Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌(Been-Huang Chiang)
dc.contributor.authorYing- Chung Linen
dc.contributor.author林穎群zh_TW
dc.date.accessioned2021-06-15T04:06:33Z-
dc.date.available2011-02-24
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citation1. 范振家。米粉中添加甘薯澱粉所製得擠壓產品理化特質之探討。1988,國立台灣大學食品科技研究所碩士論文。
2. 吳宗沛。米穀擠壓膨發食品之纖維強化及其品質之改進。1990,國立台灣大學食品科技研究所博士論文。
3. 施明智。食品擠壓技術應用於含豆渣烘焙產品之研究。1992,國立台灣大學食品科技研究所博士論文。
4. 朱振隆。擠壓加工中食米之主要成分與油脂間之鍵結及其對品質之影響。1993,國立台灣大學食品科技研究所碩士論文。
5. 蔡良正。含豬血擠壓產品之開發與研究。1994,國立台灣大學食品科技研究所碩士論文。
6. 黃俊嘉。添加芝麻粕擠壓休閒產品之開發及其抗氧化活性分析。2004,國立中興大學生物產業機電工程學系碩士論文。
7. 李宗翰。香菇擠壓休閒產品之開發及其抗氧化特性之研究。2006,國立中興大學生物產業機電工程學系碩士論文。
8. 林育蔚。利用蛹蟲草發酵黃耆來開發抗腫瘤活性製品。2008,國立台灣大學食品科技研究所博士論文。
9. Agarwal, S.; Rao, A. V. tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids. 1998, 33, 981-984.
10. AI-Wandawi, H.; Abdul-Rahman, M.l; AI-Shaikhly, K. Tomato processing waste as essential raw materials sources. J. Agric Food Chem. 1985, 33, 804-807.
11. Altan, A.; McCarthy, K. L.; Maskan, M. Evaluation of snack foods from barley-tomato pomace blends by extrusion processing. Journal of food engineering. 2008, 84, 231-242.
12. Altan, A.; McCarthy, K. L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science and Technology. 2009, 44, 1263-1271.
13. Anersson, Y.; Hedlund, B. Extruded wheat flour: correlation between processing and product quality parameters. Food Quality and Preference. 1990, 2, 201-216.
14. Area, J. A. G. Extrusion of proteins. Critical Reviews in Food Science and Nutrition. 1992, 32, 365-392.
15. Bhatnagar S. and M. A. Hanna. Physical, mechanical, and thermal properties of starch-based plastic foams. Trans. of ASAE. 1995, 38, 567-571.
16. Bjorck, I.; Asp, N. G. The effects of extrusion cooking on nutritional value. Journal of Food Engineering. 1983, 2, 281-308.
17. Bohm, V.; Ni, L. P.; Ferruzzi, M. G.; Schwartz, S. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric Food Chem. 2002, 50, 221-226.
18. Boileau, A. C.; Merchen, N. R.; Wasson, K.; Atkinson, C. A.; Erdman, J. W. Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo lymph-cannulated ferrets. The Journal of Nutrition. 1999, 129, 1176-1181.
19. Boileau, T. W. M.; Boileau, A. C.; Erdman, J. W. Bioavailability of all-trans and cis-isomers of lycopene. Exp Biol Med. 2002, 227, 914-919.
20. Borejszo. Z.; Khan, K. Reduction of flatulence-causing sugars by high temperature extrusion of pinto bean high starch frictions. Journal of Food Science. 1992, 57, 711-722.
21. Baskaran V.; Bhattacharaya, S. Nutritional status of the protein of corn-soy based extruded products evaluated by rat bioassay. Plant Foods for Human Nutrition. 2004, 59, 101–104.
22. Camire, M. E.; Camire, A. L.; Krumhar, K. Chemical and nutriotional changes. Critical Reviews in Food Science and Nutrition. 1990, 29, 35-57.
23. Castells, M.; Marin, S.; Sanchis, V.; Ramos, A. J. Fate of mycotoxins in cereals during extrusion cooking: a review. Food Additives and Contamination. 2005, 22, 150-157.
24. Clinton, S. K.; Emenhiser, C.; Schwartz, J.; Bostwick, D. G.; Williams, A. W.; Moore, B. J.; Erdman, J. W. Cis-trans lycopene isomers carotenoids and retinol in the human prostate. Cancer Epidemiology, Biomarkers & Prevention. 1996, 5, 823-833.
25. Colonna, J. C.; Tayeb, J.; Mercier, C. Extrusion cooking of starch and starchy products. In: Extrusion cooking. 1989, 247-319. American Association of Cereal Chemists, St. Paul.
26. Conn, P. F.; Lambert, C.; Land E. J.; Schalch, W.; Truscott, T. G. Free radicales. Radicales Res. Commun. 1992, 16, 401-408.
27. Darroch, C. S.; Bell, J. M.; Keith, M. O. The effects of moist heat and ammonia on the chemical composition and feeding value of extruded canola screening for mice. Canadian Journal of Animal Science. 1990, 70, 267-277.
28. Dewanto, V.; Wu, X.; Adom, K. K.; Liu, R. H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry. 2002, 50, 3010-3014.
29. Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoids singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532-538.
30. Failla, M. K.; Chitchumroonchokchai, C.; Ishida, B. K. In vitro Micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene. J. Nutr. 2008, 138, 482-486.
31. Fenwick, G. R.; Spinks, E. A.; Wilkinson, A. P.; Hean ey, R. K.; Legoy, M. A. Effect of processing on the antinutrient content of rapeseed. Journal of the Science of Food and Agriculture. 1986, 37, 735-741.
32. Ferruzzi, M. G.; Nguyen, M. L.; Sander, L. C.; Rock, C. L.; Schwartz, S. J. Analysis of lycopene geometrical isomers in biological microsamples by liquid chromatography with coulometric array detection. Journal of Chromatography. 2001, 760, 289–299.
33. Ferruzzi, M. G.; Lumpkin, J. L.; Schwartz, S. J.; Failla, M. Digestive stability, micellarization, and uptake of β-carotene isomers by Caco-2 human intestinal cells. J. Agric. Food Chem. 2006, 54, 2780-2785.
34. Franceschi, S.; Bidoli, E.; La Vecchia, C.; Talamini, R.; D’Avanzo, B.; Negri, E. Tomatoes and risk of digestive-tract cancers. Int. J. Cancer. 1994, 59, 181-184.
35. Garrett, D. A.; Failla, M. L.; Sarama, R. J. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J. Agric. Food Chem. 1999, 47, 4301-4309.
36. Gartner, C.; Stahl, W.; Sies, H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. The American Journal of Clinical Nutrition. 1997, 66, 116-122.
37. Giovannucci, E.; Ascherio, A.; Rimm, E. B.; Stampfer, M. J.; Colditz, G. A.; Willett, W. C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995, 87, 1767-1776.
38. Guo, W. H.; Tu, C. Y.; Hu, C. H. Cis-Trans Isomerizations of _-Carotene and Lycopene: A Theoretical Study. J. Phys. Chem. B. 2008, 112, 12158–12167
39. Guzman-Tello, R.; Cheftel, J. C. Colour loss during extrusion cooking of beta carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing. International Journal of Food Science and Technology. 1990, 25, 420-434.
40. Hadley, C. W.; Clinton, S. K.; Schwartz, S. J. The consumption of processed tomato products enhances plasma lycopene concentrations in association with a reduced lipoprotein sensitivity to oxidative damage. The Journal of Nutrition. 2002, 133, 727-732.
41. Hakansson, B.; Jagerstad, M.; Oste, R.; Akesson, B.; Jonsson, L. The effects of various thermal processes on protein quality, vitamins and selenium content in whole-grain wheat and white flour. Journal of Cereal Science. 1987, 6, 269-282.
42. Harper, J. M. Extrusion of food. Vol.Ⅰ&Ⅱ. 1981. CRC press, Florida.
43. Havck, B. W.; Huber, G. R. Single screw vs. twin screw extrusion. The American Association of Cereal Chemists. 1989, 34, 930-939.
44. Herzog, A.; Siler, U.; Spitzer, V.; Seifert, N.; Denelavas, A.; Hunziker, P. B.; Goralczyk, R.; Wertz, K. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. The FASEB Journal. 2005, 19, 272-274.
45. Hwang, E. S.; Bowen, P. E. Effects of lycopene and tomato paste extracts on DNA and lipid oxidation in LNCaP human prostate cancer cells. BioFactors. 2005, 23, 97–105.
46. Ivanov, N. I.; Cowell, S. P.; Brown, P.; Rennie, P. S.; Guns, E. S.; Cox, M. E. Lycopene differentially induces quiescence and apoptosis in androgen-responsive and –independent prostate cancer cell lines. Clinical Nutrition. 2007, 26, 252–263
47. Iwe, M. O.; Van zuilichem, D. J.; Ngoddy, P. O.; Lammers, W. Amino acid and protein digestibility index of mixture of extruded soy and sweet potato flours. Lebensmittel Wissenschaft und Technologie. 2001, 34, 71-75.
48. Iwe, M. O.; Van zuilichem, D. J.; Ngoddy, P. O.; Lammers, W.; Stolp, W. Effect of extrusion cooking of soy-sweet potato mixtures on available lysine content and browning index of extrudates. Journal of food engineering. 2004, 62, 143-150.
49. Kim, L.; Sc, M.; Rao, A. V.; Rao, L. G. Effect of lycopene on prostate LNCaP cancer cells in culture. Journal of Medicinal Food. 2002, 5, 181-187.
50. Kohlmeir, L.; Kark, J. D.; Comez-Garcia, E.; Martin, B. C.; Steck, S. E.; Kardinaal, A. F. M.; Ringstad, J.; Thamm, M.; Masaev, V.; Riemersma, R.; Martin-Moreno, J. M.; Huttunen, J. K.; Kok, F. J. Lycopene and myocardial infarction risk in the EURAMIC study. Am. J. Epidemiol. 1997, 146, 618-626.
51. Kotate-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A. Carotenoids affect proliferation of human prostate cancer cells J. Nutr. 2001, 131, 3303-3306.
52. Launay, B.; Lisch, L. M. Twin-screw extrusion cooking of starches: Flow behavior of starch pastes, expansion and mechanical properties of extrudates. Journal of food engineering. 1983, 2, 259-280.
53. Levy, J.; Bisin, E.; Feldman, B.; Giat, Y.; Minster, A.; Danilenko, M.; Sharoni, Y. Lycopene is a more potent inhibitor of human cancer cell proliferation then either α-carotene or β-carotene. Nutr. Cancer. 1995, 24, 1214-1215.
54. Lorenz, K.; Jansen, G. R. Nutrient stability of full-fat soy flour and corn-soy blends produced by low-cost extrusion. Cereal Foods World. 1980, 25, 161-172.
55. Mahungu, S. M.; Diaz-Mercado, S.; Li, J.; Schwenk, M.; Singletary, K.; Faller, J. Stability of isoflaines during extrusion processing of corn/soy mixture. Journal of Agricultural and Food Chemistry. 1999, 47, 279-284.
56. Marsman, G. J. P. ; Gruppen, H. ; Zuilichem, D. J. V. ; Resinkb, J. W. ; Voragena, A. G. J. The influence of screw configuration on the in vitro digestibility and protein solubility of soybean and rapeseed meals. Journal of food engineering. 1995, 26, 13-28.
57. Mauser, F. and Langerich, B. V. 1984 System analytical model for the extrusion of starches. In “Thermal processing and quality of foods”. p. 175-179. Elaevier Applied Science Pub, Lodon and New York.
58. Mein, J. R.; Lian, F.; Wang, X. D. Biological activity of lycopene metabolites: implications for cancer prevention. Nutrition reviews. 2008, 66, 667-683.
59. Mereb, K.; Goullieux, A.; Ralainirina, R.; Queneudec, M. Application of image analysis to measure screw speed influence on physical properties of corn and wheat extrudates. Journal of food engineering. 2003, 57, 145-152
60. Miller, N. J.; Sampson, J.; Candeias, L. P.; Bramley, P. M.; Rice-Evans, C. A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996, 384, 240-242.
61. Moraru, C.; Lee, T. C. Kinetic studies of lycopene isomerization in a tributyrin model system at gastric pH. J. Agric. Food Chem. 2005, 53, 8997-9004.
62. Mossine, V. V.; Chopra, P.; Mawhinney, T. P. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 2008, 68, 11, 4384-4391.
63. Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C. K.; Prall, O. W.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D level and retention of P27(kip1) in the cyclin E-cdk2 complexes. Oncogene. 2001, 20, 3428-3436.
64. Nahum, A; Zeller, L.; Dnailenko, M.; Prall, O. W.; Watts, C. K.; Sutherland, R. L.; Levy, J.; Sharoni, Y. Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. Eur. J. Nutr. 2006, 45, 275-282.
65. Noguchi, A.; Mosso, K.; Aymanrd, C.; Jevnink, J.; Cheftel, J. C. Millard reactions during extrusion cooking of protein-enriched biscuits. Lebensmittel Wissenschaft und Technologie. 1982, 15, 105-110.
66. Omueti, O.; Morton, I. D. Development by extrusion of soyabari snack sticks: a nutritionally improved soy-maize product based on the Nigerian snack (kokoro). International Journal of Food Science and Nutrition. 1996, 47, 5-13.
67. Ozer, E. A.; Herken, E. N.; Guzel, S.; Ainsworth, P.; Ibanoglu, S. Effect of extrusion process on the antioxidant activity and total phenolics in a nutritious snack food. International Journal of Food Science and Technology. 2006, 41, 289-293.
68. Pham, C. B.; Del Rosario, R. R. Studies on the development of texturised vegetable products by the extrusion process. Journal of Food Technology. 1984, 19, 549-559.
69. Pastori, M.; Pfander, H.; Boscoboinik, D.; Azzi, A. Lycopene in association with alpha-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells. Biochem. Biophys. Res. Commun. 1998, 250, 582-585.
70. Preedy, V. R.; Watson, R. R. Lycopene nutritional, medicinal and therapeutic properties. 2008. Science Publishers, USA.
71. Re, R.; Fraser, P. D.; Long, M.; Bramley, P. M.; Rice-Evans, C. Isomerization of lycopene in the gastric milieu. Biochemical and Biophysical Research Communications. 2001, 281, 576–581.
72. Riaz, M. N. Extruders and expanders, in pet food, aquatic and livestock feeds. 2007. Agrimedia GmbH, Germany.
73. Salman, H.; Bergman, M.; Djaldetti, M.; Bessler, H. Lycopene affects proliferation and apoptosis of four malignant cell lines. Biomedicine & Pharmacotherapy. 2007, 61, 366-369.
74. Schierle, J.; Bretzel, W.; Biihler, I.; Faccin, N.; Hess, D.; Steiner, H.; Schuep, W. Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem. 1996, 3, 459-465.
75. Sharma, S. K.; Le Maguer, M. Lycopene in tomatoes and tomato pulp fractions. Ital. J. Food Sci. 1996, 2, 107-113.
76. Shi, J.; Maguer, M. L. Lycopene in tomatoes: chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition. 2000, 40, 1-42.
77. Siler, U.; Barella, L.; Spitzer, V.; Schnorr, J.; Lein, M.; Goralczyk, R.; Wertz, K. Lycopene and vitamin E interfere with autocrine/paracrine loods int the dunning prostate cancer model. The FASEB Journal. 2004, 18, 1019-1021.
78. Singh, D.; Chauhan, G. S.; Suresh, I. Tyagi, S. M. Nutritional quality of extruded snakes developed from composite of rice broken and wheat bran. International Journal of Food Properties. 2000, 3, 421-431.
79. Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: a review. International Journal of Food Science & Technology. 2007, 42, 916-929.
80. Singhletary, K.; Faller, J.; Li, J. H.; Mahungu, S. Effect of extrusion on isoflavone content and antiproliferative bioactivity of soy/corn mixtures. Journal of Agricultural and Food Chemistry. 2000, 48, 3566-3571.
81. Srihara, P.; Alexander, J. C. Effect of heat treatment on nutrition quality of plant protein blends. Canadian Institute of Food Science and Technology Journal. 1984, 17, 237-241.
82. Tang, L.; Jin, T.; Zeng, X.; Wang, J. S. Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in BALB/cnude mice. J. Nutr. 2005, 135, 287-290.
83. Unlu, N. Z.; Bohn, T.; Francis, D. M.; Nagaraja, H. N.; Clinton, S. K.; Schwartz, S. J. Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. British Journal of Nutrition 2007, 98, 140-146.
84. Vaishampayan, U.; Hussain, M.; Banerjee, M.; Seren, S.; Sarkar, F. H.; Fontana, J.; Forman, J. D.; Cher, M. L.; Powell, I.; Pontes, J. E.; Kucuk, O. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutrition and Cancer. 2007, 59, 1, 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45152-
dc.description.abstract擠壓為食品業界中經常使用的加工技術之一,與其他加工技術相比,擠壓加工過程為一高溫高壓的環境,在作業過程中包含了混合、剪切、輸送、蒸煮、擠壓等操作,往往會使物料在擠壓機中產生化學及結構上的變化。蕃茄紅素則為蕃茄中主要的紅色色素,目前已知具有抗氧化、抗癌及預防心血管疾病發生等生理活性。許多的文獻指出,反式蕃茄紅素在經過高溫加熱後,會產生異構化的現象而形成順式蕃茄紅素,因而提升了他的生物可利用率及抗氧化活性。
本研究使用了玉米粉、大豆粕與乾燥後之蕃茄渣做為原料,並以擠壓加工時的套桶溫度、螺軸轉速與物料水分含量作為獨立變因,分析不同產品中蕃茄紅素的組成、理化性質、抗氧化活性及抗癌活性,以瞭解擠壓加工對產品中蕃茄紅素的影響。
研究結果顯示,順式蕃茄紅素的比率會隨著套桶溫度、螺軸轉速的提升及水分含量的降低而有顯著的增加,由蕃茄紅素的組成及產品理化性質分析的結果,得知在高套桶溫度(180℃)、高螺軸轉速(200 rpm)及低水分含量(12-14%)的操作條件下,產品中順式蕃茄紅素的比率較高,且可得到一膨發率佳、比容積大及口感爽脆之產品。而在產品抗氧化性的分析結果得知,在經過適當操作條件的擠壓加工後,確實會使得產品的抗氧化活性獲得顯著的提升 (P < 0.05)。此研究結果顯示,擠壓加工確實能夠使原料中的反式蕃茄紅素轉變為順式蕃茄紅素,並可藉此生產出具有較佳生物可利用率及生理活性之機能性擠壓產品。
zh_TW
dc.description.abstractExtrusion is a popular process in the food industry. It is the combination of blending, shear cutting, steaming, pressing and sterilizing in the barrel tube, thus resulting the molecular transformation and chemical reaction of the raw. Lycopene, the major pigment of tomatoes, have a lot of bioactivities, such as antioxidant, anticancer and anti-atherosclerosis activities. Previous studies showed that thermal process could facilitate the isomerzation of all-trans lycopene into many types of cis-lycopene and thus increase its antioxidant activity and bioavailability.
In order to understand the effect of extrusion on the lycopene, this study utilized extruder to process the corn flour, soybean meal (SBM) and dry tomato pomace. We used barrel temperature, screw speed, and moisture content as independent factors, and then analyzed the lycopene composition, physical properties, antioxidant and anticancer ability of extrusion products.
Our results showed that extrusion could improve the cis lycopene rate of products. And the cis lycopene rate would increase when the increasing barrel temperature and screw speed and decreasing moisture content. Under the high barrel temperature (180℃), high screw speed (200 rpm) and low moisture content (12-14%) process condition, we can get a high cis lycopene rate, high expansion rate, and good texture product. Extrusion process also could enhance the antioxidant activity of products. These results suggest that extrusion process could improve the isomerzation of lycopene and thus produce extrudates with better bioavailability and bio-functions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:06:33Z (GMT). No. of bitstreams: 1
ntu-99-R96641038-1.pdf: 3579149 bytes, checksum: 85d742f9bf7f086ef55a960814dfa3b6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書 Ⅰ
摘要 II
Abstract III
目錄 IV
圖次 VI
表次 VII
第一章、序言 1
第二章、文獻回顧 3
第一節 擠壓加工簡介 3
(一)擠壓加工簡介 3
(二)擠壓機簡介 4
(三)擠壓操作的加工參數 5
(四)擠壓加工對產品營養價值的影響 10
第二節 蕃茄紅素簡介 17
(一)蕃茄 17
(二)蕃茄與蕃茄紅素 18
(三)蕃茄紅素的生理活性 19
(四)蕃茄紅素的結構 22
(五)加工過程與蕃茄生理活性間的關係 25
第三節 反應曲面法 32
第三章、實驗架構 34
第一節 擠壓加工對蕃茄紅素構型影響的探討(預備試驗) 34
第二節 開發具機能性之擠壓膨發休閒產品的探討 35
第四章、材料與方法 37
第一節 實驗材料 37
(一)實驗原料 37
(二)藥品 38
(三)細胞株及培養基 39
(四)儀器設備 39
第二節 實驗方法 40
(一)擠壓機的操作與設定 40
(二)擠壓試驗 42
(三)一般物性分析 47
(四)產品蕃茄紅素含量及順反異構物組成分析 48
(五)抗氧化活性分析 51
(六)LNCaP前列腺癌症細胞株毒性試驗 53
(七) 統計分析 55
第五章、結果與討論 56
第一節 擠壓加工對蕃茄紅素異構化的探討 56
(一) 預備試驗之結果 56
(二) 擠壓加工對蕃茄紅素異構化的影響 64
(三) 擠壓加工對蕃茄紅素影響的綜合分析 77
第二節 以蕃茄粉製作具機能性之擠壓膨發休閒產品的探討 80
(一) 不同擠壓操作條件對產品理化性質的影響 80
(二) 產品抗氧化能力之探討 92
(三) 最適加工參數之評估 98
(四) 產品儲藏性試驗 99
(五) 產品抑制癌症細胞株生長能力之探討 100
第六章、結論 102
第七章、參考文獻 103
附錄 112
期刊格式 112
 
dc.language.isozh-TW
dc.subject反應曲面法zh_TW
dc.subject擠壓zh_TW
dc.subject蕃茄zh_TW
dc.subject蕃茄紅素zh_TW
dc.subjectlycopeneen
dc.subjecttomatoen
dc.subjectRSMen
dc.subjectextrusionen
dc.title擠壓加工對於產品中蕃茄紅素組成及生理活性的影響zh_TW
dc.titleEffect of extrusion on the lycopene composition and bioactivity of extrudatesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江文章,柯文慶,陳炳輝
dc.subject.keyword擠壓,蕃茄,蕃茄紅素,反應曲面法,zh_TW
dc.subject.keywordextrusion,tomato,lycopene,RSM,en
dc.relation.page122
dc.rights.note有償授權
dc.date.accepted2010-02-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved