臺北醫學大學公共衛生 暨營養學院保健營養學系碩士論文。 郭志鎰。2003。大腸直腸癌致癌機轉之探討。中山醫學大學生物化學研究所碩 士論文。 黃宗人。2000。認識大腸癌-病人想知道的基本知識。長年出版社。P.22-23。 謝敏琪。2007。研究薑之成分作為癌症化學預防試劑之作用機轉。國立高雄海 洋科技大學水產食品科學所碩士論文。 Aberle, H.; Schwartz, H.; Kemler, R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J. Cell. Biochem. 1996, 61,514-523. Ali, B. H.; Blunden, G.; Tanira, M. O.; Nemmar, A. Some phytochemical,pharmacological and toxicological properties of ginger (Zingiber officinaleRoscoe): a review of recent research. Food Chem. Toxicol. 2008, 46, 409-420. Amit, S.; Hatzubai, A.; Birman, Y.; Andersen, J. S.; Ben-Shushan, E.; Mann, M.;Ben-Neriah, Y.; Alkalay, I. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002, 16, 1066-1076. Aoki, K.; Taketo, M. M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell Sci. 2007, 120, 3327-3335. Baldwin, A. S. J. The NF-κB and IκB proteins: new iscoveries and insights. Annu.Rev. Immunol. 1996, 14, 649-81. Behrens, J.; Jerchow, B. A.; Wurtele, M.; Grimm, J.; Asbrand, C.; Wirtz, R.; Kuhl,M.; D., W.; Birchmeier, W. Functional interaction of an axin homolog,conductin, with β-catenin, APC, and GSK3β. Science. 1998, 280, 596-599. Benamouzig, R.; Uzzan, B.; Little, J.; Chaussade, S. Low dose aspirin,COX-inhibition and chemoprevention of colorectal cancer. Curr. Top. Med.Chem. 2005, 5, 493-503. Benchabane, H.; Ahmed, Y. The adenomatous polyposis coli tumor suppressor and wnt signaling in the regulation of apoptosis. Adv. Exp. Med. Biol. 2009, 656,75-84. Bertram, J. S.; Kolonel, L. N.; Meyskens, F. L. Rationale and strategies for chemoprevention of cancer in humans. Cancer Res. 1987, 47, 3012-3031. Bhattacharjee, R. N.; Hamada, F.; Toyoshima, K.; Akiyama, T. The tumor suppressor gene product APC is hyperphosphorylated during the M phase. Biochem.Biophys. Res. Commun. 1996, 220, 192-195. Bhattacharya, G.; Boman, B. M. Phosphorylation of the adenomatous polyposis coli protein and its possible regulatory effects in cells. Biochem. Biophys. Res. Commun. 1995, 208, 103-110. Bhattarai, S.; Tran, V. H.; Duke, C. C. Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids. J. Pharm. Biomed. Anal. 2007, 45(4),648-653. Bienz, M.; Hamada, F. Adenomatous polyposis coli proteins and cell adhesion. Curr Opin. Cell Biol. 2004, 16, 528-535. Borner, C. The bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol. Immunol. 2003, 39, 615-647. Bos, C. L.; Kodach, L. L.; van den Brink, G. R.; Diks, S. H.; van Santen, M. M.; Richel, D. J.; Peppelenbosch, M. P.; Hardwick, J. C. H. Effect of aspirin on the Wnt/β-catenin pathway is mediated via protein phosphatase 2A. Oncogene 2006, 25, 6447-6456. Bratton, S. Protein Complexes Activate Distinct Caspase Cascades in Death Receptor and Stress-Induced Apoptosis. Exp. Cell Res. 2000, 256, 27-33. Brock, T. G.; McNish, R. W.; Peters-Golden, M. Arachidonic acid Is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J. Biol. Chem. 1999, 274, 11660-11666. Brzozowski, T.; Konturek, P. C.; Konturek, S. J.; Brzozowska, I.; Pawlik, T. Role of prostaglandins in gastroprotection and gastric adaptation. J. Physiol. Pharmacol. 2005, 56, 33-55. Cadenas, E. Biochemistry of oxygen toxicity. Annu. Rev. Blochem. 1989, 58, 79-110. Cameron, I.; Hardman, W. E.; Heitman, D. The nonfermentable dietary fiber lignin alters putative colon cancer risk factors but does not protect against DMH-induced colon cancer in rats. Nutr. Cancer. 1997, 28, 170-176. Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 2003, 38 (7-8), 645-659. Cianchi, F.; Cortesini, C.; Bechi, P.; Fantappie, O.; Messerini, L.; Vannacci, A.; Sardi, I.; Baroni, G.; Boddi, V.; Mazzanti, R. Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology. 2001, 121 (6), 1339-1347. Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell. 2006, 127, 469-480. Cohen, P.; Frame, S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001, 2, 769-776. Cook, D.; Fry, M. J.; Hughes, K.; Sumathipala, R.; Woodgett, J. R.; Dale, T. C. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 1996, 15, 4526-4536. Cosulich, S. C.; Savory, P. J.; Clarke, P. R. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr. Biol. 1999, 9, 147-150. Cross, D. A.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.; Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785-789. Cunha, I. W.; Lopes, A.; Falzoni, R.; Soares, F. A. Sarcomas often express constitutive nitric oxide synthases (NOS) but infrequently inducible NOS. Appl. Immunohistochem. Mol. Morphol. 2006, 14, 404-410. Dajani, R.; Fraser, E.; Roe, S. M.; Yeo, M.; Good, V. M.; Thompson, V.; Dale, T. C.; Pearl, L. H. Structural basis for recruitment of glycogen synthase kinase 3β to the axin–APC scaffold complex. EMBO J. 2003, 22, 494-501. Delcommenne, M.; Tan, C.; Gray, V.; Rue, L.; Woodgett, J.; Dedhar, S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 1998, 95, 11211-11216. Dominguez, I.; Itoh, K.; Sokol, S. Y. Role of glycogen synthase kinase 3β as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. USA 1995, 92, 8498-8502. Dugasani, S.; Pichika, M. R.; Nadarajah, V. D.; Balijepalli, M. K.; Tandra, S.; Korlakunta, J. N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 2010, 127, 515-520. Eaden, J. A.; Abrams, K. R.; Mayberry, J. F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001, 48, 526-535. Eliassen, A. H.; Chen, W. Y.; Spiegelman, D.; Willett, W. C.; Hunter, D. J.; Hankinson, S. E. Use of aspirin, other nonsteroidal anti-inflammatory drugs, and acetaminophen and risk of breast cancer among premenopausal women in the nurses' health study II. Arch. Intern. Med. 2009, 169 (2), 115-121. Eskin, N. A. M.; Raju, J.; Bird, R. P. Novel mucilage fraction of Sinapis alba L. (mustard) reduces azoxymethane-induced colonic aberrant crypt foci formation in F344 and Zucker obese rats. Phytomedicine. 2007, 14, 479-485. Fagotto, F.; Gluck, U.; Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 1998, 8, 181-190. Farrow, B.; Evers, B. M. Inflammation and the development of pancreatic cancer. Surg. Oncol. 2002, 10, 153-169. Fearnhead, N. S.; Britton, M. P.; Bodmer, W. F. The ABC of APC. Hum. Mol. Genet. 2001, 10, 721-733. Fearon, E. R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell. 1990, 61, 759-767. Fink, S. L.; Cookson, B. T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect Immun. 2005, 73, 1907-1916. Fishel, R.; Lescoe, M. K.; Rao, M. R. S.; Copeland, N. G.; Jenkins, N. A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and Its association with hereditary nonpolyposis colon cancer. Cell. 1993, 75, 1027-1038. . Frame, S.; Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 2001, 359, 1-16. Funayama, N.; Fagotto, F.; McCrea, P.; Gumbiner, B. M. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 1995, 128, 959-968. Gagne, P.; Akalu, A.; Brooks, P. C. Challenges facing antiangiogenic therapy for cancer: impact of the tumor extracellular environment. Expert Rev. Anticancer Ther. 2004, 4, 129-140. Ghayur, M. N.; Gilani, A. H. Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. J. Cardiovasc. Pharmacol. 2005, 45, 74-80. Ghosh, S.; Karin, M. Missing pieces in the NF-κB puzzle. Cell 2002, 109, S81-S96. Ghosh, S.; May, M. J.; Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16, 225-260. Giardiello, F. M.; Hamilton, S. R.; Krush, A. J.; Piantadosi, S.; Hylind, L. M.; Celano, P.; Booker, S. V.; Robinson, C. R.; Offerhaus, G. J. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 1993, 328, 1313-1316. Giles, R. H.; van Es, J. H.; Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta. 2003, 1653, 1-24. Glotzer, M.; Murray, A. W.; Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991, 349, 132-138. Goss, K. H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol. 2000, 9, 1967-1979. Grady, W. M.; Markowitz, S. D. Genetic And epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet. 2002, 3, 101-128. Hannon, G. J.; Beach, D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994, 371, 257-261. Hao, X. P.; Pretlow, T. G.; Rao, J. S.; Pretlow, T. P. Inducible nitric oxide synthase (iNOS) is expressed similarly in multiple aberrant crypt foci and colorectal tumors from the same patients. Cancer Res. 2001, 61, 419-422. He, X.; Saint-Jeannet, J. P.; Woodgett, J. R.; Varmus, H. E.; Dawid, I. B. Glycogen synthase kinase-3 and dorsoventral patterning in xenopus embryos. Nature. 1995, 374, 617-622. Heald, R.; McLoughlin, M.; McKeon, F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell. 1993, 74, 463-474. Hedgepeth, C. M.; Deardorff, M. A.; Rankin, K.; Klein, P. S. Regulation of glycogen synthase kinase 3β and downstream Wnt signaling by axin. Mol. Cell. Biol. 1999, 19, 7147-7157. Hetts, S. W. To die or not to die: an overview of apoptosis and its role in disease. JAMA. 1998, 4, 300-307. Hsi, L. C.; Baek, S. J.; Eling, T. E. Lack of cyclooxygenase-2 activity in HT-29 human colorectal carcinoma cells. Exp. Cell Res. 2000, 256 (2), 563-570. Ikeda, S.; Kishida, S.; Yamamoto, H.; Murai, H.; Koyama, S.; Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998, 17, 1371-1384. Ilyas, M.; Straub, J.; Tomlinson, I. P. M.; Bodmer, W. F. Genetic pathways in colorectal and other cancers. Eur. J. Cancer. 1999, 35, 335-351. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 2000, 10, 129-133. Jacobson, M. D. Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 1996, 21, 83-86. Jaiswal, M.; LaRusso, N. F.; Burgart, L. J.; Gores, G. J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000, 60, 184-190. Jeffrey, P. D.; Russo, A. A.; Polyak, K.; Gibbs, E.; Hurwitz, J.; Massague, J.; Pavletich, N. P. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995, 376, 313-320. Jeong, C. H.; Bode, A. M.; Pugliese, A.; Cho, Y. Y.; Kim, H. G.; Shim, J. H.; Jeon, Y. J.; Li, H.; Jiang, H.; Dong, Z. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009, 69, 5584-5591. Johnson, D. G.; Walker, C. L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 295-312. Jurgensmeier, J. M.; Xie, Z.; Deveraux, Q.; Ellerby, L.; Bredesen, D.; Reed, J. C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. U S A. 1998, 95, 4997-5002. Kang, T.; Wei, Y.; Honaker, Y.; Yamaguchi, H.; Appella, E.; Hung, M.-C.; Piwnica-Worms, H. GSK-3β targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3β inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 2008, 13, 36-47. Kargman, S. L.; O'Neill, G. P.; Vickers, P. J.; Evans, J. F.; Mancini, J. A.; Jothy, S. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res. 1995, 55, 2556-2559. Kelekar, A.; Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998, 8, 324-330. Kemler, R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993, 9, 317-321. Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 1972, 26, 239-257. Kinzler, K. W.; Vogelstein, B. Lessons from hereditary colorectal cancer. Cell. 1996, 87, 159-170. Kiuchi, F.; Shibuya, M.; Sankawa, U. Inhibitors of prostaglandin biosynthesis from ginger. Chem. Pharm. Bull. 1982, 30, 754-757. Kolligs, F. T.; Bommer, G.; Goke, B. Wnt/β-Catenin/Tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion. 2002, 66, 131-144. Kromhout, D. The importance of n-6 and n-3 fatty acids in carcinogenesis. Med. Oncol. Tumor Pharmacother. 1990, 7, 173-176. Kutchera, W.; Jones, D. A.; Matsunami, N.; Groden, J.; McIntyre, T. M.; Zimmerman, G. A.; White, R. L.; Prescott, S. M. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 4816-4820. Labianca, R.; Beretta, G. D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M. A.; Prochilo, T.; Quadri, A.; Gatta, G.; de Braud, F.; Wils, J. Colon cancer. Crit. Rev. Oncol. Hematol. 2010, 74, 106-133. Lantz, R.; Chen, G.; Sarihan, M.; Solyom, A.; Jolad, S.; Timmermann, B. The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007, 14 (2-3), 123-128. Lee, E.; Surh, Y. J. Induction of apoptosis in HL-60 cells by pungent vanilloids, [6]-gingerol and [6]-paradol. Cancer Letters. 1998, 134, 163-168. Lee, S.-H.; Cekanova, M.; Baek, S. J. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol. Carcinog. 2008, 47 (3), 197-208. Li, L.; Yuan, H.; Weaver, C. D.; Mao, J.; Farr, G. H. r.; Sussman, D. J.; Jonkers, J.; Kimelman, D.; Wu, D. Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 1999, 18, 4233-4240. Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91, 479-489. Li, Y.; Bharti, A.; Chen, D.; Gong, J.; Kufe, D. Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. Mol. Cell. Biol. 1998, 18, 7216-7224. Liu, F.; Stanton, J. J.; Wu, Z.; Piwnica-Worms, H. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell Biol. 1997, 17, 571-583. Liu, G.; Hu, X.; Chakrabarty, S. Vitamin D mediates its action in human colon carcinoma cells in a calcium-sensing receptor-dependent manner: downregulates malignant cell behavior and the expression of thymidylate synthase and survivin and promotes cellular sensitivity to 5-FU. Int. J. Cancer. 2010, 126, 631-639. Loeb, L. A. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 1994, 54, 5059-5063. Loukola, A.; Eklin, K.; Laiho, P. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res. 2001, 61, 4545-4549. Lu, X.; Xie, W.; Reed, D.; Bradshaaw, W. S.; Simmons, D. L. Nonsteroidal antiinflammatory drugs cause apoptosis and induce cyclooxygenases in chicken embryo fibroblasts. Cell Biology. 1995, 92, 7961-7965. Lundberg, A. S.; Weinberg, R. A. Control of the cell cycle and apoptosis. Eur. J. Cancer. 1999, 35, 531-539. Manju, V.; Nalini, N. Chemopreventive efficacy of ginger, a naturally occurring anticarcinogen during the initiation, post-initiation stages of 1,2 dimethylhydrazine-induced colon cancer. Clinica Chimica Acta. 2005, 358, 60-67. Mao, B.; Wu, W.; Li, Y.; Hoppe, D.; Stannek, P.; Glinka, A.; Niehrs, C. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001, 411, 321-325. Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361-370. Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501-509. McConnell, B. B.; Gregory, F. J.; Stott, F. J.; Hara, E.; P., G. Induced expression of p16INK4a Inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol. Cell Biol. 1999, 19, 1981-1989. Moochhala, S.; Chhatwal, V. J.; Chan, S. T.; Ngoi, S. S.; Chia, Y. W.; Rauff, A. Nitric oxide synthase activity and expression in human colorectal cancer. Carcinogenesis. 1996, 17, 1171-1174. Morin, P. J.; Sparks, A. B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K. W. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997, 275, 1787-1790. Nakamura, T.; Hamada, F.; Ishidate, T.; Anai, K.; Kawahara, K.; Toyoshima, K.; Akiyama, T. Axin, an inhibitor of the Wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes Cells. 1998, 3, 395-403. Nakatsugi, S.; Sugimoto, N.; Furukawa, M. Effects of non-steroidal anti-inflammatory drugs on prostaglandin E2 production by cyclooxygenase-2 from endogenous and exogenous arachidonic acid in rat peritoneal macrophages stimulated with lipopolysaccharide. Prostaglandins Leukot. Essent. Fatty Acids. 1996, 55, 451-457. Nathke, I. Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat. Rev. Cancer. 2006, 6, 967-974. Nigam, N.; Bhui, K.; Prasad, S.; George, J.; Shukla, Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem. Biol. Interact. 2009, 181 (1), 77-84. Novak, A.; Dedhar, S. Signaling through β-catenin and Lef/Tcf. Cell. Mol. Life Sci. 1999, 56, 523-537. Ohta, T.; Takahashi, M.; Ochiai, A. Increased protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 in human colon cancers. Cancer Lett. 2006, 239 (2), 246-253. O'Shaughnessy, J. A.; Kelloff, G. J.; Hong, W. K.; Fabian, C. J.; Sigman, C. C.; Bertagnolli, M. M.; Stratton, S. P.; Lam, S.; Nelson, W. G.; Meyskens, F. L.; Alberts, D. S.; Follen, M.; Rustgi, A. K.; Papadimitrakopoulou, V.; Scardino, P. T.; Gazdar, A. F.; Wattenberg, L. W.; Sporn, M. B.; Sakr, W. A.; Lippman, S. M.; Von Hoff, D. D. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin. Cancer Res. 2002, 8, 314-346. Pan, M.-H.; Hsieh, M.-C.; Kuo, J.-M.; Lai, C.-S.; Wu, H.; Sang, S.; Ho, C.-T. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res. 2008, 52 (5), 527-537. Pan, M.-H.; Lai, C.-S.; Wu, J.-C.; Ho, C.-T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res. 2011, 55, 32-45. Pandya, N.; Dhalla, N.; Santani, D. Angiogenesis—a new target for future therapy. Vascular Pharmacology 2006, 44, 265-274. Parone, P. A.; James, D.; Martinou, J. C. Mitochondria: regulating the inevitable. Biochimie. 2002, 84, 105-111. Patrignani, P. Nonsteroidal anti-inflammatory drugs, COX-2 and colorectal cancer. Toxicol. Lett. 2000, 112-113, 493-498. Peifer, M.; Polakis, P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science. 2000, 287, 1606-1609. Phelps, R. A.; Broadbent, T. J.; Stafforini, D. M.; Jones, D. A. New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle. 2009, 16, 2549-2556. Pines, J. Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 1995, 66, 181-212. Polakis, P. Wnt signaling and cancer. Genes Dev. 2000, 14, 1837-1851. Raff, M. C. Social controls on cell survival and cell death. Nature. 1992, 356, 397-400. Raff, M. C.; Barres, B. A.; Burne, J. F.; Coles, H. S.; Ishizaki, Y.; Jacobson, M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Sceince. 1993, 262, 695-700. Rao, C. V.; Indranie, C.; Simi, B.; Manning, P. T.; Connor, J. R.; Reddy, B. S. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002, 62, 165-170. Rechsteiner, M.; Rogers, S. W. <PEST sequences and regulation by proteolysis.pdf>. Trends Biochem. Sci. 1996, 21, 267-271. Reed, J. C. Bcl-2 family proteins. Oncogene. 1998, 17, 3225-3236. Reynisdottir, I.; Polyak, K.; Iavarone, A.; Massague, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 1995, 9, 1831-1845. Rubinfeld, B.; Robbins, P.; El-Gamil, M.; Albert, I.; Porfiri, E.; Polakis, P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275, 1790-1792. Sancho, E.; Batlle, E.; Clevers, H. Signaling Pathways in Intestinal Development and Cancer. Annu. Rev. Cell Dev. Biol. 2004, 20, 695-723. Sang, S.; Hong, J.; Wu, H.; Liu, J.; Yang, C. S.; Pan, M.-H.; Badmaev, V.; Ho, C.-T. Increased Growth Inhibitory Effects on Human Cancer Cells and Anti-inflammatory Potency of Shogaols from Zingiber officinale Relative to Gingerols. J. Agric. Food Chem. 2009, 57, 10645-10650. Schmidt, H. H.; Pollock, J. S.; Nakane, M.; Forstermann, U.; Murad, F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium. 1992, 13, 427-434. Seeling, J. M.; Miller, J. R.; Gil, R.; Moon, R. T.; White, R.; Virshup, D. M. Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 1999, 283, 2089-2091. Sherr, C. J. G1 phase progression: cycling on cue. Cell. 1994, 79, 551-555. Sherr, C. J.; Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9, 1149-1163. Shitashige, M.; Hirohashi, S.; Yamada, T. Wnt signaling inside the nucleus. Cancer Sci. 2008, 99, 631-637. Singer, I. I.; Kawka, D. W.; Schloemann, S.; Tessner, T.; Riehl, T.; Stenson, W. F. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998, 115, 297-306. Smith, W. L.; DeWitt, D. L.; Garavito, R. M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000, 69, 145-182. Sparks, A. B.; Morin, P. J.; Vogelstein, B.; Kinzler, K. W. Mutational analysis of the APC/β-Catenin/Tcf pathway in colorectal Cancer. Cancer Res. 1998, 58, 1130-1134. Stetler-Stevenson, W. G. A., S.; Liotta L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. .Annu. Rev. Cell Bioi. 1993, 9, 541-573. Subbaramaiah, K.; Dannenberg, A. J. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 2003, 24, 96-102. Takada, Y.; Murakami, A.; Aggarwal, B. B. Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene. 2005, 24, 6957-6969. Tamir, S.; Burney, S.; Tannenbaum, S. R. DNA damage by nitric oxide. Chem. Res. Toxicol. 1996, 9, 821-827. Tejpar, S.; Cutsem, E. V. Molecular and genetic defects in colorectal tumorigenesis Best Pract. Res. Clin. Gastroenterol. 2002, 16, 171-185. Thomson, M.; Al-Qattan, K. K.; Al-Sawan, S. M.; Alnaqeeb, M. A.; Khan, I.; Ali, M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot. Essent. Fatty Acids. 2002, 67, 475-478. Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004, 266, 37-56. Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1-40. van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.; van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A. P.; Tjon-Pon-Fong, M.; Moerer, P.; van den Born, M.; Soete, G.; Pals, S.; Eilers, M.; Medema, R.; Clevers, H. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002, 111, 241-250. van Noort, M.; van de Wetering, M.; Clevers, H. Identification of two novel regulated serines in the N terminus of β-catenin. Exp. Cell Res. 2002, 276, 264-272. Vermeulen, K.; Van Bockstaele, D.; Berneman, Z. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36, 131-149. Wang, S.; Liu, Z.; Wang, L.; Zhang, X. NF-κB signaling pathway, Inflammation and colorectal Cancer. Cell Mol. Immunol. 2009, 6, 327-334. Whitfield, J. F. Calcium, calcium-sensing receptor and colon cancer. Cancer Lett. 2009, 275, 9-16. Willert, K.; Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 1998, 8, 95-102. Williams, C. S.; Mann, M.; DuBois, R. N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999a, 18, 7908-7916. Williams, C. S.; Shattuck-Brandt, R. L.; DuBois, R. N. The role of COX-2 in intestinal cancer. Expert Opin. Investig. Drugs. 1999b, 8, 1-12. Yagihashi, S.; Miura, Y.; Yagasaki, K. Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 2008, 57, 129-136. Yamamoto, M.; Bharti, A.; Li, Y.; Kufe, D. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 1997, 272, 12492-12494. Žegura, B., Lah, T. T. and Filipic, M. 2004. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200: 59-68. Zhang, T.; Otevrel, T.; Gao, Z.; Gao, Z.; Ehrlich, S. M.; Fields, J. Z.; Boman, B. M. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer research. 2001, 62, 8664-8667. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45153 | - |
| dc.description.abstract | 薑是使用已久的傳統天然食品,具有抗氧化及抗腫瘤的特性。儘管已被指出其在抑制癌症上有相當的功效,但對於6-shogaol 與6-gingero 的化學預防機轉之研究依舊相當有限。因此,本篇論文探討薑的香味成份gingerols 與 shogaols
對人類大腸直腸癌細胞HT-29 的預防功效與其作用機轉。首先利用 MTT 測定6-shogaol 與6-gingerol 對於HT-29 細胞之毒性。結果顯示,在以6-shogaol 與6-gingerol 純物質處理48 小時後,細胞存活率大於50%之濃度分別落在0 到80 μM 以及0 到200 μM。而在抗發炎反應的部分,兩者皆能透過抑制NF-κB 的活性,達到抑制iNOS 蛋白的表現且呈現劑量上效應。顯示出6-shogaol 與 6-gingerol 皆具有抗發炎之功效。利用帶有 APC 基因突變而高度活化Wnt/β-catenin 訊息轉錄活性的HT-29 細胞株,發現6-gingerol 處理該細胞24 小時後,對於Wnt/β-catenin 訊息傳遞的關鍵蛋白表現並沒有顯著影響。而6-shogaol 則會促進GSK-3β 失活使得細胞核內的β-catenin 蛋白表現量增高,進而開啟下游Wnt 目標蛋白c-myc 的表現且呈現劑量效應。因此利用細胞週期試驗去證實,6-shogaol 確實對於細胞週期有促進作用,而6-gingerol 則沒有顯著的影響。雖然上述結果顯示,6-shogaol 具有增強細胞分裂增生之能力,但是,在誘導細胞凋亡的試驗當中卻發現,6-shogaol 也能夠顯著的藉由粒腺體膜電位下降去誘導細胞走向凋亡途徑。而6-gingerol 則無法顯著誘導HT-29 癌細胞產生凋亡。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:06:36Z (GMT). No. of bitstreams: 1 ntu-100-R98641022-1.pdf: 7598552 bytes, checksum: 8e3a01c0ae47e7a64856d7c7a8a6bfb6 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要
英文摘要 第壹章、 前言...............................................1 第貳章、 文獻整理............................................3 第一節、 癌症...............................................3 2. 1. 1. 癌症的發生.........................................3 第二節、大腸直腸癌之流行病學...................................5 2. 2. 1. 大腸的解剖與腸壁構造.................................5 2. 2. 2. 大腸直腸癌的種類與分期...............................9 2. 2. 3. 大腸直腸癌的危險因子................................16 2. 2. 4. 大腸直腸癌的概況...................................18 第三節、大腸癌之基因致癌機轉..................................21 2. 3. 1. APC (Adenomatous polyposis coli)基因.............21 2. 3. 2.β-catenin 蛋白....................................26 2. 3. 3. Glycogen synthase kinase 3s (GSK-3s) 蛋白........29 2. 3. 4. Wnt/β-catenin 訊息傳遞路徑.........................31 第四節、細胞的生長與死亡與腫瘤之相關性...........................37 2. 4. 1. 細胞週期調控.......................................37 2. 4. 2. 細胞死亡之模式.....................................41 2. 4. 3. 誘發細胞凋亡的途徑..................................45 第五節、大腸直腸癌與發炎反應之相關性............................48 2. 5. 1. 一氧化氮合成酶(nitric oxide synthase, NOS).........49 2. 5. 2. 環氧化酶(cyclooxygenase, COX).....................50 2. 5. 3. NF-κB活化與發炎反應................................51 第六節、氧化壓力與腫瘤形成之關係................................53 2. 6. 1. 活性氧化物與癌化的關係...............................53 第七節、薑(Ginger) 活性成份之生理活性..........................55 2. 7. 1. 薑之簡介..........................................55 2. 7. 2. 薑中活性成分之生理活性與功能..........................56 第參章、 研究目的與實驗架構...................................58 第肆章、 實驗材料與方法.......................................59 第一節、 實驗材料............................................59 4. 1. 1. 細胞株來源........................................59 4. 1. 2. 藥品試劑..........................................59 4. 1. 3. 儀器與廠牌........................................61 第二節、 實驗方法............................................62 4. 2. 1. 樣品配置..........................................62 4. 2. 2. 細胞培養..........................................63 4. 2. 3. 細胞存活率........................................64 4. 2. 4. 細胞內 hydrogen peroxide 的分析....................65 4. 2. 5. 細胞週期分析.......................................66 4. 2. 6. 偵測磷脂醯絲胺酸外翻(Annexin V-FITC)................68 4. 2. 7. 細胞內粒線體膜電位ΔΨm 分析...........................69 4. 2. 8. 蛋白質電泳與西方墨點法...............................70 4. 2. 9. SDS-PAGE 電泳分析.................................73 4. 2. 10.西方墨點法(Western blotting).....................74 4. 2. 11.統計分析(Statistics analysis)....................76 第伍章、 結果...............................................77 第一節、 薑中活性成分6-shogaol 與 6-gingerol 對人類大腸直腸癌細 胞株 (HT-29)型態之影................................77 第二節、 薑中活性成分6-shogaol 與 6-gingerol 對人類大腸直腸癌細 胞株(HT-29)存活率之影...............................78 第三節、 薑中活性成分6-shogaol 與 6-gingerol 對人類大腸直腸癌細 胞株(HT-29)胞內活性氧化物(reactive oxygen pecies, ROS) 產生之探討.........................................81 第四節、 利用西方點墨法探討6-shogaol 與 6-gingerol 對人類大腸直 腸癌細胞 HT-29 之發炎反應相關蛋白表現之影響..............83 第五節、 利用西方墨點法探討6-shogaol 與 6-gingerol 對人類大腸直 腸癌細胞 HT-29 之Wnt/β-catenin 路徑相關蛋白質之表現.....89 第六節、 薑中活性成分6-shogaol 與 6-gingerol 對人類大腸直腸癌細 胞株(HT-29)細胞週期之影響............................106 第七節、 薑中活性成分6-shogaol 與 6-gingerol 對人類大腸直腸癌細 胞株(HT-29)之細胞凋亡探討............................112 第八節、 薑中活性成分6-shogaol 對人類大腸直腸癌細胞株(HT-29)之 粒線體膜電位(ΔΨm)探討..............................115 第陸章、 討論..............................................119 第柒章、 總結論............................................122 第捌章、 參考文獻...........................................123 | |
| dc.language.iso | zh-TW | |
| dc.subject | β-連環蛋白 | zh_TW |
| dc.subject | Wnt 訊息傳遞 | zh_TW |
| dc.subject | 糖原合成激酶 | zh_TW |
| dc.subject | -3β | zh_TW |
| dc.subject | Wnt signaling pathway | en |
| dc.subject | β-catenin | en |
| dc.subject | GSK-3β | en |
| dc.title | 以Wnt/β-catenin訊息路徑探討薑中活性成份對於大腸直腸癌預防功效與機轉之研究 | zh_TW |
| dc.title | Chemopreventive effects and mechanisms of bioactive
components in ginger on colorectal cancer via Wnt/β-catenin signaling pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾景光,何其儻,羅翊禎 | |
| dc.subject.keyword | Wnt 訊息傳遞,糖原合成激酶,-3β,β-連環蛋白, | zh_TW |
| dc.subject.keyword | Wnt signaling pathway,GSK-3β,β-catenin, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
