請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4506
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊全 | |
dc.contributor.author | Kuan-Ting Yeh | en |
dc.contributor.author | 葉冠廷 | zh_TW |
dc.date.accessioned | 2021-05-14T17:42:48Z | - |
dc.date.available | 2015-08-20 | |
dc.date.available | 2021-05-14T17:42:48Z | - |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-14 | |
dc.identifier.citation | References
[1] Almeida, L.: Topological sectors for Ginzburg-Landau energy. Rev. Mat. Iber., 15(3):487–546, 1999. [2] B ́ethuel, F., Orlandi, G., and Smets, D.: Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc., 6(1):17–94, 2004. [3] B ́ethuel, F., Saut, J.-C.: Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. Henri Poincar ́e, Physique Th ́eorique, 70(2):147–238, 1999. [4] B ́ethuel, F., Gravejat, P., and Saut, J.-C.: Travelling waves for the Gross-Pitaevskii equation II. Comm. Math. Phys, 285(2):567–651, 2009. [5] B ́ethuel, F and Saut, J.-C.: Vortices and sound waves for the Gross-Pitaevskii equation. In Nonlinear PDE’s in Condensed Matter and Reactive Flows, volume 569 of NATO Science Series C. Mathematical and Physical Sciences, pages 339–354. Kluwer Academic Publishers, Dordrecht, 2002. [6] Bona J.L., Li, Y.A.: Analyticity of solitary-wave solutions of model equations for long waves. SIAM J. Math. Anal., 27(3):725–737, 1996. [7] Bona J.L., Li, Y.A.: Decay and analyticity of solitary waves. J. Math. Pures Appl., 76(5):377– 430, 1997. [8] Chiron, D.: Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. Nonlinear Anal., 58(1-2):175–204, 2004. [9] de Bouard, A., and Saut, J.-C.: Remarks on the stability of generalized KP solitary waves. In Mathematical problems in the theory of water waves (Luminy, 1995), volume 200 of Contemp. Math., pages 75–84. Amer. Math. Soc., Providence, RI, 1996. [10] de Bouard, A., and Saut, J.-C.: Solitary waves of generalized Kadomtsev-Petviashvili equa- tions. Ann. Inst. Henri Poincar ́e, Analyse Non Lin ́eaire, 14(2):211–236, 1997. [11] de Bouard, A., and Saut, J.-C.: Symmetries and decay of the generalized Kadomtsev- Petviashvili solitary waves. SIAM J. Math. Anal., 28(5):1064–1085, 1997. [12] Ekeland, I.: On the variational principle. J. Math. Anal. Appl., 47:324–353, 1974. [13] Farina, A.: From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math., 139:265–269, 2003. [14] Gallo, C.: The Cauchy problem for defocusing nonlinear Schr ̈odinger equations with non- vanishing initial data at infinity. Comm. Partial Differential Equations, 33(4-6):729–771, 2008. 73 [15] G ́erard, P.: The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. Henri Poincar ́e, Analyse Non Lin ́eaire, 23(5):765–779, 2006. [16] G ́erard, P.: The Gross-Pitaevskii equation in the energy space, Stationary and time dependent Gross-Pitaevskii equations, Contemp. Math., 473:129–148, 2008. [17] Goubet, O.: Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces. Monatsh. Math., 151(1):39–44, 2007. [18] Gravejat, P.: Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Math. Acad. Sci. Paris, 336(2):147–152, 2003. [19] Gravejat, P.: A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation. Commun. Math. Phys., 243(1):93–103, 2003. [20] Gravejat, P.: Decay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. Henri Poincar ́e, Analyse Non Lin ́eaire, 21(5):591–637, 2004. [21] Gravejat, P.: Limit at infinity and nonexistence results for sonic travelling waves in the Gross- Pitaevskii equation. Differential Integral Equations, 17(11-12):1213–1232, 2004. [22] Gravejat, P.: Asymptotics for the travelling waves in the Gross-Pitaevskii equation. Asymptot. Anal., 45(3-4):227–299, 2005. [23] Gravejat, P.: First order asymptotics for the travelling waves in the Gross-Pitaevskii equation. Adv. Differential Equations, 11(3):259–280, 2006. [24] Gravejat, P.: Asymptotics of the solitary waves for the generalised Kadomtsev-Petviashvili equations. Disc. Cont. Dynam. Syst., in press, 2008. [25] Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys., 4(2):195–207, 1963. [26] Gustafson, S., Nakanishi, K., and Tsai, T.-P.: Scattering theory for the Gross-Pitaevskii equa- tion in three dimensions. Commun. Contemp. Math., 11(4):657–707, 2009. [27] Gustafson, S., Nakanishi, K., and Tsai, T.-P.: Scattering for the Gross-Pitaevskii equation. Math. Res. Lett., 13(2):273–285, 2006. [28] Gustafson, S., Nakanishi, K., and Tsai, T.-P.: Global dispersive solutions for the Gross- Pitaevskii equation in two and three dimensions. Ann. Henri Poincar ́e, 8(7):1303–1331, 2007. [29] Gilbarg, D., Trudinger, N.S: Elliptic Partial Differential Equations of Second Order, 2nd Edi- tion [30] Iordanskii, S.V., and Smirnov, A.V.: Three-dimensional solitons in He II. JETP Lett., 27(10):535–538, 1978. 74 [31] Jones, C.A., Putterman, S.J., and Roberts, P.H.: Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schr ̈odinger equations in two and three dimensions. J. Phys. A, Math. Gen., 19:2991–3011, 1986. [32] Jones, C.A., and Roberts, P.H.: Motions in a Bose condensate IV. Axisymmetric solitary waves. J. Phys. A, Math. Gen., 15:2599–2619, 1982. [33] Kato, K., and Pipolo, P.-N.: Analyticity of solitary wave solutions to generalized Kadomtsev- Petviashvili equations. Proc. Roy. Soc. Edinb. A, 131(2):391–424, 2001. [34] Lizorkin, P.I.: On multipliers of Fourier integrals in the spaces Lp,θ. Proc. Steklov Inst. Math., 89:269–290, 1967. [35] Lopes, O.: A constrained minimization problem with integrals on the entire space. Bol. Soc. Bras. Mat., 25(1):77–92, 1994. [36] Maris, M.: Analyticity and decay properties of the solitary waves to the Benney-Luke equation. Differential Integral Equations, 14(3):361–384, 2001. [37] Maris, M.: On the existence, regularity and decay of solitary waves to a generalized Benjamin- Ono equation. Nonlinear Anal., 51(6):1073–1085, 2002. [38] Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2):451–454, 1961. [39] Stein, E.M.: Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Monographs in Harmonic Analysis. Princeton Univ. Press, Princeton, New Jersey, 1993. With the assistance of T.S. Murphy. [40] Tarquini, E ́.: A lower bound on the energy of travelling waves of fixed speed for the Gross- Pitaevskii equation. Monatsh. Math., 151(4):333–339, 2007. [41] Zygmund, A., and Wheeden, Richard L.: Measure and integral : an introduction to real anal- ysis, volume 43 of Monographs and textbooks in pure and applied mathmatics. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4506 | - |
dc.description.abstract | 本文的目標是探討Fabrice Bethuel,Philippe Gravejat,和 Jean-Claude Saut 在Gross-
Pitaevskii方程式中關於二,三維度的行波解 c∂1u + ∆u + u(1 − |u|2) = 0 前四章節我們透過最小化能量在動量固定下來探討解之存在性,並提供一些構造 這些定理的動機。 最後一章節我們討論Gross-Pitaevskii equation未來的研究方向。 | zh_TW |
dc.description.abstract | In this thesis, Fabrice Bethuel, Philippe Gravejat, and Jean-Claude Saut discussed the existence of travelling wave solutions to the Gross-Pitaevskii equation in RN , where N = 2, 3.
c∂1u + ∆u + u(1 − |u|2) = 0 In the first four sections, we survey the theorems based on minimizing energy under momentum constraint. Also, we give some motivations about how the theorems are constructed. In the final section, we discuss the future works of Gross-Pitaevskii equation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-14T17:42:48Z (GMT). No. of bitstreams: 1 ntu-104-R01221038-1.pdf: 1051869 bytes, checksum: 0c2d0a9b0f8da8e5d728109f0b5a7158 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄 Contents
致謝 i 中文摘要 ii 英文摘要 iii 1 .Introduction --- 1 2 .Preliminaries --- 12 3. Properties for the function Emin(p) --- 39 4 Proofs for the main results --- 54 5 Future Study on Gross-Pitaevskii equation 70 參考書目 --- 73 | |
dc.language.iso | en | |
dc.title | Gross-Pitaevskii方程之行波解 | zh_TW |
dc.title | Travelling Waves for the Gross-Pitaevskii Equation | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林太家,夏俊雄 | |
dc.subject.keyword | 行波解, | zh_TW |
dc.subject.keyword | Gross-Pitaevskii,Traveling Waves, | en |
dc.relation.page | 75 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2015-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 1.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。