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中文摘要

本文的目標是探討Fabrice Bethuel，Philippe Gravejat，和 Jean-Claude Saut在Gross-

Pitaevskii方程式中關於二，三維度的行波解

c∂1u+ ∆u+ u(1− |u|2) = 0

前四章節我們透過最小化能量在動量固定下來探討解之存在性，並提供一些構造

這些定理的動機。

最後一章節我們討論Gross-Pitaevskii equation未來的研究方向。
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Abstract

In this thesis, Fabrice Bethuel, Philippe Gravejat, and Jean-Claude Saut discussed

the existence of travelling wave solutions to the Gross-Pitaevskii equation in RN ,

where N = 2, 3.

c∂1u+ ∆u+ u(1− |u|2) = 0

In the first four sections, we survey the theorems based on minimizing energy under

momentum constraint. Also, we give some motivations about how the theorems are

constructed.

In the final section, we discuss the future works of Gross-Pitaevskii equation.
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1 Introduction

1.1 Background

First, take a look at the Gross-Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ(1− |Ψ|2) on x ∈ RN , t ∈ R. (GP)

From physics, we know that it is a nonlinear Schrödinger equation.

In classical quantum physics, the Schrödinger equation has its own Energy and

Momentum. So, in this paper, we also want to define the Energy and Momentum

for the Gross-Pitaevskii equation.

It is natural to think that the Energy part comes from the variation of the PDE.

But the question is, “ What is the momentum ? ”.

In order to answer this question, we need to focus on the classical Schrödinger

equation

i~
∂Ψ

∂t
= − ~2

2m
∆Ψ.

Now for the Schrödinger equation, we want to find it’s Momentum. We could

formally compute it by the following strategy.

(a) First, we notice that the Lagrangian of Schrödinger.

L(∇xΨ,Ψt) = − ~2

2m

∫
RN
|∇xΨ|2dx+

∫
RN

Ψ(i~Ψt)dx.

(b) Second, we find the Legendre transform of L with respect to Ψt = Φ.

L∗(∇xΨ,Λ) = sup
Φ
{〈Λ,Φ〉 − L(∇xΨ,Φ)},

where 〈Λ,Φ〉 = Re
∫
RN ΛΦdx.

(c) Third, we find it’s Hamiltonian.

H(∇xΨ,Λ) = L∗(∇xΨ,Λ) =
~2

2m

∫
RN
|∇xΨ|2dx

L(∇xΨ,Ψt) = −H(∇xΨ,Ψt)− 〈Ψ,−i~∂tΨ〉.

(d) Replace ∂
∂t

= −c ·∇, where c is the wave speed.

L(∇xΨ,Ψt) = −H(∇xΨ,Ψt) + c · 〈Ψ, p(Ψ)〉,
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where p(Ψ) = −i~∇Ψ is the classical momentum in Schrödinger equation.

Since we always hope that the solution is a “ Travelling wave solution ”. That is,

we hope that the solution has the form : Ψ(x, t) = Ψ̃(x− ct).

Just like wave equation, travelling wave Ψ(x, t) = Ψ̃(x− ct) must be a solution of

∂2Ψ

∂t2
= c2∂

2Ψ

∂x2
.

But, the traveling wave is NOT always a solution for Schrödinger equation, so we

need to add more assumptions.

∂

∂t
Ψ(x, t) = −c ·∇Ψ̃(x− ct) = −c ·∇Ψ(x, t).

In other words, we will assume : ∂
∂t

= −c ·∇.

This is exactly the analogue of the classical equation :

L(q, q̇) = −H(p, q) + p · q̇,

where q means the position and p means the momentum.

Thus, this suggests to us the way to define “ General Momentum Operator ”.

Now for Gross-Pitaevskii equation, we want to find it’s Momentum. We could

formally compute it by the similar strategy.

(a) First, we recall the Lagrangian of Gross-Pitaevskii.

L(Ψ,∇xΨ,Ψt) = −[
1

2

∫
RN
|∇Ψ|2dx+

1

4

∫
RN

(1− |Ψ|2)2dx ]

− 1

2
Re

∫
RN
iΨt(1−Ψ)dx.

(b) Second, we find the Legendre transform of L with respect to Ψt = Φ.

L∗(Ψ,∇xΨ,Λ) = sup
Φ
{〈Λ,Φ〉 − L(Ψ,∇xΨ,Φ)},

where 〈Λ,Φ〉 = Re
∫
RN ΛΦdx.

(c) Third, we find it’s Hamiltonian.

H(Ψ,∇xΨ,Λ) = L∗(Ψ,∇xΨ,Λ) =
1

2

∫
RN
|∇Ψ|2dx+

1

4

∫
RN

(1− |Ψ|2)2dx

2



L(∇x,Ψt) = −H(∇xΨ,Ψt)−
1

2

∫
RN
〈i∂tΨ,Ψ− 1〉dx,

where 〈i∂tΨ,Ψ− 1〉 ≡ Re(i∂tΨ(Ψ− 1)).

(d) Replace ∂
∂t

= −c ·∇ ,where c is the wave speed.

L(∇xΨ,Ψt) = −H(∇xΨ,Ψt) + c · 1

2

∫
RN
〈i∇Ψ,Ψ− 1〉dx.

Thus, the momentum operator for Gross-Pitaevskii equation is :

P (Ψ) =
1

2

∫
RN
〈i∇Ψ,Ψ− 1〉dx.

The Gross-Pitaevskii equation appears in several models in various areas of physics

:

non-linear optics, fluid mechanics, and Bose-Einstein condensation...(see for instance

[5,25,30,31,32,38]).On a formal level, the Gross-Pitaevskii equation is Hamiltonian.

Also, the conserved Hamiltonian is a Ginzburg-Landau energy, namely (in previous

observations)

E(Ψ) =
1

2

∫
RN
|∇Ψ|2dx+

1

4

∫
RN

(1− |Ψ|2)2dx.

1.2 Statement of the main results

We investigate the existence of travelling waves to the Gross-Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ(1− |Ψ|2) on x ∈ RN , t ∈ R, (GP)

where Ψ(x, t) : RN × R −→ C is an unknown function, x is the space variable and

t is the time variable. N = 2, 3, and ∆ is the standard Laplace operator. We

are interested in the solution of the form Ψ(x, t) = u(x1 − ct, x2, ..., xN), called the

travelling wave solution. Here u is called the profile and c is called the wave speed.

The equation of profile u is given by

ic∂1u+ ∆u+ u(1− |u|2) = 0. (TWc)

Here, the parameter c ∈ R corresponding to the speed of the travelling waves, may

be restricted to the case c ≥ 0, since we may consider the complex conjugation.

E(u) =
1

2

∫
RN
|∇u|2dx+

1

4

∫
RN

(1− |u|2)2dx =

∫
RN
e(u). (Energy)

3



Since our travelling wave speed is only considered in the first dimension, so the

momentum P in Gross-Pitaevskii equation in the first dimension will be denoted as

p, which is hence a scalar

p(u) =
1

2

∫
RN
〈i∂1u, u− 1〉dx, (Momentum)

where the notation 〈 , 〉 stands for the canonical scalar product of the complex plane

C identified to R2, that is

〈z1, z2〉 ≡ Re(z1)Re(z2) + Im(z1)Im(z2) = Re(z̄1z2).

In order to make the previous definition well-defined, we introduce the space

V (RN) = {u : RN → C|∇u ∈ L2(RN), Re(u) ∈ L2(RN), Im(u) ∈ L4(RN),∇Re(u) ∈ L
4
3 (RN)}

W (RN) = 1 + V (RN).

We check : 〈i∂1v, v − 1〉 is integrable for any v ∈ W (RN), so p(v) is well-defined.

First observe that :

〈i∂1v, v − 1〉 = ∂1(Re(v))Im(v)− ∂1(Im(v))(Re(v)− 1).

Let u = v − 1 ∈ V (RN) and apply Holder’s inequality∫
RN
|〈i∂1v, v − 1〉|dx ≤

∫
RN
|∂1Re(v)||Im(v)|+ |∂1Im(v)||Re(v)− 1|

≤
∫
RN
|∇Re(v)||Im(v)|+ |∇v||Re(v)− 1|

=

∫
RN
|∇Re(u)||Im(u)|+ |∇u||Re(u)|.

The following two main theorem are from Béthuel [4].

Theorem 1. For N = 2, let p > 0. There exists a non-constant finite energy

solution up ∈ W (RN) to equation (TWc) , with c = c(up) s.t.

p(up) =
1

2

∫
RN
〈i∂1up, up − 1〉dx = p,

and such up is the solution of the minimization problem

E(up) = Emin(p) = inf{E(u)|u ∈ W (RN), p(u) = p}.

4



Theorem 2. For N = 3, there exists some constant p0 > 0 such that :

For p ≥ p0, there exists a non-constant finite energy solution up ∈ W (RN) to equa-

tion (TWc), with c = c(up) s.t.

p(up) = p, E(up0) = Emin(p0) =
√

2p0,

and, for p > p0, we have

E(up) = Emin(p) <
√

2p.

Moreover, for 0 < p < p0,

Emin(p) = inf{E(u)|u ∈ W (RN), p(u) = p} =
√

2p,

and the infimum is not achieved in W (R3).

1.3 Starting point of the proofs

The starting point of the proofs was due to the analysis of the curve p 7→ Emin(p).

First, we do some linearization of Emin(p) by using Taylor formula. For p > p̂ > 0,

Emin(p) ' Emin(p̂) +
d+

dp
Emin(p̂)(p− p̂).

Assume Emin is achieved by some map up̂, by Euler-Lagrange equation and scaling

on ψ1, we have

c = cDp(up̂)(ψ1) = DE(up̂)(ψ1).

Consider the curve γ : R 7→ W (RN) defined by γ(t) = up̂ + tψ1, since the functions

E and p are smooth on W (RN), using Taylor formula, we have

p(γ(t)) = p̂ + s, where s = t+ p(ψ1)t2,

E(γ(t)) = E(up̂) +DE(up̂)(tψ1) + O
t−→0

(t2) = Emin(p̂) + ct+ O
t−→0

(t2).

Since p(γ(t)) = p̂ + s =⇒ Emin(p̂ + s) ≤ E(γ(t)), so we obtain

Emin(p̂ + s)− Emin(p̂) ≤ E(γ(t))− Emin(p̂) ≤ cs + O
s−→0

(s2).

5



Taking s −→ 0+,
d+

dp

(
Emin(p̂)

)
≤ c,

also by Gravejat’s paper [19], there is no travelling wave solution existing for c >
√

2,

so we may hope for c ≤
√

2 (This is exactly the idea of the proof in Lemma 1).

Taking p̂ −→ 0+, we have the following approximate inequality

Emin(p) .
√

2p. (1.1)

This inequality corresponds in some sense to a linearization of the equation.

We performed some observation to obtain some feeling for its proof, first, considered

a map v ∈ {1}+ C∞c (RN) such that

δ = inf
x∈RN
|v(x)| ≥ 1

2
,

so that we may write v = ρ exp iϕ. To obtain (1.1), we need to construct v so that

E(v) '
√

2|p(v)|, thus Emin(p) .
√

2p.

From the formula (2.2) for another type of momentum and δ ≤ ρ, we have

|p(v)| =
∣∣∣1
2

∫
RN

(1− ρ2)∂1ϕ
∣∣∣ ≤ 1

2δ

∫
RN

∣∣∣1− ρ2
∣∣∣∣∣∣ρ∂1ϕ

∣∣∣.
From the inequality ab ≤ 1

2
(a2 + b2), we set a = 4

√
2|ρ∂1ϕ|, b = |1−ρ2|

4√2
, and also

viewed the formula (2.1) for another type of energy

|p(v)| ≤ 1√
2δ

(
1

2

∫
RN
ρ2|∇ϕ|2 +

1

4

∫
RN

(
1− ρ2

)2
)
≤ 1√

2δ
E(v)

i.e.
√

2δ|p(v)| ≤ E(v).

In order to obtain a map, such that E(v) '
√

2|p(v)|, we will need to make δ close

to 1, and the inequality ab ≤ 1
2
(a2 + b2) close to an equality, that is a ' b or in other

words,

∂1ϕ '
1− ρ2

√
2
.

This idea introduced the following (see Lemma 3.4).

Let s > 0, there exists (γn)n∈N in {1}+ C∞c (RN) s.t. p(γn) = s and E(γn) −→
√

2s .

6



From the density of V (RN), we may suppose that Emin has the following form

Emin(p) = inf{E(1 + v)|v ∈ C∞c (RN), p(1 + v) = p},

this lead us to the Lemma 3.2. Combining all observations above, we can proof

Theorem 3.

Theorem 3. Let N = 2, 3. For any p, q ≥ 0 we have :

|Emin(p)− Emin(q)| ≤
√

2|p− q|,

that is, the real-valued function p 7−→ Emin(p) is Lipschitz and thus is concave,

increasing on R+ .

Set Ξ(p) =
√

2p − Emin(p), then the function p 7−→ Ξ(p) is non-negative, convex,

increasing on R+, tending to +∞ as p→ +∞.

In particular, there exists p0 ≥ 0 such that Ξ(p) = 0, if p ≤ p0, and Ξ(p) > 0, as

otherwise .

Let us define Σ(u) =
√

2p(u) − E(u) for u ∈ W (RN), then Ξ(p) = sup{Σ(u)|u ∈

W (RN), p(u) = p}.

An important consequence of the concavity to the function Emin(p), is the fol-

lowing inequality.

Corollary 1. The function Emin is subadditive,

that is, for any non-negative numbers p1, . . . , p`, we have the inequality,

∑̀
i=1

Emin(pi) ≥ Emin

(∑̀
i=1

pi

)
.

Moreover, if ` ≥ 2 and the previous equation is an equality, then the function Emin,

will be linear on (0, p), where p ≡
∑̀
i=1

pi.

Proof. Notice Emin(0) = 0 and Emin is concave, so its graph lies above the line

segment joining (0, 0) and (p, Emin(p)).

In particular, for any 0 ≤ q ≤ p, we have

Emin(q)− Emin(0)

q− 0
≥ Emin(p)− Emin(0)

p− 0
=⇒ Emin(q) ≥ q

Emin(p)

p
.

7



For any 0 ≤ pi ≤ p,

Emin(pi) ≥ pi
Emin(p)

p
=⇒

∑̀
i=1

Emin(pi) ≥
∑̀
i=1

pi
Emin(p)

p
= Emin(p)

Now, if it is an equality, then Emin(pi) = pi
Emin(p)

p
and the graph needs to be linear,

that is, the function Emin will be linear on (0, p).

Since the function Emin is Lipschitz, non-decreasing and concave, its left and

right derivatives exist for any p ≥ 0 and will be equal on R+, except a countable

subset Q (Lipschitz =⇒ differentiable almost everywhere), are non-negative and

non-increasing and will satisfy the inequality,

0 ≤ d+

dp

(
Emin(p)

)
≤ d−

dp

(
Emin(p)

)
≤
√

2,

where we let
d±

dp

(
Emin(p)

)
≡ lim

∆p−→0+

Emin(p±∆p)− Emin(p)

±∆p
.

Lemma 1 (Control the speed c(up)). Let p > 0 and assume that Emin(p) is achieved

by a solution up of (TWc) of speed c(up). Then we have,

d+

dp

(
Emin(p)

)
≤ c(up) ≤

d−

dp

(
Emin(p)

)
.

This is the main control for speed c, the derivatives are related to the speed

c(up). Also, using the Lipschitz constant we have a bound for speed c(up),

0 ≤ c(up) ≤
√

2.

Lemma 2 (The property of affine energy Emin(p)). Let 0 ≤ p1 < p2 and assume the

function Emin is affine on (p1, p2). Then, for any p1 < p < p2, the infimum Emin(p)

will not be achieved in W (RN).

Lemma 3. Let v ∈ W (RN) and assume p(v) > 0. Then we have,

inf
x∈RN

|v(x)| ≤ max
{1

2
, 1− Σ(v)√

2p(v)

}
.

8



Proof. Now define δ as previous,

δ ≡ inf
x∈RN

|v(x)|.

If δ ≤ 1
2
, the result holds. Otherwise, |v| ≥ δ > 1

2
, v has a lifting, i.e. we may write

v = ρ exp iϕ, and recall in previous, we have

|p(v)| ≤ 1√
2δ

(
1

2

∫
RN
ρ2|∇ϕ|2 +

1

4

∫
RN

(
1− ρ2

)2
)
≤ 1√

2δ
E(v)

√
2δp(v) ≤

√
2δ|p(v)| ≤ E(v) =

√
2p(v)− Σ(v),

and hence,

1− δ ≥ Σ(v)√
2p(v)

=⇒ δ ≤ 1− Σ(v)√
2p(v)

,

that is,

inf
x∈RN

|v(x)| = δ ≤ max
{1

2
, 1− Σ(v)√

2p(v)

}
.

Lemma 3 is the main tool to make the finite energy solutions of (TWc) into

nontrivial solutions .

Previously, we haven’t talked about the existence of the solution of (TWc). In

order to overcome the difficulties of finding minimizing sequences in whole space

RN , there are several ways to proceed. In this thesis, we consider the corresponding

minimization problem on expanding tori. This choice has several advantages.

First, the torus is compact, so that, the existence of minimizers, have no difficulty

(see Proposition 1).

Second, it has no boundary, so that, the elliptic theory, is essentially the local one

and concentration near the boundary is avoided. The torus also captures some of

the translation invariance for the problem on RN .

Finally, the Pohozaev’s identities will give bounds for the Lagrange multipliers,

which provide a uniform control on the ellipticity of (TWc). Our strategy, to obtain

compactness for the sequence of approximate minimizers, is then to develop the

elliptic theory for the equation on tori, derive several estimates which do not rely on

9



the size of the torus and then to pass to the limit, when the size of the torus tends

to infinity (see Proposition 1,2).

More precisely, we introduce the flat torus, for N = 2 and N = 3, defined by

TNn ' ΩN
n ≡ [−πn, πn]N .

Now, introduce the Energy and Momentum on flat torus : TNn , we define the

energy En and pn on XN
n = H1(TNn ,C) as follow

En(u) =
1

2

∫
TNn
|∇u|2dx+

1

4

∫
TNn

(1− |u|2)2dx,

as well,

pn(u) =
1

2

∫
TNn
〈i∂1u, u〉dx,

which defines a quadratic functional on XN
n , and the discrepancy term

Σn(v) =
√

2pn(v)− En(v).

We introduce the set ΓNn (p), defined in dimension three by Γ3
n(p) ≡ {u ∈ X3

n, pn(u) =

p}, but in dimension two, its definition is a little different and is given by

Γ2
n(p) ≡ {u ∈ X2

n, pn(u) = p} ∩ S0
n.

The set S0
n, corresponds to a topological sector of the energy En, following the

approach of Almeida [1]. Let us just mention that we introduce the set S0
n, to have

appropriate lifting properties far from the possibly vorticity set. For more detail,

see Béthuel [4, Section 4].

Similarly, we consider the minimization problem on torus,

En
min(p) = inf{En(u)|u ∈ ΓNn (p)}. (PNn (p))

Proposition 1. Assume N = 2, 3, and n ≥ ñ(p), where ñ(p) is some integer

depending on Emin(p) then there exists a minimizer unp ∈ ΓNn (p) for En
min(p) and

some constant cnp ∈ R, such that unp satisfies (TWcnp ) i.e.

icnp∂1u
n
p + ∆unp + unp (1− |unp |2) = 0 on TNn .
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In particular, unp is smooth.

Moreover, if Ξ(p) > 0, then there exists a constant K(p) and an integer n(p) s.t.

|cnp | ≤ K(p), for any n ≥ n(p).

In particular, for any k ∈ N, there exists some constant Kk(p), such that

‖unp‖Ck(TNn ) ≤ Kk(p).

Proposition 2. For N = 2, 3, p > 0, and assume Ξ(p) > 0,

then there exists a non-trivial finite energy solution up to (TWc), such that ,by

passing to a subsequence, we have

unp −→ up in Ck(K) as n→ +∞,

for any k ∈ N and compact K in RN . Moreover, we have E(up) ≤ Emin(p)

and

|up(0)| ≤ sup{1

2
, 1− Ξ(p)√

2p
} < 1.

Proposition 3. For N = 2, 3, p > 0 and assume Ξ(p) > 0. Let up and unp be in

proposition 2. Then there exists ` finite energy solutions u1 = up, u2, u3, ..., u` to

(TWc), such that

Emin(p) =
∑̀
i=1

E(ui) p =
∑̀
i=1

p(ui).

Also, ui are minimizers of Emin(pi), where pi = p(ui) and 0 < c(up) <
√

2.

Moreover,

lim sup
n−→∞

En(unp ) = lim sup
n−→∞

En
min(p) = Emin(p).

Theorem 4. Assume N = 2, 3, if p > p0, where p0 ≥ 0 is defined in Theorem 3.

Then Emin(p) is achieved by the map, up ∈ W (RN), constructed in Proposition 2.

11



2 Preliminaries

2.1 Finite energy solutions for (TWc)

Lemma 2.1. Let n ∈ N and let v be a finite energy solution to (TWc) on RN .

There exist some constants K(N) and K(c,k,N) s.t.

‖1− |v|‖L∞((RN ) ≤ max{1, c
2
}

‖∇v‖L∞(RN ) ≤ K(N)(1 +
c2

4
)
3
2 ,

and more generally,

‖v‖Ck(RN ) ≤ K(c, k,N),∀k ∈ N.

Proof. In paper [3,13,20,40], a finite energy solution v to (TWc) is a smooth bounded

function on RN, such that,

|v| −→ 1, as |x| −→ ∞,

thus, ‖v‖L∞(RN ) ≥ 1, (otherwise, for any x ∈ RN , |v(x)| ≤ ‖v‖L∞(RN ) < 1).

We compute for ∆|v|2,

∆|v|2 = 2〈v,∆v〉+ 2|∇v|2

= 2|∇v|2 − 2c〈i∂1v,∆v〉 − 2|v|2(1− |v|2)

≥ 2|∇v|2 − 2|∂1v|2 −
c2

2
|v|2 − 2|v|2(1− |v|2).

Since |2c〈i∂1v, v〉| ≤ 2c|∂1v||v| ≤ (2|∂1v|)2
2

+ (c|v|2)
2

, by Cauchy and Young’s inequality,

we have,

∆|v|2 + 2|v|2(1 +
c2

4
− |v|2) ≥ 2(|∇v|2 − |∂1v|2) ≥ 0.

Assume ‖v‖L∞(RN ) > 1, let u = |v|2 and ‖u‖L∞(RN ) > 1.

Using maximum principle argument :

For ε =
‖u‖

L∞(RN )
−1

2
> 0, there exists M > 0, such that, u(x) < 1 + ε for all |x| > M .

Thus,

sup
|x|>M

|u| ≤ 1 + ε < ‖u‖L∞(RN ) =⇒ ‖u‖L∞(RN ) = sup
|x|≤M

|u|.
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Say sup
|x|≤M

|u| = |u(x0)| = u(x0) and we claim that :

u = |v|2 ≤ (1 +
c2

4
).

If not, ∃z, u(z) > 1 + c2

4
=⇒ u(x0) = ‖u‖L∞(RN ) ≥ |u(z)| > 1 + c2

4
,

by

∆u+ 2u(1 +
c2

4
− u) ≥ 0 =⇒ ∆u(x0) > 0,

contradicts to the maximum.

(The idea comes from : if ∃z, u(z) > 1 + c2

4
=⇒ ‖u‖L∞(RN ) > 1 + c2

4
and |u| −→

1, as |x| −→ ∞, so |u| must have max in some ball B̄M(0).)

Assume ‖v‖L∞(RN ) = 1, the above inequality also holds, so it holds in any case.

In particular,

‖1− |v|‖L∞(RN ) ≤ max{1, (
√

1 +
c2

4
− 1)} ≤ max{1, c

2
}.

Now consider, w(x) = v(x) exp (i c
2
x1) by (TWc) w satisfies,

∆w + w(1 +
c2

4
− |w|2) = 0.

Combine with previous

|∆w| ≤ |w||(1 +
c2

4
)− |w|2| ≤ |w|((1 +

c2

4
) + |w|2) ≤ 2(1 +

c2

4
)
3
2 ,

‖∆w‖L∞(B(x0,1)) ≤ 2(1 +
c2

4
)
3
2 .

By standard elliptic theory in Gilbarg Trudinger [29], there exists constant K(N),

such that

|∇w(x0)| ≤ K(N)(‖∆w‖L∞(B(x0,1)) + ‖w‖L∞(B(x0,1))).

Moreover,

|∇w(x0)| ≤ 2K(N)(1 +
c2

4
)
3
2 .

Also, by definition of w,

|∇v(x0)| ≤ |∇w(x0)|+ c

2
|v(x0)| ≤ (2K(N) + 1)(1 +

c2

4
)
3
2 .
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Since the estimate holds for any x0 ∈ RN , so we have the following;

‖∇v‖L∞(RN ) ≤ K(N)(1 +
c2

4
)
3
2

‖∇w‖L∞(RN ) ≤ K(N)(1 +
c2

4
)
3
2 .

Finally, by standard estimates for elliptic equation in Gilbarg Trudinger [29] with

bootstrap argument, we obtain,

‖v‖Ck(RN ) ≤ K(c, k,N) for any k ∈ N.

Lemma 2.2. Let r > 0 and let v be a finite energy solution to (TWc) on RN . There

exist some constants K(N) s.t. for any x0 ∈ RN ,

‖1−|v|‖L∞(B(x0,
r
2

)) ≤ max{K(N)(1+
c2

4
)2E(v,B(x0, r))

1
N+2 ,

K(N)

rN/2
E(v,B(x0, r))

1
2},

where E(v,B(x0, r)) =
∫
B(x0,r)

e(v).

Proof. Let η = 1−|v|2, by Lemma 2.1, the function η is smooth on RN and satisfies

‖∇η‖L∞(RN ) ≤ 2‖v∇v‖L∞(RN ) ≤ K(N)(1 +
c2

2
)2.

Let x̄ ∈ B̄(x0,
r
2
), such that the sup is attached,

|η(x̄)| = sup
y∈B̄(x0,

r
2

)

|η(y)|,

we have,

|η(x̄)| − |η(y)| ≤ |η(y)− η(x̄)| ≤ |∇η(ζ)||y − x̄| ≤ K(N)(1 +
c2

2
)2|y − x̄|.

Let µ = |η(x̄)|
2K(N)(1+ c2

2
)2

.

For any y ∈ B(x̄, µ), |y − x̄| < µ =⇒ |η(x̄)| − |η(y)| ≤ K(N)(1 + c2

2
)2µ ≤ |η(x̄)|

2
,

that is,

|η(y)| ≥ |η(x̄)|
2

E(v,B(x0, r)) =
1

2

∫
B(x0,r)

|∇u|2dx+
1

4

∫
B(x0,r)

(1− |u|2)2dx.

14



Let l = min(µ, r
2
),

1

4

∫
B(x0,r)

(1−|u|2)2dx ≥ 1

4

∫
B(x̄,l)

(η(y))2dy ≥ 1

4

∫
B(x̄,l)

(
|η(x̄)|

2
)2dy ≥ 1

16
η(x̄)2|B(x̄, l)|,

the first inequality follows on by B(x̄, l) ⊂ B(x0, r), also see Figure 1.

By definition of l = min(µ, r
2
) and the measure of ball,

1

16
η(x̄)2|B(x̄, l)| = min{ |η(x̄)|N+2|B(x0, 1)|

2N+4K(N)N(1 + c2

4
)2N

,
|η(x̄)|2rN |B(x0, 1)|

2N+4
},

also, notice that, (1− |v|)(1 + |v|) = η =⇒ |1− |v|| = |η|
|1+|v|| ≤ |η|,

we obtain,

‖1− |v|‖L∞(B(x0,
r
2

)) ≤ ‖η‖L∞(B(x0,
r
2

)) = |η(x̄)|.

Finally, we have the estimate,

‖1−|v|‖L∞(B(x0,
r
2

)) ≤ max{K(N)(1+
c2

4
)2E(v,B(x0, r))

1
N+2 ,

K(N)

rN/2
E(v,B(x0, r))

1
2}.

Figure 1: Energy estimate
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Now, we introduce a new function space,

Λ(RN) = {v ∈ C0(RN)|E(v) <∞ and ∃R(v) > 0 s.t. |v(x)| ≥ 1

2
, ∀|x| ≥ R(v)}.

Corollary 2.3. Let v be a finite energy solution to (TWc) on RN . Then v belongs

to space Λ(RN).

Proof.
∫
RN e(v) <∞ =⇒ lim

R−→∞

∫
RN\B(0,R−1)

e(v) = 0 by Lebesgue’s Theorem.

For 1

(2K(N)(1+ c2

4
)2)N+2

> 0, there exists R = R(v) > 1, such that

∫
RN\B(0,R−1)

e(v) ≤ 1

(2K(N)(1 + c2

4
)2)N+2

,

where K(N) is the constant in Lemma 2.2.

For any |x0| ≥ R, also see Figure 2

E(v,B(x0, 1)) =

∫
B(x0,1)

e(v) ≤
∫
RN\B(0,R−1)

e(v)

Figure 2: Energy estimate
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E(v,B(x0, 1)) ≤ 1

(2K(N)(1 + c2

4
)2)N+2

< 1 =⇒ (E(v,B(x0, 1)))
1

N+2 ≥ (E(v,B(x0, 1)))
1
2 ,

thus, K(N)(1 + c2

4
)2(E(v,B(x0, 1)))

1
N+2 is larger than K(N)(E(v,B(x0, 1)))

1
2 , then

by Lemma 2.2,

‖1− |v|‖L∞(B(x0,
1
2

)) ≤ 2K(N)(1 +
c2

4
)2(E(v,B(x0, 1)))

1
N+2 ,

so, we have,

1− |v(x0)| ≤ K(N)(1 +
c2

4
)2(E(v,B(x0, 1)))

1
N+2 ≤ 1

2
=⇒ |v(x0)| ≥ 1

2
,

that is, v ∈ Λ(RN).

2.2 Alternate definitions of the momentum

If v ∈ Λ(RN), we may write, for |x| > R(v)

v = ρ exp(iϕ),

where ϕ is a real function on RN\B(0, R(v)), defined modulo a multiple of 2π.

Also, we have,

∂jv = (iρ∂jϕ+∂jρ) exp(iϕ) =⇒ |∂jv|2 = |iρ∂jϕ|2+|∂jρ|2+2Re(iρ∂jϕ)(∂jρ) = |iρ∂jϕ|2+|∂jρ|2.

Moreover,

〈i∂1v, v〉 = −ρ2∂1ϕ and e(v) =
1

2
(|∇ρ|2 + ρ2|∇ϕ|2) +

1

4
(1− ρ2)2.

Lemma 2.4. Let ρ and ϕ be C1 scalar functions on a domain U in RN , such that

ρ is positive. Let v = ρ exp(iϕ). Then, we have the pointwise bound

|(ρ2 − 1)∂1ϕ| ≤
√

2

ρ
e(v).

Proof.

e(v) =
1

2
(|∇ρ|2 + ρ2|∇ϕ|2) +

1

4
(1− ρ2)2 ≥ 1

2
(ρ2|∂1ϕ|2) +

1

2
(
1

2
(1− ρ2)2).
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Let a = 1√
2
(ρ2 − 1), b = ρ∂1ϕ, using Young’s inequality |ab| ≤ 1

2
a2 + 1

2
b2,

| 1√
2

(ρ2 − 1)ρ∂1ϕ| ≤
1

2
(ρ2|∂1ϕ|2) +

1

2
(
1

2
(1− ρ2)2) ≤ e(v).

Now, we can have an alternative definition of the momentum on the space Λ(RN).

We consider the function,

g(v) = 〈i∂1v, v〉+ ∂1((1− χ)ϕ),

where v = ρ exp(iϕ) on RN\B(0, R(v)) and χ is an arbitrary smooth function with

compact support, such that χ = 1 on B(0, R(v)) and 0 ≤ χ ≤ 1.

Lemma 2.5. If v belongs to Λ(RN), then g(v) belongs to L1(RN). Moreover, the

integral

p̃(v) ≡ 1

2

∫
RN
g(v) =

1

2

∫
RN

(〈i∂1v, v〉+ ∂1((1− χ)ϕ)),

for any smooth function χ with compact support.

Proof. v ∈ Λ(RN) =⇒ ρ = |v| ≥ 1
2

on RN\B(0, R(v)). Notice that,

g(v) = −ρ2∂1ϕ+ ∂1((1− χ)ϕ) = (1− ρ2)∂1ϕ on RN\ supp(χ),

so, by Lemma 2.4 :

If x ∈ RN\ supp(χ) ⊂ RN\B(0, R(v)) (since B(0, R(v)) ⊂ supp(χ))

|g(v)| = |(1− ρ2)∂1ϕ| ≤
√

2

ρ
e(v) ≤ 2

√
2e(v),

thus we can obtain,∫
RN\ supp(χ)

|g(v)| ≤ 2
√

2

∫
RN\ supp(χ)

e(v) ≤ 2
√

2E(v) <∞,

since v is smooth on RN , so, g(v) is also smooth on compact set in RN∫
supp(χ)

|g(v)| <∞,
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that is, the function g(v) is integrable on RN .

Now, using integration by parts,∫
RN
g(v) =

∫
RN

(〈i∂1v, v〉+ ∂1((1− χ)ϕ))

=

∫
RN
〈i∂1v, v〉+ ∂1ϕ−

∫
RN
∂1(χϕ)

=

∫
RN
〈i∂1v, v〉+ ∂1ϕ−

∫
supp(χ)

∇ · (χϕ)n1

=

∫
RN
〈i∂1v, v〉+ ∂1ϕ−

∫
∂ supp(χ)

(χϕ)n1 · n dSx

=

∫
RN
〈i∂1v, v〉+ ∂1ϕ,

where n1 = (1, 0, 0) and n is the outer normal vector on ∂(supp(χ)), so, the integral

does not depend on the choice of χ.

2.3 Decay properties for (TWc)

Proposition 2.6. Let v be a finite energy solution to (TWc).

(1) There exists a constant v∞, such that |v∞| = 1 and

v(x) −→ v∞, as |x| −→ ∞.

Without loss of generality, we may assume v∞ = 1.

(2) Assume c(v) <
√

2. Then, there exists some constant K > 0, depending only

on c(v), E(v) and the dimension N , such that the following estimates hold for any

x ∈ RN ,

|Im(v(x))| ≤ K

1 + |x|N−1
|Re(v(x))− 1| ≤ K

1 + |x|N

|∇Im(v(x))| ≤ K

1 + |x|N
|∇Re(v(x))| ≤ K

1 + |x|N+1
.

(3) Assume N = 3 and c(v) =
√

2. Then, Re(v)− 1 and ∇Im(v) belongs to Lp(R3)

for any p > 5
3
, ∇Re(v) belongs to Lp(R3) for any p > 5

4
, whereas, Im(v) belongs to

Lp(R3) for any p > 15
4

.

Corollary 2.7. Let v be a finite energy solution to (TWc) and assume v∞ = 1.

Then v belongs to W (RN).
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Remark 2.8. Since any finite energy solution v to (TWc) has a limit v∞ at infinity,

we may write v = ρ exp(iϕ) outside some ball B(0, R), for some R > 0, where ϕ is

smooth function on RN\B(0, R), which is defined up to an integer multiple of 2π.

Moreover, the function ϕ has a limit at infinity ϕ∞, which we may take as equal

to 0, if we assume that v∞ = 1. The statements given in [18,20,21], are actually

expressed in terms of the real function ρ and ϕ, as follow,

(1) Assume 0 ≤ c(v) <
√

2. Then, there exists some constant K > 0, depending

only on c(v), E(v) and the dimension N , such that the following estimates hold for

any x ∈ RN ,

|ϕ(x)| ≤ K

1 + |x|N−1
|1− ρ(x)| ≤ K

1 + |x|N

|∇ϕ(x)| ≤ K

1 + |x|N
|∇ρ(x)| ≤ K

1 + |x|N+1
.

(2) If c(v) =
√

2. Then, the function ϕ belongs to Lp(R3\B(0, R)) for any p > 5
3
,

whereas, ∇ρ belongs to Lp(R3\B(0, R)) for any p > 5
4
.

Proof. since v = ρ cosϕ+ iρ sinϕ, so Re(v)− 1 = ρ cosϕ− 1, Im(v) = ρ sinϕ

|Re(v)− 1| ≤ K(|ρ− 1|+ ϕ2) |Im(v)| ≤ K|ϕ|

|∇Re(v)| ≤ K(|∇ρ|+ |ρ||∇ϕ|) |∇Im(v)| ≤ K(|∇ϕ|+ |ϕ||∇ρ|)

where K > 0 is a constant.

Proposition 2.9. Let v be a finite energy solution to (TWc) on RN . Then, we have

p̃(v) = p(v).

Proof. Since v is a finite energy solution, so v ∈ Λ(RN), that is, exists R(v) > 0 s.t.

|v| ≥ 1

2
on RN\B(0, R(v)).

By Remark 2.8, without loss of generality, we may assume, v∞ = 1 and ϕ∞ = 0.

Observe that,

Re(v) + iIm(v) = v = ρ exp iϕ = ρ(cosϕ+ i sinϕ) =⇒ sinϕ =
Im(v(x))

ρ(x)
.
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Using Taylor expansion of sin, we have, if x is sufficiently large

|Im(v(x))

ρ(x)
− ϕ(x)| = | sinϕ− ϕ(x)| ≤ |ϕ(x)|3

3!
,

we want to estimate, |p(v)− p̃(v)| = 1
2
|
∫
RN (〈i∂1v, v − 1〉 − g(v))|.

For R > R(v) is sufficiently large. Using integration by parts,∫
B(0,R)

〈i∂1v, 1〉 =

∫
B(0,R)

Re(i∂1v) =

∫
B(0,R)

−Im(∂1v)

= −
∫
B(0,R)

∇ · (Im(∂1v), 0, 0.., 0)

= −
∫
∂B(0,R)

(Im(∂1v), 0, 0.., 0) · ndSx

= −
∫
∂B(0,R)

Im(∂1v)
x1

R
dSx,

where, the outer unit normal n = (x1
R
, x2
R
, ...).

Similarly, ∫
B(0,R)

∂1((1− χ)ϕ) =

∫
∂B(0,R)

ϕ(x)
x1

R
dSx,

so, we have,∫
B(0,R)

(〈i∂1v, v − 1〉 − g(v)) =
1

R

∫
∂B(0,R)

(Im(v(x))− ϕ(x))x1dSx.

Let Im(v(x))− ϕ(x) = ( Im(v(x))
ρ
− ϕ(x)) + Im(v)ρ−1

ρ
, so that,

|
∫
B(0,R)

(〈i∂1v, v − 1〉 − g(v))| = 1

R
|
∫
∂B(0,R)

(Im(v(x))− ϕ(x))x1dSx|

=
1

R
|
∫
∂B(0,R)

[(
Im(v(x))

ρ
− ϕ(x)) + Im(v)

ρ− 1

ρ
]x1dSx|

≤ 1

R

∫
∂B(0,R)

|(Im(v(x))

ρ
− ϕ(x)) + Im(v)

ρ− 1

ρ
||x1|dSx

≤ 1

R

∫
∂B(0,R)

|(Im(v(x))

ρ
− ϕ(x)) + Im(v)

ρ− 1

ρ
|RdSx

=

∫
∂B(0,R)

|Im(v(x))

ρ
− ϕ(x)|+ |Im(v)

ρ− 1

ρ
|dSx

≤
∫
∂B(0,R)

|ϕ(x)|3

3!
+ |Im(v)

ρ− 1

ρ
|dSx

≤
∫
∂B(0,R)

|ϕ(x)|3

3!
+ 2|Im(v)||ρ− 1|dSx,
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the last inequality follows by, ρ = |v| ≥ 1
2

=⇒ 1
ρ
≤ 2.

Now, we have two cases.

Case 1. N = 2 or 3 and c(v) ≤
√

2

by Proposition 2.6 and Remark 2.8, we have,

|ϕ(x)|3

3!
+ 2|Im(v)||ρ− 1| ≤ K

1 + |x|N
,

we conclude that,

|
∫
B(0,R)

(〈i∂1v, v−1〉−g(v))| ≤
∫
∂B(0,R)

K

1 + |x|N
dSx =

K|∂B(0, R)|
1 +RN

−→ 0 as R −→∞.

Case 2. N = 3 and c(v) =
√

2

by Remark 2.8 : ϕ ∈ Lq(R3\B(0, R(v))) for any q > 15
4

and ρ−1 ∈ Lq(R3\B(0, R(v)))

for any q > 5
3

and by Proposition 2.6, the function f ≡ |ϕ(x)|3
3!

+ 2|Im(v)||ρ − 1| ∈

Lq(R3\B(0, R(v))) for any q > 5
4
.

We claim that : ∀R > R(v),∀q > 5
4

there ∃R′, R ≤ R′ ≤ 2R, ∃K(q) > 0, such that∫
∂B(0,R′)

f qdSx ≤
K(q)

R
.

If not, ∃R > R(v), ∃q > 5
4

s.t. ∀R′, R ≤ R′ ≤ 2R, ∀K(q) > 0,
∫
∂B(0,R′)

f qdSx >
K(q)
R

,

so, ∫ 2R

R

(

∫
∂B(0,R′)

f qdSx)dR
′ ≥
∫ 2R

R

(
K(q)

R
)dR′ = K(q) =⇒

∫
C

f qdx ≥ K(q),

where C = B(0, 2R)\B(0, R), also, see Figure 3. Since f ∈ Lq(R3\B(0, R(v))) =⇒

f ∈ Lq(C). Taking q −→∞ and taking K(q) = q, we obtain a contradiction.

∞ >

∫
C

f qdx ≥ K(q) −→∞.

Now, by Holders inequality :∫
∂B(0,R′)

fdSx ≤ (

∫
∂B(0,R′)

f qdSx)
1
q (

∫
∂B(0,R′)

1pdSx)
1
p ≤ (

K(q)

R
)
1
q |∂B(0, R′)|

1
p ≤ K̄(q)R2− 3

q ,

where 1
p

+ 1
q

= 1 and |∂B(0, R′)|
1
p = (4πR′2)

1
p ≤ (4π)1− 1

q (2R)2(1− 1
q

) = K̃(q)R2− 2
q ,

that is, we take q = 4
3

|
∫
B(0,R′)

(〈i∂1v, v − 1〉 − g(v))| ≤ K̃(q)R2− 2
q −→ 0 as R −→∞
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Figure 3: Energy estimate

which yields the conclusion, since the integrand is integrable by Lemma 2.5 and

Corollary 2.7.

2.4 Pohozaev’s type identities

Lemma 2.10. Let v be a finite energy solution to (TWc) on RN , with speed c = c(v).

Then, we have the identities

E(v) =

∫
RN
|∂1v|2,

and for any 2 ≤ j ≤ N ,

E(v) =

∫
RN
|∂jv|2 + c(v)p(v).

Moreover, if c(v) > 0 and v is not constant, then p(v) > 0.

Proof. The first identity was established in [19], and the second identity was proved

there for any 2 ≤ j ≤ N ,

E(v) =

∫
RN
|∂jv|2 + c(v)p̃(v).
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By Proposition 2.9 we have,

p(v) = p̃(v) =⇒ E(v) =

∫
RN
|∂jv|2 + c(v)p(v).

Notice, adding the identities in previous, we obtain∫
RN
|∇v|2 + (N − 1)c(v)p(v)

=

∫
RN
|∂1v|2 +

(∫
RN
|∂2v|2 + c(v)p(v)

)
+ ...+

(∫
RN
|∂Nv|2 + c(v)p(v)

)
= E(v) + (N − 1)E(v) = NE(v)

=
N

2

∫
RN
|∇v|2 +

N

4

∫
RN

(1− |v|2)2,

combine all calculations, we get

N − 2

2

∫
RN
|∇v|2 +

N

4

∫
RN

(1− |v|2)2 − c(v)(N − 1)p(v) = 0.

Assume c(v) > 0 and p(v) ≤ 0,

if N = 3, using the previous identity

N − 2

2

∫
RN
|∇v|2+

N

4

∫
RN

(1−|v|2)2 = c(v)(N−1)p(v) ≤ 0 =⇒ |v| = 1 and ∇v = 0,

thus, v is constant, a contradiction.

If N = 2, we only have |v| = 1, that is p(v) = 0, also we may write v = ρ exp iϕ,

by Lemma 2.13 (the proof of Lemma 2.13 doesn’t depend on the Lemma 2.10)

c(v)p(v) =

∫
RN
ρ2|∇ϕ|2 = 0 =⇒ ∇ϕ = 0, ρ = 0,

thus, v is constant, a contradiction.

Now, introduce the quantities Σ(v) =
√

2p(v) − E(v) and ε(v) =
√

2− c(v)2,

combine with the second identity in Lemma 2.10, we have, for 2 ≤ j ≤ N∫
RN
|∂jv|2+Σ(v) =

(√
2−c(v)

)
p(v) =

(√
2−
√

2− ε(v)2
)
p(v) =

ε(v)2

√
2 +

√
2− ε(v)2

p(v).

Corollary 2.11. Let v be a finite energy solution to (TWc) on RN , with speed

c =
√

2 and such that Σ(v) ≥ 0. Then, v is a constant.
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Proof. Since ε(v) = 0 and Σ(v) ≥ 0, by previous, for any 2 ≤ j ≤ N ,∫
RN
|∂jv|2 =

ε(v)2

√
2 +

√
2− ε(v)2

p(v)− Σ(v) = −Σ(v) ≤ 0 =⇒
∫
RN
|∂jv|2 = 0,

so that v depends only on x1 variable, say v = f(x1), but,

E(v) =

∫
RN
|∂1v|2dx =

∫
RN
|f ′(x1)|2dx1dx2...dxN =

(∫
R
|f ′(x1)|2dx1

)(∫
R

1dx2

)
...
(∫

R
1dxN

)
.

This implies that |f ′(x1)|2 = 0, since v is a finite energy solution (i.e. E(v) <∞),

so, v is a constant.

Moreover, if Σ(v) > 0, then identity in previous gives, for any 2 ≤ j ≤ N∫
RN
|∂jv|2 ≤

∫
RN
|∂jv|2 + Σ(v) =

ε(v)2

√
2 +

√
2− ε(v)2

p(v) ≤ ε(v)p(v).

Combine with this inequality, the next result gives another version of Corollary 2.11.

Lemma 2.12. Let v be a finite energy solution to (TWc) on RN . Then, there exists

a constant K(c) > 0, depending on c, such that

‖η‖N+1
L∞(RN )

≤ K(c)

∫
RN

(
λ|∂jv|2 +

η2

λ

)
,

for any 2 ≤ j ≤ N , and for any λ > 0.

In particular, we have,

‖η‖N+1
L∞(RN )

≤ K(c)
(
λ
(
ε(v)p(v)− Σ(v)

)
+
E(v)

λ

)
.

Proof. Let η∞ = ‖η‖L∞(RN ). We may assume without loss of generality, say that

|η(0)| = η∞. In view of the uniform bound for |∇v|, there exists some constant

K(N, c), such that

η∞−|η(x)| = |η(0)|−|η(x)| ≤ |η(0)−η(x)| ≤ |∇η(ζ)||x−0| ≤ 2|v∇v(ζ)||x| ≤ K(N, c)|x|,

so, we have, if |x| < η∞
2K(N,c)

,

η∞ − |η(x)| ≤ 1

2
η∞ =⇒ η∞

2
≤ |η(x)|.
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In other words,

|η(x)| ≥ η∞
2
,∀x ∈ B

(
0,

η∞
2K(N, c)

)
.

We next consider for any point a = (a1, . . . , aj−1, 0, aj+1, . . . , aN), the line Dj(a)

parallel to the axis xj, that is, Dj(a) = {aj(x) ≡ (a1, . . . , aj−1, x, aj+1, . . . , aN), x ∈

R}. We claim that,

|η∞|2 ≤ 4

∫
Dj(a)

(
λ(∂jη)2 +

η2

λ

)
,

for any a = (a1, . . . , aj−1, 0, aj+1, . . . , aN) ∈ B(0, η∞
2K(c)

).

Given a = (a1, . . . , aj−1, 0, aj+1, . . . , aN) ∈ B(0, η∞
2K(c)

), we have |η(a)| ≥ η∞
2

,

since η(x) −→ 0, as |x| −→ +∞, and by Fundamental Theorem of Calculus,

|η∞|2 ≤ 4η(a)2 = 4

∫ 0

−∞
∂j(η

2(aj(x)))dx = 8

∫ 0

−∞
∂jη(aj(x))η(aj(x))dx

Using Young’s inequality, ab = (a
√
λ)( b√

λ
) ≤ λa2

2
+ b2

2λ
for any λ > 0, where we take

a =
√

2∂jη(aj(x)) and b =
√

2η(aj(x))2,

2

∫ 0

−∞
∂jη(aj(x))η(aj(x))dx ≤

∫ 0

∞

(
λ
(
∂jη(aj(x))

)2
+
η(aj(x))2

λ

)
dx

≤
∫
R

(
λ
(
∂jη(aj(x))

)2
+
η(aj(x))2

λ

)
dx.

=

∫
Dj(a)

(
λ
(
∂jη(z)

)2
+
η2(z)

λ

)
dz.

Now, we integrate the inequality on a = (a1, . . . , aj−1, 0, aj+1, . . . , aN) ∈ B(0, η∞
2K(N,c)

).∫
B(0, η∞

2K(N,c)
)

|η∞|2da ≤ 4

∫
B(0, η∞

2K(N,c)
)

∫
Dj(a)

(
λ
(
∂jη(z)

)2
+
η2(z)

λ

)
dzda

≤ 4

∫
RN

(
λ
(
∂jη
)2

+
η2

λ

)
,

that is,

|η∞|2
(
ωN−1|

η∞
2K(N, c)

|N−1
)
≤ 4

∫
RN

(
λ
(
∂jη
)2

+
η2

λ

)
where ωN−1 is the volume of unit ball in RN − 1.

Finally,

‖η‖N+1
L∞(RN )

≤ K(N, c)

∫
RN

(
λ|∂jv|2 +

η2

λ

)
,

for any 2 ≤ j ≤ N , and for any λ > 0.
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2.5 Solutions without vortices

In this subsection, we consider solutions v to (TWc) on RN which do not vanish.

Moreover, we will assume that

|v| ≥ 1

2
,

so that, v may be written as v = ρ exp iϕ. Also, the energy can be written as

variables ρ and ϕ,

E(v) = E(ρ, ϕ) ≡ 1

2

∫
RN

(
|∇ρ|2 + ρ2|∇ϕ|2 +

(1− ρ2)2

2

)
, (2.1)

whereas, for the momentum, we have 〈i∂1v, v〉 = −ρ2∂1ϕ. Therefore, it follows from

Proposition 2.9 that,

p(v) = p̃(v) =
1

2

∫
RN

(
− ρ2∂1ϕ+ ∂1

(
(1− χ)ϕ

))
=

1

2

∫
RN

(1− ρ2)∂1ϕ. (2.2)

The system for ρ and ϕ is written
c
2
∂1ρ

2 +∇ ·
(
ρ2∇ϕ

)
= 0,

cρ∂1ϕ−∆ρ− ρ
(

1− ρ2
)

+ ρ|∇ϕ|2 = 0.

Notice that the quantity η = 1− ρ2 satisfies the equation,

∆2η − 2∆η + c2∂2
1η = −2∆(|∇v|2 + η2 − cη∂1ϕ)− 2c∂1∇ · (η∇ϕ),

where the L.H.S is linear with respect to η, whereas, the R.H.S is quadratic.

A first elementary result is,

Lemma 2.13. Let v be a finite energy solution to (TWc) on RN , satisfying |v| ≥ 1
2
.

Then, we have the identity

cp(v) =

∫
RN
ρ2|∇ϕ|2.

Proof. The system for ρ and ϕ is written
c
2
∂1ρ

2 +∇ ·
(
ρ2∇ϕ

)
= 0,

cρ∂1ϕ−∆ρ− ρ
(

1− ρ2
)

+ ρ|∇ϕ|2 = 0.
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Multiplying the first equation by ϕ and integrating by parts, also, use the decay

properties.

c

2

∫
RN
ϕ∂1ρ

2 +

∫
RN
ϕ∇ ·

(
ρ2∇ϕ

)
= 0,

∇ ·
(
ϕρ2∇ϕ

)
= ρ2|∇ϕ|2 + ϕ∇ ·

(
ρ2∇ϕ

)
,

− c
2

∫
RN
ϕ∂1ρ

2 =

∫
RN
ϕ∇ ·

(
ρ2∇ϕ

)
=

∫
RN
∇ ·
(
ϕρ2∇ϕ

)
−
∫
RN
ρ2|∇ϕ|2.

Now we claim, ∫
RN
∇ ·
(
ϕρ2∇ϕ

)
= 0.

We may assume ρ2 ≤ 2, since ρ −→ 1 as R = |x| −→ ∞ and by divergent theorem,

|
∫
BR

∇ ·
(
ϕρ2∇ϕ

)
| = |

∫
∂BR

(
ϕρ2∇ϕ

)
· ndSx| =

∫
∂BR

|ϕ||ρ2||∇ϕ|dSx

≤ 2

∫
∂BR

|ϕ||∇ϕ|dSx ≤
K

(1 +RN−1)(1 +RN)
|∂BR| −→ 0,

where n is the unit outer normal vector on ∂BR, the last inequality follows by the

decay property, that is,

c

2

∫
RN
ϕ∂1ρ

2 =

∫
RN
ρ2|∇ϕ|2,

and similarly,
c

2

∫
RN
ϕ∂1ρ

2 =
c

2

∫
RN
∂1(ϕρ2)− c

2

∫
RN

(∂1ϕ)ρ2,

again, we claim, ∫
RN
∂1(ϕρ2) =

∫
RN
∂1ϕ,

thus,
c

2

∫
RN
ϕ∂1ρ

2 =
c

2

∫
RN
∂1ϕ−

c

2

∫
RN

(∂1ϕ)ρ2 =
c

2

∫
RN
∂1ϕ(1− ρ2).

We may say ρ ≤ 2, since ρ −→ 1 as R = |x| −→ ∞ and by divergent theorem,

|
∫
BR

∂1(ϕρ2 − ϕ)| ≤ |
∫
∂BR

|ϕρ2 − ϕ|dSx =

∫
∂BR

|ϕ||ρ− 1||ρ+ 1|dSx

≤ K

(1 +RN−1)(1 +RN)
|∂BR| −→ 0,
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the last inequality also follows by the decay property.

Finally,

cp(v) =
c

2

∫
RN

(1− ρ2)∂1ϕ =

∫
RN
ρ2|∇ϕ|2.

Lemma 2.14. Let v be a finite energy solution to (TWc) on RN satisfying |v| ≥ 1
2
.

Then

E(v) ≤ 7c(v)2

∫
RN
η2.

Proof. By Lemma 2.13 and Cauchy-Schwarz’s inequality,∫
RN
ρ2|∇ϕ|2 =

c

2

∫
RN

(1− ρ2)∂1ϕ ≤ c

(∫
RN
η2

) 1
2
(∫

RN
|∇ϕ|2

) 1
2

≤ 2c

(∫
RN
η2

) 1
2
(∫

RN
ρ2|∇ϕ|2

) 1
2

,

the last inequality follows by ρ = |v| ≥ 1
2

=⇒ 4ρ2 ≥ 1.

Hence, we get, ∫
RN
ρ2|∇ϕ|2 ≤ 4c2

∫
RN
η2.

It remains to bound the integral of |∇ρ|2, recall the equations
c
2
∂1ρ

2 +∇ ·
(
ρ2∇ϕ

)
= 0,

cρ∂1ϕ−∆ρ− ρ
(

1− ρ2
)

+ ρ|∇ϕ|2 = 0.

For that purpose, we multiply the second equation by 1− ρ2 and integrate by parts

on RN , using the decay properties in Remark 2.8.∫
RN

(
(∆ρ)(1− ρ2) + ρ(1− ρ2)2

)
= c

∫
RN
ρ(1− ρ2)∂1ϕ+

∫
RN
ρ(1− ρ2)|∇ϕ|2,

∫
RN

(∆ρ)(1− ρ2) =

∫
RN
∇ ·
(
(∇ρ)(1− ρ2)

)
−∇ρ · ∇(1− ρ2) =

∫
RN

2ρ|∇ρ|2,

thus, we have,∫
RN

(
2ρ|∇ρ|2 + ρ(1− ρ2)2

)
= c

∫
RN
ρ(1− ρ2)∂1ϕ+

∫
RN
ρ(1− ρ2)|∇ϕ|2,
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also, by 1 ≤ 2ρ and (1− ρ2) ≤ 2ρ and Cauchy-Schwarz’s inequality, we deduced∫
RN

(
|∇ρ|2 +

1

2
(1− ρ2)2

)
≤
∫
RN

(
(2ρ)|∇ρ|2 + (2ρ)

1

2
(1− ρ2)2

)
= c

∫
RN
ρ(1− ρ2)∂1ϕ+

∫
RN
ρ(1− ρ2)|∇ϕ|2

≤ c

(∫
RN
ρ2|∂1ϕ|2

) 1
2
(∫

RN
(1− ρ2)2

) 1
2

+ 2

∫
RN
ρ2|∇ϕ|2

≤ c

(∫
RN
ρ2|∇ϕ|2

) 1
2
(∫

RN
η2

) 1
2

+ 8c2

∫
RN
η2

≤ 2c2

(∫
RN
η2

) 1
2
(∫

RN
η2

) 1
2

+ 8c2

∫
RN
η2

= 10c2

∫
RN
η2.

Finally,

E(v) =
1

2

∫
RN

(
ρ2|∇ϕ|2 + |∇ρ|2 +

1

2
(1− ρ2)2

)
≤ 1

2
(4c2

∫
RN
η2 + 10c2

∫
RN
η2).

2.6 Subsonic vortexless solutions

We next assume that the solution v satisfies the additional condition,

0 < c(v) <
√

2.

For such a solution, we let

ε(v) =
√

2− c(v)2.

Proposition 2.15. Let v be a non-trivial finite energy solution to (TWc) on RN

satisfying 0 < c(v) <
√

2. Then,∥∥∥1− |v|
∥∥∥
L∞(RN )

≥ ε(v)2

10
.

Proof. Let δ = ‖1− |v|‖L∞(RN ). If δ ≥ 1
2
, then the proof is straightforward. Other-

wise, δ < 1
2

=⇒ |v| ≥ 1
2
, we can use Lemma 2.4,

δ = ‖1− |v|‖L∞(RN ) ≥ 1− |v| =⇒ ρ ≥ 1− δ =⇒ 1

ρ
≤ 1

1− δ
,
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cp(v) ≤ c

2

∣∣∣∣ ∫
RN

(1−ρ2)∂1ϕ

∣∣∣∣ ≤ c

2

∫
RN
|1−ρ2||∂1ϕ| ≤

c

2

∫
RN

√
2

ρ
e(v) ≤ c√

2(1− δ)

∫
RN
e(v),

so, by Lemma 2.13, ∫
RN
ρ2|∇ϕ|2 ≤ c√

2(1− δ)

∫
RN
e(v).

Recall the identity in Lemma 2.14, now we will estimate the R.H.S.∫
RN

(
2ρ|∇ρ|2 + ρ(1− ρ2)2

)
= c

∫
RN
ρ(1− ρ2)∂1ϕ+

∫
RN
ρ(1− ρ2)|∇ϕ|2,

using Lemma 2.4 we have

c

∣∣∣∣ ∫
RN
ρ(1− ρ2)∂1ϕ

∣∣∣∣ ≤ √2c

∫
RN
e(v),

and using |v| ≥ 1
2
, |1−ρ2

ρ
| ≤ |1+ρ

ρ
|δ ≤ (1 + 1

ρ
)δ ≤ 3δ∣∣∣∣ ∫

RN
ρ(1− ρ2)|∇ϕ|2

∣∣∣∣ =

∣∣∣∣ ∫
RN

(ρ2|∇ϕ|2)(
1− ρ2

ρ
)

∣∣∣∣ ≤ 6δ

∫
RN
e(v).

Combining previous calculation and using the fact that ρ ≥ 1− δ > 0, we can get,∫
RN

(
|∇ρ|2

2
+

(1− ρ2)2

4

)
≤
∫
RN

(
ρ|∇ρ|2 + ρ

(1− ρ2)2

2

)
=

1

2

(
c

∫
RN
ρ(1− ρ2)∂1ϕ+

∫
RN
ρ(1− ρ2)|∇ϕ|2

)
≤ | c

2

∫
RN
ρ(1− ρ2)∂1ϕ|+ |

1

2

∫
RN
ρ(1− ρ2)|∇ϕ|2|

≤
√

2c

2

∫
RN
e(v) +

6δ

2

∫
RN
e(v)

=

√
2c+ 6δ

2

∫
RN
e(v)

≤
√

2c+ 6δ

4(1− δ)

∫
RN
e(v).

Finally, we derive,

E(v) =

∫
RN

(
(|∇ρ|2 +

(1− ρ2)2

2
) + (ρ2|∇ϕ|2)

)
≤
(√2c+ 6δ

4(1− δ)
+

c

2
√

2(1− δ)

)
E(v)

=
( 3δ

2(1− δ)
+

c√
2(1− δ)

)
E(v),

that is,

λ

∫
RN
e(v) ≤ 0,
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where, we let λ = 1− c√
2(1−δ) −

3δ
2(1−δ) .

Since v is non-trivial, its energy is not equal to 0, so that λ ≤ 0 and

δ ≥ 2

5

(
1− c√

2

)
=

2

5

(
1−

√
1− ε2

2

)
≥ ε2

10
,

which is our goal.

Combining Lemma 2.10 and Lemma 2.13, we have,

Lemma 2.16. Let v be a finite energy solution to (TWc) on RN satisfying |v| ≥ 1
2

and 0 < c(v) <
√

2. Then,

Σ(v) +
1

N

∫
RN
|∇ρ|2 =

ε(v)2

√
2 + c(v)

p(v).

Moreover, if N = 2, then we have,∫
R2

|∇ρ|2
(

1 +
1

ρ2

)
=

∫
R2

η|∇ϕ|2.

Proof. Recall the identity in Lemma 2.10,

N − 2

2

∫
RN
|∇v|2 +

N

4

∫
RN
η2 = c(N − 1)p(v),

and using the identity |∇v|2 = |∇ρ|2 + ρ2|∇ϕ|2,

N − 2

2

∫
RN
|∇ρ|2 +

N − 2

2

∫
RN
ρ2|∇ϕ|2 =

N − 2

2

∫
RN
|∇v|2,

thus,

N − 2

2

∫
RN
|∇ρ|2 +

N − 2

2

∫
RN
ρ2|∇ϕ|2 +

N

4

∫
RN
η2 = c(N − 1)p(v).

Now, add the following equality in Lemma 2.13 on both sides,∫
RN
ρ2|∇ϕ|2 = cp(v),

we get,
N − 2

2

∫
RN
|∇ρ|2 +

N

2

∫
RN
ρ2|∇ϕ|2 +

N

4

∫
RN
η2 = cNp(v),

this yields,

E(v)− cp(v) =
1

N

∫
RN
|∇ρ|2,
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by the definitions of Σ(v) and ε(v) we get,

Σ(v) +
1

N

∫
RN
|∇ρ|2 =

ε(v)2

√
2 + c(v)

p(v).

For another equality , recall the system for ρ and ϕ is written
c
2
∂1ρ

2 +∇ ·
(
ρ2∇ϕ

)
= 0,

cρ∂1ϕ−∆ρ− ρ
(

1− ρ2
)

+ ρ|∇ϕ|2 = 0.

We multiply the second equation by η
ρ

and integrate on RN . This implies,∫
RN

(
cη∂1ϕ−

∆ρ

ρ
η − η2 + η|∇ϕ|2

)
= 0.

Using integrating by parts, and ∇
(

1−ρ2
ρ

)
= −(∇ρ)

(
1 + 1

ρ2

)
∫
RN

∆ρ

ρ
η = −

∫
RN
∇ρ∇

(η
ρ

)
= −

∫
RN
∇ρ∇

(1− ρ2

ρ

)
=

∫
RN
|∇ρ|2

(
1 +

1

ρ2

)
.

Now, for N = 2, and the following identity,

N − 2

2

∫
RN
|∇ρ|2 +

N

2

∫
RN
ρ2|∇ϕ|2 +

N

4

∫
RN
η2 = cNp(v),

we get, ∫
R2

η2 = 2cp(v) = c

∫
R2

η∂1ϕ.

Finally,∫
RN
|∇ρ|2

(
1 +

1

ρ2

)
=

∫
RN

∆ρ

ρ
η = c

∫
R2

η∂1ϕ−
∫
RN
η2 +

∫
RN
η|∇ϕ|2 =

∫
RN
η|∇ϕ|2.

Now, we state the following Theorem, which shows that up is analytic. For more

detail, see Béthuel [4, Proposition 2.3].

Theorem 2.17. Let v be a finite energy solution of (TWc) on RN , with speed

0 ≤ c <
√

2, then each component of v is real-analytic on RN .
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2.7 Estimates of Fourier transform

We consider ξ ∈ RN , and a function f defined on RN , its Fourier transform f̂(ξ),

defined by the integral,

f̂(ξ) =

∫
RN
f(x)e−ix·ξdx.

Lemma 2.18. Let v be a finite energy solution to (TWc) on RN satisfying |v| ≥ 1
2
.

Then, for any ξ ∈ RN we have,(
|ξ|2 + 2− c2 ξ

2
1

|ξ|2

)
η̂(ξ) = 2R̂0(ξ)− 2c

N∑
j=2

ξ2
j

|ξ|2
R̂1(ξ) + 2c

N∑
j=2

ξ1ξj
|ξ|2

R̂j(ξ)

where R0 = |∇v|2 + η2 and Rj = η∂jϕ.

Proof. Since |v| ≥ 1
2
, we may write v = ρeiϕ, which satisfies the system for ρ and ϕ

c
2
∂1ρ

2 +∇ ·
(
ρ2∇ϕ

)
= 0,

cρ∂1ϕ−∆ρ− ρ
(

1− ρ2
)

+ ρ|∇ϕ|2 = 0.

Also, η = 1− ρ2 satisfies the equation,

∆2η − 2∆η + c2∂2
1η = −2∆(|∇v|2 + η2 − cη∂1ϕ)− 2c∂1∇ · (η∇ϕ),

it suffices to consider the Fourier transform on this equation.

Lemma 2.19. Let N = 2 and let v be a finite energy solution to (TWc) on R2

satisfying |v| ≥ 1
2

and 0 < c(v) <
√

2. Then, there exists some universal constant

K > 0, such that

ε(v) ≤ KE(v).

Proof. For any integrable function f on RN and any ξ ∈ RN , we can see that

|f̂(ξ)| ≤ ‖f‖L1(RN ) =⇒ ‖f̂‖L∞(RN ) ≤ ‖f‖L1(RN ), and Lemma 2.4, ρ = |v| ≥ 1
2
, we

have the following,

‖R̂i‖L∞(RN ) ≤ ‖Ri‖L1(RN ) =

∫
RN
|Ri| =

∫
RN
|(ρ2 − 1)∂iϕ| ≤

∫
RN

√
2

ρ
e(v) ≤ KE(v).

By integrating equation in Lemma 2.18, we have for any 1 ≤ q ≤ +∞,∫
RN
|η̂(ξ)|qdξ ≤ K(1 + cq)

(∫
RN
|Lε(ξ)|qdξ

)
E(v)q,
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where, for any ξ ∈ RN we let

Lε(ξ) =
1

|ξ|2 + 2− c2 ξ21
|ξ|2

=
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ2
1

.

For case q = 2, by Plancherel’s theorem ‖η̂‖L2(RN ) = ‖η‖L2(RN )∫
RN
|η(x)|2dx ≤ K(1 + c2)

(∫
RN
|Lε(ξ)|2dξ

)
E(v)2.

We will proof the following claim after finishing the Lemma 2.19,∫
R2

|Lε(ξ)|2dξ =
π√

2ε(c)
.

By Lemma 2.14, 0 < c <
√

2, and previous claim, we have,

E(v) ≤ 7c2

∫
RN
|η|2 ≤ 7c2K(1 + c2)

(∫
RN
|Lε(ξ)|2dξ

)
E(v)2 ≤ K

ε(c)
E(v)2.

(Now we proof the claim)

Using polar coordinates ξ1 = r cos θ, ξ2 = r sin θ, we have,∫
R2

Lε(ξ)
2dξ =

∫ ∞
0

∫ 2π

0

rdrdθ

(r2 + 2− c2 cos2(θ))2
=

1

2

∫ 2π

0

dθ

2− c2 cos2(θ)
.

Now, we change the variables t = tan(θ) and u =
√

2
2−c2 t, we obtain,

∫
R2

Lε(ξ)
2dξ = 2

∫ ∞
0

dt

2− c2 + 2t2
=

√
2

2− c2

∫ ∞
0

du

1 + u2
=

π√
2ε(c)

.

Lemma 2.20. Let v be a finite energy solution to (TWc) on R3 satisfying |v| ≥ 1
2

and 0 < c <
√

2. Then, there exists some universal constant K > 0, such that

E(v) ≥ E0(c) ≡ K

c(1 + c2) arcsin
(

c√
2

) .
Proof. The argument is similar to the argument in Lemma 2.19.

We will proof the following claim after finishing the Lemma 2.20,∫
R3

|Lε(ξ)|2dξ =
π2

c
arcsin

( c√
2

)
.
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By Lemma 2.14, 0 < c <
√

2, and previous claim, there exists some constant K > 0

and K̃ > 0, such that

E(v) ≤ 7c2

∫
R3

|η|2 ≤ 7c2K(1+c2)

(∫
R3

|Lε(ξ)|2dξ
)
E(v)2 =

c(1 + c2)

K̃
arcsin

( c√
2

)
E2(v).

(Now we proof the claim)

Using spherical coordinates and using the change of variables u = cos(θ), we have,∫
R3

Lε(ξ)
2dξ = 2π

∫ ∞
0

(∫ π

0

r2 sin(θ)dθ

(r2 + 2− c2 cos2(θ))2

)
dr = 4π

∫ ∞
0

(∫ 1

0

r2du

(r2 + 2− c2u2)2

)
dr.

Using integration by parts with respect to the variable r,∫ ∞
0

1

(r2 + 2− c2u2)
dr =

r

(r2 + 2− c2r2)

∣∣∣∞
0
−
∫ ∞

0

−2r2

(r2 + 2− c2r2)2
dr =

∫ ∞
0

2r2

(r2 + 2− c2r2)2
dr,

thus, ∫
R3

Lε(ξ)
2dξ = 2π

∫ ∞
0

(∫ 1

0

du

r2 + 2− c2u2

)
dr.

Using the change of variables v = r√
2−c2u2 and w = cu√

2
, we obtain,∫

R3

Lε(ξ)
2dξ =2π

∫ ∞
0

(∫ 1

0

du√
2− c2u2

)
dv

1 + v2
= π2

∫ 1

0

du√
2− c2u2

=
π2

c

∫ c√
2

0

dw√
1− w2

=
π2

c
arcsin

( c√
2

)
.

Lemma 2.21. Let v be a non-trivial finite energy solution to (TWc) on R3. Then,

E(v) ≥ E0,

where E0 is some positive universal constant.

Proof. According to the results of Gravejat [19, Theorem 1], we know that, if c(v) >
√

2, then every finite energy solution to (TWc), must be constant solution. Now,

since our v is nontrivial finite energy solution to (TWc), so 0 ≤ c ≤
√

2. Recall the

Pohozaev’s type inequality in the proof of Lemma 2.10,

N − 2

2

∫
RN
|∇v|2 +

N

4

∫
RN

(1− |v|2)2 − c(v)(N − 1)p(v) = 0,
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if c = 0, then for N = 3, we have v is constant, contradict to nontrivial solution,

thus we have,

0 < c ≤
√

2.

Moreover, in dimensions N > 2, recall from Lemma 2.2.

Let r > 0 and let v be a finite energy solution to (TWc) on RN . There exist some

constants K(N) s.t. for any x0 ∈ RN ,

‖1−|v|‖L∞(B(x0,
r
2

)) ≤ max{K(N)(1+
c2

4
)2E(v,B(x0, r))

1
N+2 ,

K(N)

rN/2
E(v,B(x0, r))

1
2},

where E(v,B(x0, r)) =
∫
B(x0,r)

e(v).

Now, we let x0 = 0 and for r > 0 large enough, since the energy is finite, we have,

‖1− |v|‖L∞(B(0, r
2

)) ≤ K(N)(1 +
c2

4
)2E(v,B(0, r))

1
N+2 ,

by Monotone convergence theorem,

‖1− |v|‖L∞(RN ) ≤ KE(v)
1

N+2 .

Assume |v| < 1
2

=⇒ 1
2
≤ ‖1− |v|‖L∞(RN ) ≤ KE(v)

1
N+2 =⇒ E0 = ( 1

2K
)N+2 ≤ E(v).

Assume |v| ≥ 1
2
, then v may be written as v = ρ exp iϕ.

If 0 < c(v) <
√

2, then by Lemma 2.20, the function c 7→ c(1 + c2) arcsin( c√
2
) is

bounded on (0,
√

2), so E(v) has a universal lower bound.

If c(v) =
√

2, we can get from the proof in Lemma 2.20 (ε =
√

2− c2),∫
R3

L0(ξ)2dξ =
π2

c
arcsin

( c√
2

)∣∣∣
c=
√

2
=

π3

2
√

2
< +∞,

then, use the same argument in Lemma 2.20, we can get the result.

With same spirit, we may get the following Lemma in Béthuel [4, Lemma 2.15].

Lemma 2.22. Let 5
3
< q < +∞, and let v be a finite energy solution to (TWc)

on R3, satisfying |v| ≥ 1
2
. Then, there exists a constant K(q), only depending on q,

such that

‖η‖Lq(R3) ≤ K(q)E(v)
1
q

+ 2
5 .
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Corollary 2.23. Let v be a non-trivial finite energy solution to (TWc) on R3. There

exists some constants K > 0 and α > 0, such that

‖1− |v|‖L∞(R3) ≥
K

E(v)α
.

Proof. If ‖1− |v|‖L∞(R3) ≥ 1
2
, then by Lemma 2.21, take K =

Eα0
2

and any α > 0.

‖1− |v|‖L∞(R3) ≥
1

2
=
K

Eα0
≥ K

E(v)α
.

If ‖1− |v|‖L∞(R3) ≤ 1
2

=⇒ |v| ≥ 1
2
. By Lemmas 2.14 and 2.22, and 0 ≤ c ≤

√
2,

for any 5
3
< q < 2,

E(v) ≤ 7c2‖η‖2
L2(R3) ≤ 14‖η‖qLq(R3)‖η‖

2−q
L∞(R3) ≤ K(q)‖η‖2−q

L∞(R3)E(v)1+ 2q
5 ,

also,

|1−|v|| = |1−ρ| = |1− ρ
2|

|1 + ρ|
≥ |η|
‖1 + ρ‖L∞(R3)

=⇒ ‖1−|v|‖L∞(R3) ≥
‖η‖L∞(R3)

‖1 + ρ‖L∞(R3)

.

Hence, notice that ‖ρ‖L∞(R3)−1 ≤ ‖1−ρ‖L∞(R3) ≤ 1
2
, and using previous inequality,

‖1− |v|‖L∞(R3) ≥
‖η‖L∞(R3)

1 + ‖ρ‖L∞(R3)

≥ 2

5
‖η‖L∞(R3) ≥

K(q)

E(v)
2q

5(2−q)
.

Finally, we choose q = 7
4

and α = 14
5

.

Lemma 2.24. Let v be a finite energy solution to (TWc) on R3, such that Σ(v) > 0.

Then, there exists some constant K(c), depending only on c, and some universal

constant α > 0, such that

ε(v)p(v) ≥ K(c)

E(v)8α+1
.

Proof. By Lemma 2.12, we have,

‖η‖N+1
L∞(RN )

≤ K(c)
(
λ
(
ε(v)p(v)− Σ(v)

)
+
E(v)

λ

)
.

Let N = 3 and use Corollary 2.23,

‖η‖L∞(R3) = ‖1− |v|2‖L∞(R3) ≥ ‖1− |v|‖L∞(R3) ≥
K(c)

E(v)α
,

thus,

λε(v)p(v) +
E(v)

λ
≥ K(c)‖η‖4

L∞(R3) ≥
K(c)

E(v)4α
,∀λ > 0.

Finally, we choice λ = 2E(v)4α+1

K(c)
to get the result.
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3 Properties for the function Emin(p)

In this section, we will introduce some properties of function Emin(p) and complete

all the details of Theorem 3, Lemma 1 and Lemma 2, at the starting point of the

proofs.

3.1 Proof of Theorem 3 : The Lipschitz condition for Emin(p)

Define the space E(RN) = {v : RN −→ C|E(v) < +∞}.

Lemma 3.1. For N = 2 and N = 3, we have the inclusion W (RN) ⊂ E(RN).

Moreover, the functions E and p are continuous on W (RN).

Proof. Concerning the momentum p, we have already seen that, in view of the proof

of p(v) is well-defined, we can similarly show that p is continuous on W (RN).

For the energy E, we observe the identity,

(1− |1 + w|2)2 = 4Re(w)2 + 4Re(w)|w|2 + |w|4,

for any w ∈ V (RN).

By Young’s inequality, Re(w)|w|2 ≤ Re(w)2

2
+ |w|4

2
and |w|4 = (Re(w)2 + Im(w)2)2,

(1−|1+w|2)2 ≤ 6Re(w)2+3|w|4 ≤ 6Re(w)2+3Re(w)4+3Im(w)4+6Re(w)2Im(w)2,

again, by Young’s inequality,

Re(w)2Im(w)2 ≤ Re(w)4

2
+
Im(w)4

2
=⇒ (1−|1+w|2)2 ≤ 6Re(w)2+6Re(w)4+6Im(w)4.

We just need to claim : Re(w)4 ∈ L1(RN) then the L.H.S of this identity belongs to

L1(RN), whenever w belongs to V (RN). Hence, W (RN) is included in E(RN), also,

we can similarly show that E is continuous on W (RN).

(Claim : Re(w)4 ∈ L1(RN))

For N = 2, let p = 4
3

and p∗ = Np
N−p = 4, also v = Re(w) and ϕ is a smooth cut off

with 1 on B(0, 1) and support in B(0, 2), and ∇v ∈ L 4
3 (RN), and v ∈ L2(RN), we

need to show v ∈ L4(RN).
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Let φn be standard smooth mollifier, ‖φn‖L1(RN ) = 1, then φn ∗ v is smooth.

By Zygmund [41, Prob 7.2 and (9.6)], φn ∗ v −→ v a.e. and

vn −→ v in L2(RN) and ∇vn = φn ∗ ∇v −→ ∇v in L
4
3 (RN),

where vn = (φn ∗ v), and take ηnm = ϕ( x
m

)vn and φnm = ϕ( x
m

)∇vn in C∞c (RN).

Using diagonal process,

η1
1 η1

2 η1
3 η1

4 . . . . v1 in L2(RN)

η2
1 η2

2 η2
3 η2

4 . . . . v2 in L2(RN)

η3
1 η3

2 η3
3 η3

4 . . . . v3 in L2(RN)

. . . . .

let j fixed, {ηjm}∞m=1 and {φjm}∞m=1, both Cauchy in L2(RN) and L
4
3 (RN).

For 1
j
> 0 ∃Nj s.t. ∀i ≥ Nj, ‖ηji − η

j
Nj
‖L2(RN ) <

1
j

and ‖φji − φ
j
Nj
‖
L

4
3 (RN )

< 1
j
,

claim that : {ηjNj}
∞
j=1 converges in L2(RN) and {φjNj}

∞
j=1 converges in L

4
3 (RN).

Given ε > 0, ∃N0 ∈ N s.t. ∀k ≥ N0 , 1
k
< ε

2
and ‖vk − v‖L2(RN ) <

ε
2
,

for any i > Nk,

‖ηkNk−v‖L2(RN ) ≤ ‖ηkNk−η
k
i ‖L2(RN )+‖ηki−vk‖L2(RN )+‖vk−v‖L2(RN ) ≤ ‖ηki−vk‖L2(RN )+ε,

taking i −→∞, then ηkNk converge to v in L2(RN). Similar for {φjNj}
∞
j=1.

That is,

ηnNn −→ v in L2(RN) and φnNn −→ ∇v in L
4
3 (RN).

Let ηn = ηnNn and notice that,

∇ηn =
1

Nn

(
∇ϕ(

x

Nn

)
)
vn + ϕ(

x

Nn

)∇vn =
1

Nn

(
∇ϕ(

x

Nn

)
)
vn + φnNn ,

also,

‖∇ηn −∇v‖L 4
3 (RN )

≤ ‖ 1

Nn

(
∇ϕ(

x

Nn

)
)
vn‖L 4

3 (RN )
+ ‖φnNn −∇v‖L 4

3 (RN )
,
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by Young’s convolution inequality,

‖vn‖L2(RN ) = ‖φn ∗ v‖L2(RN ) ≤ ‖φn‖L1(RN )‖v‖L2(RN ) = ‖v‖L2(RN ),

by Holder inequality,

‖ 1

Nn

(
∇ϕ(

x

Nn

)
)
vn‖L 4

3 (RN )
≤ 1

(Nn)
1
2

‖∇ϕ‖L4(RN )‖vn‖L2(RN ) ≤
1

(Nn)
1
2

‖∇ϕ‖L4(RN )‖v‖L2(RN ),

the last term will converge to 0 as n −→∞, that is, there exists ηn ∈ C∞c (RN) s.t.

ηn −→ v in L2(RN) and ∇ηn −→ ∇v in L
4
3 (RN),

by Gagliardo-Nirenberg-Sobolev inequality,

‖ηn − ηm‖Lp∗ (RN ) ≤ C‖∇ηn −∇ηm‖Lp(RN ),

thus, ηn is Cauchy in Lp
∗
(RN), say ηn −→ v∗ in Lp

∗
(RN)ηn −→ v∗ in Lp

∗
(RN)

ηn −→ v in L2(RN).

For any K compact,

‖v − v∗‖L2(K) ≤ ‖v − ηn‖L2(K) + ‖ηn − v∗‖L2(K),

since p∗ = 4,

‖ηn − v∗‖2
L2(K) =

∫
K

|ηn − v∗|2 ≤
(∫

RN
|ηn − v∗|4

) 1
2 |K|

1
2 −→ 0

thus, v = v∗ a.e. (i.e. v ∈ Lp∗(RN)).

For N = 3, let p = 2 and p∗ = 6, also v ∈ L2(RN), ∇v ∈ L2(RN), with the same

argument, we can get v ∈ Lp∗(RN), that is, v in L6(RN),

by Young’s inequality,

‖v‖4
L4(RN ) =

∫
RN
|v|3|v| ≤

∫
RN

( |v|6
2

+
|v|2

2

)
<∞,

thus, v ∈ L4(RN).
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Lemma 3.2. Assume N = 2 or N = 3 and let v = 1 + w be in W (RN) and

p(v) > 0. There exists a sequence (wn)n∈N in C∞c (RN), such that wn −→ w in

V (RN) as n −→ +∞, and

p(vn) = p(v), and E(vn) −→ E(v) as n −→ +∞.

where, vn = 1 + wn.

In particular, for any p > 0, there exists a sequence (wn)n∈N in C∞c (RN), such that

p(1 + wn) = p, and E(1 + wn) −→ Emin(p) as n −→ +∞,

and thus, we have,

Emin(p) = inf{E(1 + v)|v ∈ C∞c (RN), p(1 + v) = p}.

Moreover, for p > 0

ΓN(p) = {w ∈ W (RN)|p(w) = p}

is not empty.

Proof. By Lemma 3.1 and the density of C∞c (RN) in V (RN), we have the following.

By density : given any w ∈ V (RN), there exists (w̃n)n∈N in C∞c (RN), such that

w̃n −→ w in V (RN),

let ṽn = 1 + w̃n, and v = 1 + w, implies ṽn, v ∈ W (RN) = 1 + V (RN) and

ṽn −→ v in W (RN).

By continuity of E, p on W (RN) :

p(ṽn) −→ p(v), and E(ṽn) −→ E(v) as n −→ +∞.

Since p(v) > 0, so by continuity, we have p(ṽn) > 0, for n sufficiently large,

let,

wn =
(√ p(v)

p(ṽn)

)
w̃n, and vn = 1 + wn,
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by calculation we can get,

p(vn) =

∫
RN
〈i∂1vn, vn − 1〉 =

∫
RN
〈i∂1wn, wn〉 =

( p(v)

p(ṽn)

)∫
RN
〈i∂1w̃n, w̃n〉

=
( p(v)

p(ṽn)

)∫
RN
〈i∂1ṽn, ṽn − 1〉 = p(v),

also, notice that, wn −→ w in V (RN), implies vn −→ v in W (RN), again by conti-

nuity of E on W (RN), we have E(vn) −→ E(v).

Corollary 3.3. Let p > 0. Then,

lim sup
n−→+∞

(
En

min(p)
)
≤ Emin(p).

Proof. By Lemma 3.2,

Emin(p) = inf{E(1 + v), v ∈ C∞c (RN), p(1 + v) = p}.

For any ε > 0, there exists w = 1 + v ∈ {1}+ C∞c (RN), such that

Emin(p) ≤ E(1 + v) ≤ Emin(p) + ε, and p(1 + v) = p.

We may assume v has compact support in some ball B(0, R), for some radius R > 0,

if πn > R, then, the restriction of v to the set ΩN
n , will vanish on the boundary ∂ΩN

n ,

and hence defines a map in H1(TNn ). Adding to v the constant function 1, we have

similarly w = 1 + v ∈ H1(TNn ,C).

Moreover, in the two-dimensional case, if n ≥
(
R
π

) 4
3 , then v ∈ S0

n, where S0
n is a

suitable topological space that v has a lifting (see Béthuel [4, (4.14)]), this implies,

E(w) ≥ En
min(p), ∀n ≥

(R
π

) 4
3
,

hence,

En
min(p) ≤ E(w) ≤ Emin(p) + ε, ∀n ≥

(R
π

) 4
3
,

that is,

lim sup
n−→∞

En
min(p) ≤ Emin(p) + ε,

and the conclusion follows letting ε tends to zero.
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Next, we state the following approximation lemma, which we have mentioned in

Chapter 1. For more detail, see Béthuel [4, Lemma 3.3].

Lemma 3.4. Let N ≥ 2 and s > 0 be given. There exists a sequence of non-constant

maps, (γn)n∈N in {1}+ C∞c (RN), such that

p(γn) = s, ‖γn‖W (RN ) ≤ K
√
s, and E(γn) −→

√
2s, as n −→ +∞,

where K is some universal constant. In particular, Emin(p) ≤
√

2p, for any p ≥ 0,

and the map p 7→ Ξ(p) is non-negative.

Lemma 3.5. For any p, q ≥ 0,

|Emin(p)− Emin(q)| ≤
√

2|p− q|.

In particular, the function p 7→ Emin(p) is Lipschitz continuous on R+, with Lips-

chitz’s constant
√

2, and the function p 7→ Ξ(p) is non-negative, non-decreasing and

continuous on R+.

Proof. We use the approximation argument.

We may assume without loss of generality, that q > p, and claim that,

Emin(q) ≤ Emin(p) +
√

2(q− p).

By Lemma 3.2 and the definition of inf we have the following :

given ε > 0, there exists wε = 1 + vε, where vε ∈ C∞c (RN), such that

p(wε) = p, and E(wε) ≤ Emin(p) +
ε

2
.

Let s = q− p > 0 and by Lemma 3.4, we have the following,

there exists fε in C∞c (RN), such that p(1 + fε) = s and E(1 + fε) ≤
√

2s + ε
2
.

Set

v = 1 + vε + fε(· − aε),

since vε and fε both in C∞c (RN), so we may choose aε ∈ RN , such that the support

of vε and fε(· − aε) do not intersect.
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Observe that :

E(v) =
1

2

∫
RN
|∇v|2 +

1

4

∫
RN

(1− |v|2)2

=
1

2

∫
RN
|∇vε +∇fε(· − aε)|2 +

1

4

∫
RN

(1− |1 + vε + fε(· − aε)|2)2

=
1

2

∫
RN
|∇vε|2 + |∇fε(· − aε)|2 +

1

4

∫
RN

(1− |1 + vε + fε(· − aε)|2)2,

(
1− |1 + vε + fε(· − aε)|2

)2

=
(

1− |1 + fε(· − aε)|2 − |vε|2 − 2Re(vε)(1 + fε(· − aε))
)2

=
(

1− |1 + fε(· − aε)|2
)2

+
(
|vε|2 + 2Re(vε)(1 + fε(· − aε))

)2

− 2Re
(

1− |1 + fε(· − aε)|2
)(
|vε|2 + 2Re(vε)(1 + fε(· − aε))

)
,

also, ∫
RN
Re
(

1− |1 + fε(· − aε)|2
)(
|vε|2 + 2Re(vε)(1 + fε(· − aε))

)
=

∫
RN
Re
(
− |fε(· − aε)|2 − 2Re(fε(· − aε))

)(
|vε|2 + 2Re(vε)

)
= 0,

and∫
RN

(
|vε|2 + 2Re(vε)(1 + fε(· − aε))

)2

=

∫
RN

(
|vε|2 + 2Re(vε)

)2

=

∫
RN

(
1− |1 + vε|

)2

,

thus, we have,∫
RN

(1− |1 + vε + fε(· − aε)|2)2 =

∫
RN

(
1− |1 + fε(· − aε)|2

)2

+

∫
RN

(
1− |1 + vε|

)2

,

combine all calculations :

E(v) =
1

2

∫
RN
|∇vε|2 + |∇fε(· − aε)|2 +

1

4

∫
RN

(
1− |1 + fε(· − aε)|2

)2

+
1

4

∫
RN

(
1− |1 + vε|

)2

= E(wε) + E(1 + fε).

Similar for p, we have,

E(v) = E(wε) + E(1 + fε), and p(v) = p(wε) + p(1 + fε) = p + s = q.

It follows that,

Emin(q) ≤ E(v) ≤ E(wε) +
√

2s +
ε

2
≤ Emin(p) +

√
2(q− p) + ε,
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taking ε −→ 0, we get the inequality.

Next, we claim the converse inequality,

Emin(p) ≤ Emin(q) +
√

2(q− p).

Similarly, by Lemma 3.2 :

given δ > 0, there exists w̃δ = 1 + ṽδ, where ṽδ ∈ C∞c (RN), such that

p(w̃δ) = q, and E(w̃δ) ≤ Emin(q) +
δ

2
.

Let s = q− p > 0 and by Lemma 3.4, we have the following,

there exists fδ in C∞c (RN), such that p(1 + fδ) = s and E(1 + fδ) ≤
√

2s + δ
2
.

Define f̌δ(x1, x⊥) = fδ(−x1, x⊥) ∈ C∞c (RN), where x⊥ = (x2, x3, ..., xN).

Set,

ṽ = 1 + ṽδ + f̌δ(· − bδ),

where bδ is chosen, so that the support of ṽδ and f̌δ(· − bδ), do not intersect.

Notice that we have,

E
(
1 + f̌δ(· − bδ)

)
= E(1 + fδ) ≤

√
2s +

δ

2
,

and

p
(
1 + f̌δ(· − bδ)

)
= −p(1 + fδ) = −s,

so that, p(ṽ) = p(w̃δ)− s = p. Hence, we have,

Emin(p) ≤ E(ṽ) = E(w̃δ) + E
(
1 + f̌δ(· − bδ)

)
≤ Emin(q) +

√
2s + δ,

taking δ −→ 0. This completes the proof of Lemma 3.5.

Lemma 3.6. Let p, q ≥ 0. Then,

Emin

(p + q

2

)
≥ Emin(p) + Emin(q)

2
.

Proof. We use the reflexion argument.

For any f ∈ W (RN), and a ∈ R, we consider the map T±a f , defined by T±a f = f ◦P±a ,

where P+
a (resp. P−a ) restricted to the set Γ+

a = {x = (x1, . . . , xN) ∈ RN , xN ≥ a}
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(resp. the set Γ−a = {x = (x1, . . . , xN) ∈ RN , xN ≤ a}) is the identity, however its

restriction to the set Γ−a (resp. Γ+
a ) is the symmetry with respect to the hyperplane

of equation xn = a. That is,

T+
a f(x1, . . . , xN) =f(x1, . . . , xN) if xN ≥ a,

T+
a f(x1, . . . , xN) =f(x1, . . . , 2a− xN) if xN ≤ a.

Similarly, we can define T−a f ,

T−a f(x1, . . . , xN) =f(x1, . . . , xN) if xN ≤ a,

T−a f(x1, . . . , xN) =f(x1, . . . , 2a− xN) if xN ≥ a.

Notice that T±a f belongs to W (RN), and

E(T±a f) = 2E(f,Γ±a ), and p(T±a f) = 2

(
1

2

∫
Γ±a

〈i∂1f, f − 1〉
)
.

Moreover,

p(T+
a f) + p(T−a f) = 2p(f),

also observe, that the function a 7→ p(T+
a f) is continuous, that is,

given any an −→ a, we have p(T+
anf) −→ p(T+

a f).

This observation can be show by Lebesgue’s theorem,

|p(T+
anf)− p(T+

a f)| = |
∫
xN≥an

〈i∂1f, f − 1〉 −
∫
xN≥a
〈i∂1f, f − 1〉| −→ 0.

Moreover, by Lebesgue’s theorem, we have the following,p(T
+
a f) =

∫
xN≥a
〈i∂1f, f − 1〉 =

∫
RN 〈i∂1f, f − 1〉(1− χ{xN<a}) −→ 0 as a −→ +∞,

p(T+
a f) =

∫
xN≥a
〈i∂1f, f − 1〉 −→ 2p(f) as a −→ −∞.

Therefore, by continuity, for every α ∈ (0, p(f)), there exists a number a ∈ R, such

that p(T+
a f) = 2α and by p(T+

a f) + p(T−a f) = 2p(f), we have,

p(T+
a f) = 2α, and p(T−a f) = 2p(f)− 2α.
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Next, by Lemma 3.2, for any p, q ≥ 0 and any δ > 0, there exists a map v ∈ W (RN),

such that

p(v) =
p + q

2
, and E(v) ≤ Emin

(p + q

2

)
+
δ

2
,

taking f = v and α = p
2
, there exists a ∈ R, such that

p(T+
a v) = p, and p(T−a v) = q,

then, we get,

p(T+
a v) = p =⇒ Emin(p) ≤ E(T+

a v) ≤ 2E(v,Γ+
a ),

and

p(T−a v) = q =⇒ Emin(q) ≤ E(T−a v) ≤ 2E(v,Γ−a ).

Adding these relations, we obtain,

Emin(p) + Emin(q) ≤ 2E(v,Γ−a ) + 2E(v,Γ+
a ) = 2E(v) ≤ 2Emin

(p + q

2

)
+ δ,

taking δ −→ 0, we obtain the results.

Corollary 3.7. The function p 7→ Emin(p) is concave and non-decreasing on R+.

Proof. A continuous function f satisfying the inequality,

f
(p + q

2

)
≥ f(p) + f(q)

2
,

must be concave.

Also, a concave non-negative function on R+, is non-decreasing, thus, by Lemma

3.5 and 3.6, Emin is concave and non-decreasing on R+.

Proof of Theorem 3 completed. Combine Lemma 3.5 and Corollary 3.7, finally we

need to show Ξ(p) −→ +∞, as p −→ +∞ (the existence of p0 being a consequence

of the properties of Ξ(p) ≡
√

2p− Emin(p)).

Emin(p) ≤ 2π ln(p) +K, as p −→ +∞. (3.1)

For case N = 3,

Emin(p) ∼ π
√
p ln(p), as p −→ +∞, (3.2)

so that, Ξ(p) ∼
√

2p, as p −→ +∞.
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3.2 Proof of Lemma 1 : Control the speed c(up)

Given p > 0, and assume that Emin is achieved by a solution u = up. Then follows

by Lagrange multiplier theorem, there exists speed c = c(up) s.t.

cDp(up) = DE(up),

where Dp and DE denote the Fréchêt differentials of p and E.

Notice that the equation (TWc) is the Euler-Lagrange equation for the constrained

minimization problem Emin.

For any ψ ∈ C∞c (RN),

Dp(up)(ψ) =

∫
RN
〈i∂1up, ψ〉 and DE(up)(ψ) = −

∫
RN
〈∆up + up(1− |up|2), ψ〉.

In order to use the Lagrange Multiplier theorem we need to claim Dp(up) 6= 0.

If we formally take ψ0 = up − 1, then we can see Dp(up)(ψ0) = 2p 6= 0. But, ψ0

does not belong to space C∞c (RN), so by density of smooth functions with compact

support in V (RN), the claim holds.

Thus we can let ψ1 be a function in C∞c (RN), such that

Dp(up)(ψ1) = 1 (i.e. DE(up)(ψ1) = c).

Consider the curve γ : R 7→ W (RN), defined by γ(t) = up + tψ1. Since the functions

E and p are smooth on W (RN), using Taylor formula, we have,

p(γ(t)) = p + s, where s = t+ p(ψ1)t2,

E(γ(t)) = E(up) +DE(up)(tψ1) + O
t−→0

(t2) = Emin(p) + ct+ O
t−→0

(t2),

since p(γ(t)) = p + s =⇒ Emin(p + s) ≤ E(γ(t)), so we have,

Emin(p + s)− Emin(p) ≤ E(γ(t))− Emin(p) ≤ c(up)s + O
s−→0

(s2).

For s > 0,
Emin(p + s)− Emin(p)

s
≤ c(up) + O

s−→0
(s).
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Taking s −→ 0+, since Emin is concave, thus, the left right derivatives both exist,

d+

dp

(
Emin(p)

)
≤ c(up).

Similarly, for s < 0 and take s −→ 0−,

Emin(p + s)− Emin(p)

s
≥ c(up) + O

s−→0
(s),

c(up) ≤
d−

dp

(
Emin(p)

)
.

3.3 Proof of Lemma 2 : The property of affine energy Emin(p)

We consider two numbers 0 ≤ p1 < p2 and assume throughout this section that Emin

is ”affine” on the interval (p1, p2), that is,

Emin

(
θp1 + (1− θ)p2

)
= θEmin(p1) + (1− θ)Emin(p2),∀θ ∈ [0, 1].

Lemma 3.8. Assume Emin is affine on (p1, p2) and for some 0 ≤ p1 < p < p2, the

infimum Emin(p) is achieved by some function up. Then, we have,

c(up) =
Emin(p2)− Emin(p1)

p2 − p1

.

Moreover, 0 < c(up) <
√

2.

Proof. The identity in the equation is a direct consequence of Lemma 1. Also

notice that, by Lemma 3.5 and the monotonicity of Emin, we have the inequality

0 ≤ c(up) ≤
√

2.

Assume c(up) = 0, the concavity of Emin implies that, for all q ≥ p2,

Emin(q)− Emin(p1)

q− p1

≤ Emin(p2)− Emin(p1)

p2 − p1

= 0 =⇒ 0 ≤ Emin(q) ≤ Emin(p1)

since Emin is Lipschitz on R+ implies continuous on [0, p2], so Emin is bounded on

R+. But, this contradicts to (3.1) or (3.2), for N = 2 or 3.

Assume c(up) =
√

2, then by Emin is affine on (p1, p2),

for any p̃ ∈ (p1, p2),

d

dp
Emin(p̃) =

Emin(p2)− Emin(p1)

p2 − p1

= c(up) =
√

2,
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again, by the concavity of Emin, the left and right derivatives of Emin are both

decreasing as p increases, so that, for any p ∈ (0, p1],

d−

dp

(
Emin(p)

)
, and

d+

dp

(
Emin(p)

)
≥ d

dp
Emin(p̃) =

√
2,

also, by Theorem 3, Emin(p) has Lipschitz constant
√

2,

0 ≤ d+

dp

(
Emin(p)

)
≤ d−

dp

(
Emin(p)

)
≤
√

2,

that is, for p ∈ (0, p2),
dEmin(p)

dp
=
√

2.

By integration, we obtain that Emin(p) =
√

2p on (0, p2), but by Corollary 2.11,

Σ(up) =
√

2p − E(up) = 0 =⇒ up is constant, that is, p = p(up) = 0, which leads

to a contradiction.

Lemma 3.9. Assume Emin is affine on (p1, p2) and for some 0 ≤ p1 < p < p2, the

infimum Emin(p) is achieved by up. Let s be such that (p− s, p+ s) ⊂ (p1, p2). Then,

there exists some number a(s) ∈ R, such that

E
(
T±a(s)up

)
= Emin(p± s), and p

(
T±a(s)up

)
= p± s,

that is, Emin(p± s) is achieved by T±a(s)up. Moreover, s 7→ a(s) is decreasing.

Proof. By Lemma 3.6 and continuity of p, we can choose the value a(s), so that

p
(
T+
a(s)up

)
= p + s, also by p

(
T+
a(s)up

)
+ p
(
T−a(s)up

)
= 2p(up) = 2p, we have,

p
(
T+
a(s)up

)
= p + s, p

(
T−a(s)up

)
= p− s,

which yields a decreasing function s 7→ a(s). It follows that,

Emin(p± s) ≤ E(T±a(s)up) = 2E(up,Γ
±
a(s)).

Adding two relations above, we obtain,

Emin(p− s) + Emin(p + s) ≤ 2E(up,Γ
−
a(s)) + 2E(up,Γ

+
a(s)) = 2E(up) = 2Emin(p).
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On the other hand, by assumption Emin is affine, Emin(p−s)+Emin(p+s) = 2E(up),

which is only possible if we have ”=” holds. That is,

E
(
T±a(s)up

)
= Emin(p± s) and p

(
T±a(s)up

)
= p± s,

so that, Emin(p± s) is achieved by T±a(s)up.

Corollary 3.10. Assume Emin is affine on (p1, p2) and for some 0 ≤ p1 < p < p2,

the infimum Emin(p) is achieved by some map up. Then,

(i) There exist real numbers a1 6= a2, such that

∂Nup = 0, on RN−1 × (a1, a2).

(ii) The infimum Emin(p) is achieved for any 0 ≤ p1 < p < p2.

Proof. Since for every s such that (p− s, p + s) ⊂ (p1, p2), the infimum Emin(p± s)

is achieved by T±a(s)up by Lemma 3.9, so T±a(s)up solves (TWc) for some c ≥ 0, and

hence is smooth by Lemma 2.1.

Since T±a(s)up is obtained through a reflexion of up along the hyperplane of equation

xn = a(s), we have the following,

T±a(s)up is in class C1 if and only if ∂Nup = 0 on RN−1 × {a(s)}.

For statement (i) :

Since T±a(s)up is smooth, T±a(s)up is in class C1 =⇒ ∂Nup = 0 on RN−1 × {a(s)} for

s satisfies (p− s, p + s) ⊂ (p1, p2). Let s vary, we obtain the result.

For statement (ii) :

We notice that the infimum Emin(q) is achieved for every q ∈ (p − s, p + s), where

s satisfies (p − s, p + s) ⊂ (p1, p2). The conclusion then follows from a continuity

argument.

Proof of Lemma 2 completed. Assume Emin is affine on (p1, p2), and Emin(p) is achieved

in W (RN), for some 0 ≤ p1 < p < p2, say up ∈ W (RN). Also, by Lemma 3.1, we

have W (RN) ⊂ E(RN), so up has finite energy. By Corollary 3.10, there exist real

numbers a1 6= a2, such that

∂Nup = 0 on RN−1 × (a1, a2).
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By Lemma 3.8 : c <
√

2, so we can apply Theorem 2.17 of analyticity of up, thus,

∂Nup also analytic and bounded on RN by Lemma 2.1, so by Liouville’s theorem :

∂Nu is constant on RN , therefore, combine with previous, we have,

∂Nup = 0 on RN ,

that is, up does not depend on xN , say up = f(x1, x2, ..., xN−1).

Since the energy is finite,

∞ >

∫
RN
|∇up|2dx =

(∫
RN−1

|∇f |2dx1d2...dxN−1

)(∫
R

1dxN

)
that means ∇f = 0, so up is constant, i.e. p = 0, which gives a contradiction.

3.4 An upper bound for Emin(p) and speed c(unp)

In this subsection, we state the following Lemma which gives an upper bound for

Emin(p) in dimension 2, and the Theorem which gives an upper bound for speed

c(v) on torus TNn . For more detail, see Béthuel [4, Lemma 3.9 and Theorem 4.2].

Lemma 3.11. Assume N = 2. There exists some universal constant K0, such that

we have the upper bound,

Emin(p) ≤
√

2p− 48
√

2

S2
KP

p3 +K0p
4

for any p sufficiently small. Here, SKP denotes the action S(w) of the ground-state

solutions w to equation ∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w) = 0.

Theorem 3.12. Assume N = 2 or N = 3, and let E0 > 0 and Σ0 > 0 be given.

Let v be a non-trivial finite energy solution to (TWc) in X2
n ∩ S0

n, resp. X3
n, with

c = c(v) ∈ R, En(v) ≤ E0 and

0 < Σ0 ≤ Σn(v).

Then, there is some constant n0 ∈ N depending only on E0 and Σ0, such that, if

n ≥ n0, then

|c(v)| ≤ K
En(v)

|Σn(v)|
,

where K > 0 is some universal constant.

We will use Theorem 3.12 to control c(unp ) in Proposition 1.
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4 Proofs for the main results

4.1 Proof of Proposition 1 : The existence of a minimizer

on TN
n

Step 1. we show that there exists a minimizer for En
min(p).

Since En
min(p) = inf{En(u)|u ∈ ΓNn (p)}, by definition of inf, there exists wk ∈ ΓNn (p)

s.t. En(wk) −→ En
min(p) decreasingly as k → ∞, that is, 0 ≤ En(wk) ≤ En(w1),

which means En(wk) is bounded with respect to k, thus,

{wk} is bounded in H1(TNn ).

Now, since the bounded sequence has a weak convergent subsequence, by passing

possibly to a subsequence, we may say,

∃unp ∈ H1(TNn ) s.t. wk ⇀ unp in H1(TNn ), as k →∞,

by Rellich’s compactness theroem : H1(TNn ) ↪→cp L
2(TNn ), H1(TNn ) ↪→cp L

4(TNn ),

since {wk} is bounded in H1(TNn ), implies there exists a subsequence converge in L2

and L4, again up to subsequence, we may write wk, then by direct calculation we

have,

pn(unp ) = lim
k→∞

pn(wk) = p,

by weak lower semi-continuity, we have,

En(unp ) ≤ lim inf
k−→∞

En(wk) = En
min(p).

The proof of N=2 and N=3 are very different.

Case 1. For dimension N = 3 :

since pn(unp ) = p, so unp ∈ ΓNn (p) implies En(unp ) ≥ En
min(p) (i.e.En(unp ) = En

min(p)),

that is, unp is the minimizer for PNn (p), by Lagrange multiplier method (sinceDpn(unp ) 6=

0 on ΓNn (p)), we have,

∃cnp ∈ R s.t. DEn(unp ) = cnpDpn(unp ),
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also, the previous equation is exactly the weak formulation of the equation :

icnp∂1u
n
p + ∆unp + unp (1− |unp |2) = 0 on TNn ,

whose finite energy solutions are smooth by standard elliptic theory.

Case 2. For dimension N = 2 :

Our goal is to prove that unp is a minimizer for (P2
n(p)), it remains to show that,

unp ∈ S0
n.

In order to prove this, we are going to show that a suitable choice of the minimizing

sequence yields strong converge to unp . This will yield the conclusion, in view of the

closeness of S0
n ∩ En,Λ for any fixed Λ, where En,Λ = {u ∈ H1(T2

n)|En(u) ≤ Λ} is a

sublevel set of H1(T2
n). The main tool is Ekeland’s variational principle (see [12]).

Consider some number Λ, such that Λ > Emin(p). By Corollary 3.3, there exists

some integer n(Λ), such that En
min(p) < Λ for any n ≥ n(Λ).

Using Ekeland’s variational principle, we can construct a minimizing sequence (wk)k∈N

for (P2
n(p)), such that

En
min(p) ≤ En(wk) < Λ, ∀k ∈ N, (4.1)

and

En(wk)− En(w) ≤ 1

k
‖wk − w‖H1(T2

n),∀w ∈ Γ2
n(p),∀k ∈ N∗. (4.2)

Now, given δ > 0, and ψ ∈ H1(T2
n), by Almeida [1, Theorem 6] and (4.1), the func-

tion wk − δψ belongs to En,Λ ∩S0
n for any δ sufficiently small, and any n sufficiently

large. Moreover,

pn(wk − δψ) = pn(wk)− δ
∫
T2
n

〈i∂1wk, ψ〉+ δ2pn(ψ) −→ p, as δ −→ 0,

so that, the function zk,δ =
√

p
pn(wk−δψ)

(wk − δψ) belongs to Γ2
n(p) for δ sufficiently

small. Setting w = zk,δ in inequality (4.2), and taking the limit δ −→ 0 after dividing

by δ, we get,

λkDpn(wk)(ψ)−DEn(wk)(ψ) ≤ 1

k

∥∥∥Dpn(wk)(ψ)

2
wk − ψ

∥∥∥
H1(T2

n)
,
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where λk = 1
2p
DEn(wk)(wk).

By (4.1) and H1(T 2
n)–norm of wk can be bounded by E(wk) up to some constant,

this gives, ∣∣∣λkDpn(wk)(ψ)−DEn(wk)(ψ)
∣∣∣ ≤ K(Λ)

k
‖ψ‖H1(T2

n),

where K(Λ) is some constant, only depending on Λ. In particular, choosing ψ = unp ,

we have,

λkDpn(wk)(u
n
p )−DEn(wk)(u

n
p ) −→ 0, as k −→ +∞.

Moreover, we have,

Dpn(wk)(u
n
p ) −→ 2pn(unp ) = 2p, as k −→ +∞,

and

DEn(wk)(u
n
p ) −→

∫
T2
n

(
|∇unp |2 − |unp |2(1− |unp |2)

)
, as k −→ +∞,

so that,

λk −→
1

2p

∫
T2
n

(
|∇unp |2 − |unp |2(1− |unp |2)

)
, as k −→ +∞,

also,

2pλk = DEn(wk)(wk) =

∫
T2
n

|∇wk|2 −
∫
T2
n

|wk|2(1− |wk|2).

Hence, by Rellich’s compactness theorem, we have,∫
T2
n

|∇wk|2 −→ 2p lim
k−→+∞

(
λk
)

+

∫
T2
n

|unp |2(1− |unp |2) =

∫
T2
n

|∇unp |2, as k −→ +∞,

thus, ∫
T2
n

|∇wk −∇unp |2 −→ 0, as k −→ +∞,

this proves the strong H1-convergence of the sequence (wk)k∈N to unp . Moreover,

En,Λ ∩ S0
n is closed by Almeida [1, Theorem 6] and wk ∈ En,Λ ∩ S0

n, so we may get

unp ∈ En,Λ ∩ S0
n ⊂ S0

n, so that unp is a minimizer for (P2
n(p)). Moreover, the set

{u ∈ H1(T2
n), s.t. En(u) < Λ} ∩ S0

n is open by Almeida [1, Theorem 6], so that the

Lagrange multiplier rule implies,

icnp∂1u
n
p + ∆unp + unp (1− |unp |2) = 0 on T2

n,

for some cnp ∈ R. Hence, unp is also smooth in the two-dimensional case.
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Step 2. Show that the speed cnp has uniform bound.

(Claim: ∃K(p) and n(p) s.t. |cnp | ≤ K(p) for any n ≥ n(p))

For any p > 0, by Corollary 3.3,

lim sup
n−→∞

En
min(p) ≤ Emin(p),

thus, we have the following,

lim inf
n−→∞

Σ(unp ) ≥
√

2 lim inf
n−→∞

p(unp )− lim sup
n−→∞

E(unp ) ≥
√

2p− Emin(p) = Ξ(p) > 0,

by definition of lim inf and lim sup,

∃n(p) ∈ N s.t. Σ(unp ) ≥ Σ0 for some Σ0 > 0,∀n ≥ n(p),

En(unp ) ≤ Emin(p) + 1,∀n ≥ n(p),

by Theorem 3.12,

|cnp | = |c(unp )| ≤ K
En(unp )

|Σ(unp )|
≤ K

(Emin(p) + 1)

Σ0

≡ K(p), for all n ≥ n(p).

Step 3. Show that the Ck-norm for solution unp is uniformly bounded.

Similar to the proof in Lemma 2.1, we have the following :

Let n ∈ N and let v be a finite energy solution to (TWc) on TNn . There exist some

constants K(N) and K(c, k,N) s.t.

‖1− |v|‖L∞(TNn ) ≤ max{1, c
2
},

‖∇v‖L∞(TNn ) ≤ K(N)(1 +
c2

4
)
3
2 ,

and more generally,

‖v‖Ck(TNn ) ≤ K(c, k,N),∀k ∈ N.

Now, since unp is a finite energy solution to (TWc) on TNn , and {cnp} is bounded,

depending only on p by Step 2, so, we finally have,

∃K(k, cnp , p) s.t. ‖unp‖Ck(TNn ) ≤ K(cnp , k, p) ≤ Kk(p).
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4.2 Proof of Proposition 2 : The existence of a finite energy

solution

Step 1. Using diagonal argument to find a (TWc) solution on RN .

Since by Proposition 1, there exists sequence {unp} of finite energy solutions of

(TWcnp ), with uniformly bounded energy, and such that {cnp} is bounded, also,

‖unp‖Ck(TNn ) ≤ Kk(p) for any n ∈ N.

Observe that, |unp (x) − unp (y)| = |(unp )′(ζ)||x − y| ≤ Kk(p)|x − y| implies {unp} is

equi-continuous.

By Ascoli’s theorem, consider any compact ball B(0, j), where j ∈ N, there exists

a subsequence {unp (j)}n = {u1
p(j), u

2
p(j), u

3
p(j), ...} ⊂ {unp} on B(0, j) and a smooth

map σj on B(0, j), such that

unp (j) −→ σj in Ck(B(0, j)) as n→ +∞.

Now we let j → +∞ and use the diagonal argument,

u1
p(1) u2

p(1) u3
p(1) u4

p(1) . . . . σ1 in B(0, 1)

∪

u1
p(2) u2

p(2) u3
p(2) u4

p(2) . . . . σ2 in B(0, 2)

∪

u1
p(3) u2

p(3) u3
p(3) u4

p(3) . . . . σ3 in B(0, 3)

. . . . .

. . . . .

where {unp (1)} ⊃ {unp (2)} ⊃ {unp (3)} . . .

(since {unp (1)}∞n=1 also uniform bounded and equi-continuous, so ∃{unp (2)}∞n=1 ⊂

{unp (1)}∞n=1 s.t. unp (2) −→ σ2 in Ck(B(0, 2)), and proceed in this way.)

First, let j fixed {unp (j)}∞n=1,

for 1
j
> 0 ∃Nj s.t. ∀i ≥ Nj, ‖uip(j)− u

Nj
p (j)‖Ck(B(0,j)) <

1
j
, (Cauchy)
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let K be a compact set in RN , consider diagonal sequence {uNlp (l)}∞l=1.

(Claim: {uNlp (l)}∞l=1 converges in Ck(K))

It is enough to show that {uNlp (l)}∞l=1 is Cauchy in Ck(K),

given ε > 0 ∃N0 ∈ N s.t. ∀l,m ≥ N0 , 1
l

+ 1
m
< ε

2
and K ⊂ B(0, N0),

‖uNlp (l)− uNmp (m)‖Ck(K)

≤ ‖uNlp (l)− uip(l)‖Ck(K) + ‖uip(l)− u
j
p(m)‖Ck(K) + ‖ujp(m)− uNmp (m)‖Ck(K)

≤ ‖uNlp (l)− uip(l)‖Ck(B(0,l)) + ‖uip(l)− u
j
p(m)‖Ck(K) + ‖ujp(m)− uNmp (m)‖Ck(0,m)

≤ 1
l

+ 1
m

+ ‖uip(l)− u
j
p(m)‖Ck(K) for any i, j ≥ max{Nl, Nm}

≤ ε
2

+ ‖uip(l)− u
j
p(m)‖Ck(K) for any i, j ≥ max{Nl, Nm}

taking i, j −→∞

‖uNlp (l)− uNmp (m)‖Ck(K) ≤
ε

2
+ ‖σl − σm‖Ck(K).

Observe that,

σ1 = σ2 in B(0, 1) σ2 = σ3 in B(0, 2) ... =⇒ σl = σm = σN0 in B(0, N0),

that is, σl = σm on K

‖uNlp (l)− uNmp (m)‖Ck(K) ≤
ε

2
< ε,

thus, we have uNlp (l) −→ up in Ck(K) and up = σj in B(0, j), for any j ∈ N.

(using diagonal argument to define a solution up on whole space RN , by σj.)

Step 2. Show that up is a finite energy solution of (TWc) on RN .

Since unp satisfies the equation (TWcnp ) and the speed cnp ≡ c(unp ) is bounded on R,

thus, it has a convergent subsequence, up to subsequence, we may assume from the

beginning that cnp ≡ c(unp ) −→ c for some c, so by taking the limit on equation, we

can get σj, satisfies (TWc) with speed c. So up is also a solution to (TWc) with

speed c. Now, we show it has finite energy.

For any p > 0, by Corollary 3.3 and Theorem 3,

lim sup
n−→∞

En(unp ) = lim sup
n−→∞

En
min(p) ≤ Emin(p) ≤

√
2p < +∞.
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For any j ∈ N, since unp (j) −→ σj in Ck(B(0, j)) as n→ +∞, so we have

unp (j) −→ σj and ∇unp (j) −→ ∇σj pointwisely on B(0, j),

by Fatou’s Lemma,∫
B(0,j)

|∇σj|2 ≤ lim inf
n−→∞

∫
B(0,j)

|∇unp (j)|2 and

∫
B(0,j)

(1−|σj|2)2 ≤ lim inf
n−→∞

∫
B(0,j)

(1−|unp (j)|2)2,

also ∫
B(0,j)

|∇up|2 =

∫
B(0,j)

|∇σj|2 and

∫
B(0,j)

(1− |up|2)2 =

∫
B(0,j)

(1− |σj|2)2,

thus, we have,

E(up, B(0, j)) ≤ lim inf
n−→∞

E(unp (j)) ≤ lim sup
n−→∞

E(unp (j)) ≤ lim sup
n−→∞

E(unp ) ≤ Emin(p),

by Monotone Convergence Theorem,

E(up) = lim
j−→∞

E(up, B(0, j)) ≤ Emin(p) ≤
√

2p < +∞.

Thus, up is also a finite energy solution to (TWc) with speed c.

Step 3. Now we show such solution up is a non-trivial solution.

By the invariance of the problem on the torus TNn . Without loss of generality, we

may assume that the infimum of |unp | is achieved at the point 0, that is,

|unp (0)| = min
x∈TNn

|unp (x)|.

For continuous map v ∈ ΓNn (p), N = 2, 3, we have v ∈ X2
n ∩ S0

n, resp. v ∈ X3 and

pn(v) = p > 0, also for n sufficiently large, by Béthuel [4, Lemma 4.2, 4.4], we have

the lifting property for v on TNn , i.e. |v| ≥ 1
2

on TNn , and follow the argument in

Lemma 3, we have,

min
x∈TNn

|v(x)| ≤ sup{1

2
, 1− Σn(v)√

2pn(v)
},

let v = unp ∈ ΓNn (p), so Σn(v) =
√

2pn(v) − E(v) =
√

2p − E(unp ) = Ξ(p), and

pn(v) = p > 0,

|unp (0)| = min
x∈TNn

|unp (x)| ≤ sup{1

2
, 1− Ξ(p)√

2p
}.
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Taking lim sup on both sides, and by assumption Ξ(p) > 0 :

|up(0)| ≤ lim sup
n−→∞

|unp (0)| ≤ sup{1

2
, 1− Ξ(p)√

2p
} < 1.

Since |up(0)| < 1, so |up| won’t be 1, also up is a finite energy solution, so up won’t

be 0. That is, up is a non-trivial solution to (TWc).

4.3 Proof of Proposition 3 : The concentration-compactness

principle

We need two concentration-compactness results. Our purpose is to carry out the

asymptotic analysis of the sequence. For more detail, see Béthuel [4, Theorem 5.1

and Theorem 5.2].

Theorem 4.1. Assume N = 2 or N = 3, and let (vn)n∈N∗ be a sequence of solutions

of (TWc) in X2
n ∩ S0

n, resp. X3
n, satisfying

En(vn) −→ E, pn(vn) −→ p, and c(vn) −→ c, as n −→ +∞.

Assume moreover, that E > 0 and 0 < c <
√

2.

Then there exist an integer `0 depending only on c and E, ` non-trivial finite energy

solutions v1, . . ., v` to (TWc) on RN of speed c with 1 ≤ ` ≤ `0, ` points xn1 , . . .,

xn` , and a subsequence of (vn)n∈N∗ still denoted (vn)n∈N∗, such that

|xni − xnj | −→ +∞, as n −→ +∞, (4.3)

and

vn(·+ xni ) −→ vi(·) in Ck(K), as n −→ +∞, (4.4)

for any 1 ≤ i 6= j ≤ `, any k ∈ N, and any compact set K ⊂ RN .

Moreover, we have the identities,

E = lim
n−→+∞

(
En(vn)

)
=
∑̀
i=1

E(vi), and p = lim
n−→+∞

(
pn(vn)

)
=
∑̀
i=1

p(vi).
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In Theorem 4.1, the tori TNn are identified with the subdomains ΩN
n of RN , using

possibly a suitable unfolding, so that convergence of (4.3) makes sense. We will also

need a variant of Theorem 4.1 in the sonic case.

Theorem 4.2. Assume N = 3, and let (vn)n∈N∗ be as in Theorem 4.1 with assump-

tion c =
√

2. Let 0 < δ < 1 be given.

Then there exist an integer `0 depending only on E, ` non-trivial finite energy solu-

tions v1, . . ., v` to (TWc) on RN of speed
√

2 with 0 ≤ ` ≤ `0, ` points xn1 , . . ., xn` ,

and a subsequence of (vn)n∈N∗ still denoted (vn)n∈N∗ such that (4.3) and (4.4) hold.

Moreover, there exist real numbers µ ≥ 0 and ν such that we have the identities,

E = lim
n−→+∞

(
En(vn)

)
=
∑̀
i=1

E(vi) + µ, and p = lim
n−→+∞

(
pn(vn)

)
=
∑̀
i=1

p(vi) + ν,

and the inequality

|µ−
√

2ν| ≤ Kδµ,

where K is some universal constant.

Proof of Proposition 3 completed. Claim : there exists ` finite energy solu-

tions u1 = up, u2, u3, ..., u` to (TWc) such that

Emin(p) =
∑̀
i=1

E(ui) p =
∑̀
i=1

p(ui)

and ui are minimizers of Emin(pi), where pi = p(ui) and 0 < c(up) <
√

2.

First, by Proposition 2, the sequence converge to a non-trivial finite energy solution

up of (TWc) with speed c, which satisfies in particular ∂1up 6= 0 (if not, similar to

the proof in Lemma 2, ∂1up = 0 implies up does not depend on x1, but, since the

energy is finite, up must be constant, a contradiction).

Since,

icnp∂1u
n
p + ∆unp + unp (1− |unp |2) = 0 on TNn ,

and

ic∂1up + ∆up + up(1− |up|2) = 0 on TNn ,
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also,

unp −→ up in Ck(K), ∂1up 6= 0, {c(unp )} is bounded on R ,

thus,

cnp ≡ c(unp ) −→ c, as n→ +∞,

and from the result in Gravejat [19, Theorem 1], we know that, if c >
√

2 and up is a

finite energy solution of (TWc), then up must be a constant solution, a contradiction

to Proposition 2. Recall the Pohozaev’s type inequality in the proof of Lemma 2.10.

N − 2

2

∫
RN
|∇up|2 +

N

4

∫
RN

(1− |up|2)2 − c(up)(N − 1)p(up) = 0,

if c = 0, then |up| = 1 for N = 2, 3, with the same argument in Lemma 2.10, up is a

constant, contradict to Proposition 2, thus we have,

0 < c ≤
√

2,

we may assume up to subsequence : E(unp ) = En
min(p) −→ lim sup

n−→∞
En
min(p) ≡ E.

Case 1. 0 < c <
√

2.

Since the sequence (unp )n∈N∗ satisfies,

En(unp ) −→ E, pn(unp ) = p −→ p, and c(unp ) −→ c, as n −→ +∞,

if E = 0, in the proof of Proposition 1, and Fatou’s Lemma,

E(unp ) ≤ En
min(p) =⇒ E(up) ≤ lim inf

n−→∞
E(unp ) ≤ lim inf

n−→∞
En
min(p) ≤ E = 0,

that is, up is a constant, contradiction to Proposition 2.

We may assume E > 0 and by Theorem 4.1, we have,

p =
∑̀
i=1

pi and E = lim sup
n−→∞

En
min(p) =

∑̀
i=1

E(ui),

where pi = p(ui) and ui are non-trivial finite energy solutions to (TWc) on RN .

Also, since c > 0 by Lemma 2.10 that pi = p(ui) > 0, so p =
∑̀
i=1

pi > 0,
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we may apply Corollary 3.3 : lim sup
n−→∞

En
min(p) ≤ Emin(p) and this yields,

∑̀
i=1

Emin(pi) ≤
∑̀
i=1

E(ui) = lim sup
n−→∞

En
min(p) ≤ Emin(p).

Combine with Corollary 1, the inequalities become identities, that is

E(ui) = Emin(pi) and lim sup
n−→∞

En
min(p) = Emin(p).

Thus, ui are minimizers of Emin(pi), where pi = p(ui) and

Emin(p) =
∑̀
i=1

E(ui), p =
∑̀
i=1

p(ui).

Case 2. c =
√

2.

If N = 2, then by Gravejat [21, Theorem 1], there is no travelling wave exists.

So, we consider N = 3 and apply Theorem 4.2 to the sequence (unp )n∈N∗ , with

a parameter δ > 0 to be determined later. There exists ` ≥ 1 of finite energy

solutions ui of speed
√

2 on RN , and µ ≥ 0, ν ≥ 0, such that

|µ−
√

2ν| ≤ Kδµ, (4.5)

where K is some universal constant, also,

E = lim sup
n−→+∞

(
En

min(p)
)

=
∑̀
i=1

E(ui) + µ and p =
∑̀
i=1

p(ui) + ν. (4.6)

Again, since c > 0 by Lemma 2.10 that pi = p(ui) > 0, so p > 0, we then apply

Corollary 3.3 to obtain,

∑̀
i=1

Emin(pi) + µ ≤ lim sup
n−→+∞

(
En

min(p)
)
≤ Emin(p),

by Corollary 2.11, since ui is non-constant so we have Σ(ui) < 0, that is E(ui) >
√

2pi implies ,
√

2
(∑̀
i=1

pi

)
<
∑̀
i=1

E(ui).

Combining with (4.5) and (4.6), and noticing that µ ≤ Emin(p), we obtain,

√
2p =

√
2

(∑̀
i=1

pi+ν

)
≤
∑̀
i=1

E(ui)+
√

2ν ≤ (Emin(p)−µ)+
√

2ν ≤ Emin(p)(1+Kδ),
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that is,

Ξ(p) ≤ KδEmin(p).

Since δ was arbitrary, we may take δ −→ 0+, so that Ξ(p) ≤ 0, which is a contra-

diction with assumption Ξ(p) > 0.

Hence, this case does not hold, so we deduce that 0 < c <
√

2.

Remark. In the proof in Proposition 3, we have proved the identity,

lim sup
n−→+∞

(
En(unp )

)
= lim sup

n−→+∞

(
En

min(p)
)

= Emin(p).

4.4 Proof of Theorem 4 : The existence of Emin(p) in W (RN)

Claim : if p > p0 where p0 ≥ 0 is defined in Theorem 3, then Emin(p) is

achieved by the map up ∈ W (RN) constructed in Proposition 2.

If p > p0, by Theorem 3 : Ξ(p) > 0, so apply Proposition 2,3.

In particular from Proposition 3, there exists integer ` ≥ 1 and p1, p2, ..., p` > 0,

such that Emin(pi) is achieved by some map ui with,

p =
∑̀
i=1

pi, and Emin(p) =
∑̀
i=1

Emin(pi).

(Claim : ` = 1)

Assume ` ≥ 2, then by Corollary 1 : Emin is linear on (0, p), by Lemma 2 : Emin(q) is

not achieved for any q ∈ (0, p), in particular, take q = pi, so Emin(pi) is not achieved,

but this contradicts the fact that Emin(pi) is achieved by ui, by Proposition 3.

Thus ` = 1, and we have,

p = p1 = p(u1), and Emin(p) = Emin(p1) = E(u1),

that is, Emin(p) is achieved by the map u1 = up which belongs to W (RN), up to a

multiplication by a constant of modulus one, by Corollary 2.7.

4.5 Proof of Main Theorem 1 : The existence results of

(TWc) for N = 2

Proof of Theorem 1 completed. (The existence results of (TWc) for N = 2)
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Claim : For p > 0 there exists a non-constant finite energy solution up ∈

W (RN) to equation (TWc) , with c = c(up) s.t.

p(up) =
1

2

∫
RN
〈i∂1up, up − 1〉dx = p

and such up is the solution of the minimization problem

E(up) = Emin(p) = inf{E(u)|u ∈ W (RN), p(u) = p}.

By Theorem 4, we just need to show that (for p > p0 = 0),

p0 = 0 if N = 2.

By Theorem 3, this is equivalent to show that,

Ξ(p) > 0, ∀p > 0.

Since the function Ξ is non-decreasing, it is sufficient to check such property for p

is sufficiently small.

By Lemma 3.11, for any p sufficiently small,

Ξ(p) ≥ 48
√

2

S2
KP

p3 −K0p
4 > 0,

thus, we get the result.

4.6 Proof of Main Theorem 2 : The existence results of

(TWc) for N = 3

Lemma 4.3. Let N = 3. We have,

p0 ≥
E0√

2
,

where E0 > 0 is the constant in Lemma 2.21 and p0 is defined in Theorem 3.

Proof. If not, p0 <
E0√

2
. For any p0 < p < E0√

2
, Emin(p) is achieved for some map up

by Theorem 4, i.e. E(up) = Emin(p).

Also, by Theorem 3, Emin(p) ≤
√

2p, that is, for p0 < p < E0√
2
,

E(up) = Emin(p) ≤
√

2p < E0.

But, by Lemma 2,21, we have E(up) ≥ E0, a contradiction.
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Lemma 4.4. Given any p > p0, let up be a minimizer of Emin(p) given by Theorem

4. Then, there exists a function up0 ∈ W (R3), such that up −→ up0 in C∞loc(R3), as

p −→ p0, with p(up0) = p0, and E(up0) =
√

2p0.

In particular, Emin(p0) is achieved.

Proof. First by Theorem 3, Emin is non-decreasing, by Theorem 4, up is a non-trivial

finite energy solution to (TWc) on R3, and by Corollary 2.23, there exists a universal

constant K̃ > 0 and α > 0, such that for any p, p0 < p < p0 + 1, we have,

‖1− |up|‖L∞(R3) ≥
K̃

Emin(p)α
≥ K̃

Emin(p0 + 1)α
≡ K.

Without loss of generality, by the invariance of translation, we may assume that,

|up(0)| = inf
x∈R3
|up(x)|,

thus, we have,

|up(0)| ≤ 1−K < 1.

Similar to the proof of Proposition 2, there exists a non-trivial finite energy solution

u1 to (TWc) with c = lim sup
p−→p0

(
c(p)

)
, such that up to a subsequence, we have,

up −→ u1 in Ck(K), as p −→ p0,

for any compact set K in R3 and any k ∈ N.

Moreover, we have,

E(u1) = lim inf
p−→p0

(E(up)) = Emin(p0) =
√

2p0, and |u1(0)| ≤ 1−K < 1,

so that u1 is non-trivial. (i.e. take up0 = u1)

Assume c =
√

2, then we apply Theorem 4.2 to the sequence (up)p>p0 , with a param-

eter δ > 0 to be determined later. So, there exists a number ` ≥ 1 of finite energy

solutions ui of (TWc) on R3, and numbers µ ≥ 0 and ν ≥ 0, such that

|µ−
√

2ν| ≤ Kδµ,

p0 =
∑̀
i=1

p(ui) + ν =
∑̀
i=1

pi + ν and
√

2p0 = Emin(p0) =
∑̀
i=1

E(ui) + µ,

67



by Theorem 3, we have,

Ξ(p0 − ν) = 0 and
√

2ν − (Emin(p0)−
∑̀
i=1

E(ui)) =
√

2ν − µ ≤ Kδµ,

combine all the above,

Emin(p0 − ν) =
√

2(p0 − ν) = Emin(p0)−
√

2ν ≥
∑̀
i=1

E(ui)−Kδµ.

that is,

Emin(
∑̀
i=1

pi) ≥
∑̀
i=1

E(ui)−Kδµ

by Corollary 1, we have, ∑̀
i=1

Emin(pi) ≥ Emin(
∑̀
i=1

pi),

thus, we obtain,

E(ui) ≤ Emin(pi) +Kδµ ≤
√

2pi +KδEmin(p0).

Taking i = 1 and letting δ −→ 0+, notice that when i = 1, ui = u1 and p1 = p(u1)

do not depend on δ, so we can take it tends to zero.

Hence, we obtain,

Σ(u1) ≥ 0,

by Corollary 2.11, we know that u1 must be a constant trivial solution, a contradic-

tion.

Hence, we may assume that c <
√

2, and apply Theorem 4.1 to the sequence

(up)p>p0 . Similar to the proof of Theorem 4, we may obtain ` = 1, p(u1) = p0,

and Emin(p0) = E(u1).

Remark. Why do we need to estimate |up(0)| again in Lemma 4.4 ?

since in the previous we already have,

|up(0)| ≤ lim sup
n−→∞

|unp (0)| ≤ sup{1

2
, 1− Ξ(p)√

2p
} < 1

but,

|u1(0)| = lim
p−→p0

|up(0)| ≤ lim
p−→p0

sup{1

2
, 1− Ξ(p)√

2p
} = 1.

This cannot bring us the strictly inequality, |u1(0)| < 1.
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Proof of Theorem 2 completed. (The existence results of (TWc) for N = 3)

Claim : there exists some constant p0 > 0 such that

For p ≥ p0, there exists a non-constant finite energy solution up ∈ W (RN)

to equation (TWc) , with c = c(up) s.t.

p(up) = p E(up0) = Emin(p0) =
√

2p0

and, for any p satisfies p > p0,

E(up) = Emin(p) <
√

2p.

Moreover, we have,

Emin(p) =
√

2p,

for any p satisfies 0 < p < p0, and the infimum is not achieved in W (R3).

According to Lemma 4.3, we have p0 > 0, and by Theorem 4 we also have Emin(p)

is achieved for p > p0, then from Lemma 4.4, Emin(p0) is achieved. Moreover,

Emin(p0) =
√

2p0.

For any p satisfies p > p0, assume E(up) = Emin(p) ≥
√

2p, but we already have

Emin(p) ≤
√

2p =⇒ Emin(p) =
√

2p. Also by Theorem 3, Emin is concave and

increasing, so we have Emin is affine on (p0, p), then by Lemma 2, it is not achieved

on (p0, p), this contradicts to Theorem 4.

Now, we proof the last equality.

Similarly, by Theorem 3, Emin is affine on (0, p0), so that it is not achieved on (0, p0)

by Lemma 2, and Emin(p) =
√

2p, for any p, 0 < p < p0.
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5 Future Study on Gross-Pitaevskii equation

Since for the Gross-Pitaevskii equation, there is an imaginary term in it, so a natural

thought is to cancel such imaginary term by using change of variable.

i∂tΨ = ∆Ψ + Ψ(1− |Ψ|2)

(1) Consider Ψ(x, t) = v((x1 − ct), x2, x3) exp(−i c
2
x1),

then, the profile v becomes,

∂11v −
c2

4
v + ∂22v + ∂33v + v(1− |v|2) = 0.

We can find its Lagrangian,

L[v] =
1

2

∫
RN
|∂1v|2 +

c2

8

∫
RN
|v|2 +

1

2

∫
RN
|∂2v|2 +

1

2

∫
RN
|∂3v|2 +

1

4

∫
RN

(1− |v|2)2.

Let,

L[v,Ω] =
1

2

∫
Ω

|∇v|2 +
c2

8

∫
Ω

|v|2 +
1

4

∫
Ω

(1− |v|2)2, and Φj[v] = L[v,B(0, j)].

For speed c given,

consider the minimizing problem : Emin(j) = inf{Φj[v]|v ∈ H1(Bj)}, we can show

that the inf is attachable.

By the definition of inf, there exists wk ∈ H1(Bj) s.t. Φj[wk] −→ Emin(j) decreas-

ingly as k →∞, that is, 0 ≤ Φj[wk] ≤ Φj[w1], meaning Φj[wk] is uniformly bounded

with respect to k, so {wk} is bounded in H1(Bj).

Now, since a bounded sequence has a weak convergent subsequence,

by passing possibly to a subsequence, we may say,

∃uj ∈ H1(Bj) s.t. wk ⇀ uj in H1(Bj), as k →∞,

by Rellich’s compactness theorem : H1(Bj) ↪→cp L
2(Bj).

Since {wk} is bounded in H1(Bj), implies there exists a subsequence converge in L2,

(i.e. ∃wkj −→ uj in L2(Bj)) again for convenience, we write wkj as wk,

by weak lower semi-continuity,

Φj[uj] ≤ lim inf
k−→∞

Φj[wk] = Emin(j),
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that is,

Φj[uj] = Emin(j),

also, the previous equation is exactly the weak formulation of the equation,

∂11uj −
c2

4
uj + ∂22uj + ∂33uj + uj(1− |uj|2) = 0,

whose finite energy solutions are smooth by standard elliptic theory.

Now, using the diagonal argument, we can similarly find a solution u on the whole

space RN , but, we don’t know whether it is a non-trivial solution.

The advantage of this Lagrange is nonnegative, but notice that, this is not a trav-

elling wave solution.

(2) Consider Ψ(x, t) = u(c(x1 − ct), x2, x3) exp(−ic(x1−ct)
2

),

then the profile u becomes,

c2∂11u+
1

4
c2u+ ∂22u+ ∂33u+ u(1− |u|2) = 0.

We first find the original Lagrangian,

L[u] =
c2

2

∫
RN
|∂1u|2 −

c2

8

∫
RN
|u|2 +

1

2

∫
RN
|∂2u|2 +

1

2

∫
RN
|∂3u|2 +

1

4

∫
RN

(1− |u|2)2.

Notice that we can rewrite the equation,

c2∂11u+ ∂22u+ ∂33u+ u((1 +
c2

4
)− |u|2) = 0,

so we can also rewrite the Lagrangian,

L[u] =
c2

2

∫
RN
|∂1u|2 +

1

2

∫
RN
|∂2u|2 +

1

2

∫
RN
|∂3u|2 +

1

4

∫
RN

(|u|2 − (1 +
c2

4
))2.

Although, this Lagrange is nonnegative and is also a travelling wave solution, but,

we cannot find a suitable admissible set for the minimizing problem.

(3) Consider Ψ(x, t) = u(x1 − ct, x2, x3) exp(−ic(x1−ct)
2

),

then the profile u becomes,

∆u+
c2

4
u+ u(1− |u|2) = 0,
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or

∆u+ u(1 +
c2

4
− |u|2) = 0.

Similarly, we can find its Lagrangian,

L[u] =
1

2

∫
RN
|∇u|2 +

1

4

∫
RN

(1 +
c2

4
− |u|2)2,

by observing u(x1, x2, x3) exp(−ic(x1)
2

) ≈ 1 =⇒ u ≈ exp( icx1
2

), we decide to rewrite

the Lagrangian again,

L[u] =
1

2

∫
RN
|∂1(u− exp

icx1

2
)|2 − c2

2

∫
RN

1

4
|u− exp

icx1

2
|2

+
1

2

∫
RN
|∂2u|2 +

1

2

∫
RN
|∂3u|2 +

1

4

∫
RN

(1− |u|2)2

=
1

2

∫
RN
|∇(u− exp

icx1

2
)|2 − c2

8

∫
RN
|u− exp

icx1

2
|2 +

1

4

∫
RN

(1− |u|2)2,

thus, consider the space u ∈ W 1,2(RN)+e
icx1
2 may be a good choice for the admissible

set of minimizing problem, but, the Lagrange could be negative.

For the equation,

∆u+
c2

4
u+ u(1− |u|2) = 0,

we may also consider the following Lagrangian,

L[u] =
1

2

∫
RN
|∇u|2 − c2

8

∫
RN
|u|2 +

1

4

∫
RN

(1− |u|2)2.

We set,

E(u) =
1

2

∫
RN
|∇u|2 +

1

4

∫
RN

(1− |u|2)2,

p(u) =
1

2

∫
RN

(1− |u|2).

Since |u| ≈ 1, as |x| is large, so we may not consider the momentum p(u) = 1
2

∫
RN |u|

2,

in this situation, such p(u) won’t be well-defined.

Moreover, our goal is to view c as a Lagrange multiplier, but in this situation, we

need to control the Lagrange multiplier and make it positive, this is a problem we

still need to conquer.
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