請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44858
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施文彬(Wen-Pin Shih) | |
dc.contributor.author | Kuang-Fu Chang | en |
dc.contributor.author | 張光甫 | zh_TW |
dc.date.accessioned | 2021-06-15T03:56:39Z | - |
dc.date.available | 2011-06-24 | |
dc.date.copyright | 2010-06-24 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-06-18 | |
dc.identifier.citation | [1] J. T. Santini Jr, M. J. Cima and R. Langer, “A controlled-release microchip,” Nature, vol. 397, pp. 335-338, 1999.
[2] L. M. Low, S. Seetharaman, K. Q. He and M. J. Madou, “Microactuators toward microvlaves for responsive controlled drug delivery,” Sensors and Actuators B-Chemical, vol. 67, pp. 149-160, 2000. [3] D. A. LaVan, T. McGuire and R. Langer, “Small-scale systems for in vivo drug delivery,” Nature Biotechnology, vol. 21, pp. 1184-1191, 2003. [4] H. Kim, M. R. Robinson, M. J. Lizak, G. Tansey, R. J. Lutz, P. Yuan N. S. Wang and K. G. Csaky, “Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging,” Investigative Ophthalmology and Visual Science, vol. 45, pp. 2722-2731, 2004. [5] A. C. R. Grayson, I. S. Choi, B. M. Tyler, P. P. Wang, H. Brem, M. J. Cima and R. Langer, “Multi-pulse drug delivery from a resorbable polymeric microchip device,” Nature Materials, vol. 2, pp. 767-772, 2003. [6] H. Xu, C. Wang, C. Wang, J. Zoval and M. Madou, “Polymer actuator valves toward controlled drug delivery application,” Biosensors and Bioelectronics, vol. 21, pp. 2094-2099, 2006. [7] G. V. Kaigala, V. N. Hoang and C. J. Backhouse, “Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis,” Lab Chip, vol. 8, pp. 1071-1078, 2008. [8] K. Pitchaimani, B. C. Sapp, A. Winter, A. Gispanski, T. Nishida and Z. H. Fan, “Manufacturable plastic microfluidic valves using thermal actuation,” Lab Chip, vol. 9, pp. 3082-3087, 2009. [9] R. Yoshida, K. Omata, K. Yamaura, M. Ebata, M. Tanaka and M.Takai, “Maskless microfabrication of thermosensitive gels using a microscope and application to a controlled release microchip,” Lab Chip, vol. 6, pp. 1384-1386, 2006. [10] N. S. Satarkar, W. Zhang, R. E. Eitel and J. Z. Hilt, “Magnetic hydrogel nanocomposites as remote controlled microfluidic valves,” Lab Chip, vol. 9, pp. 1773-1779, 2009. [11] S. Ghosh, C. Yang, T. Cai, Z. Hu and A. Neogi, “Oscillating magnetic field-actuated microvalves for micro- and nanofluidics,” Journal of Physics D: Applied Physics, vol. 42, pp. 135501, 2009. [12] K. Cai, Z. Luo, Y. Hu, X. Chen, Y. Liao, L. Yang and L. Deng, “Magnetically triggered reversible controlled drug delivery from microfabricated polymeric multireservoir devices,” Advanced Materials, vol. 21, pp. 4045-4049, 2009. [13] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, vol. 404, pp. 588-590, 2000. [14] S. Zeng, B. Li, X. Su, J. Qin and B. Lin, ”Microvalve-actuated precise control of individual droplets in microfluidic devices,” Lab Chip, vol. 9, pp. 1340-1343, 2009. [15] X. Gao, L. Jiang, X. Su, J. Qin and B. Lin, “Microvalves actuated sandwich immunoassay on an integrated microfluidic system,” Electrophoresis, vol. 30, pp. 2481-2487, 2009. [16] S. W. Nam, D. V. Noort, Y. Yang and S. Park, “A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis,” Lab Chip, vol. 7, pp. 638-640, 2007. [17] J. C. Yoo, G. S. La, C. J. Kang and Y. S. Kim, “Microfabricated polydimethylsiloxane microfluidic system including micropump and microvalve for integrated biosensor,” Current Applied Physics, vol. 8, pp. 692-695, 2008. [18] D. A. LaVan, D. M. Lynn and R. Langer, “Moving smaller in drug discovery and delivery,” Nature Reviews Drug Discovery, vol. 1, pp. 77-84, 2002. [19] K. W. Oh and C. H. Ahn, “A review of microvalves,” Journal of Micromechanics and Microengineering, vol. 25, pp. R13-R39, 2006. [20] A. Meckes, J. Behrens, O. Kayser, W. Benecke, Th. Becker and G. Müller, “Microfluidic system for the integration and cyclic operation of gas sensors,” Sensors and Actuators A-Physical, vol. 76, pp. 478-483, 1999. [21] B. Bae, H. Kee, S. Kim, Y. Lee, T. Sim, Y. Kim and K. Park, “In vitro experiment of the pressure regulating valve for a glaucoma implant,” Journal of Micromechanics and Microengineering, vol. 13, pp. 613-619, 2003. [22] C. Fu, Z. Rummler and W. Schomburg, “Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding,” Journal of Micromechanics and Microengineering, vol. 13, pp. S96-S102, 2003. [23] K. W. Oh, R. Rong and C. H. Ahn, “Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration,” Journal of Micromechanics and Microengineering, vol. 15, pp. 2449-2455, 2005. [24] J. W. Choi, K. W. Oh, A. Han, N. Okulan, C. A. Wijayawardhana, C. Lannes, S. Bhansali, K. T. Schlueter, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson and C. H. Ahn, “Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection,” Biomedical Microdevices, vol. 3, pp. 191-200, 2001. [25] M. Shikida, K. Sato, S. Tanaka, Y. Kawamura and Y. Fujisaki, “Electrostatically driven gas valve with high conductance,” Journal of Microelectromechanical Systems, vol. 3, pp. 76-80, 1994. [26] W. van der Wijngaart, H. Ask, P. Enoksson and G. Stemme, “A high-stroke, high-pressure electrostatic actuator for valve applications,” Sensors and Actuators A-Physical, vol. 100, pp. 264-271, 2002. [27] T. Rogge, Z. Rummler and W. K. Schomburg, “Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process,” Sensors and Actuators A-Physical, vol. 110, pp. 206-212, 2004. [28] P. Shao, Z. Rummler and W. K. Schomburg, “Polymer micro piezo valve with a small dead volume,” Journal of Micromechanics and Microengineering, vol. 14, pp. 305-309, 2004. [29] S. Herrlich, R. Zengerle and S. Haeberle, “Sphincter-like micro actuators based on electroactive polymer,” Transducers 2009, Denver, CO, USA, June 21-25, pp. 1517-1520, 2009. [30] E. Smela, “Conjugated polymer actuators for biomedical applications,” Advanced Materials, vol. 15, pp. 481-494, 2003. [31] X. Wang and E. Smela, “Experimental studies of ion transport in PPy(DBS),” Journal of Physical Chemistry C, vol. 113, pp. 369-381, 2009. [32] P. M. George, A. W. Lyckman, D. A. LaVan, A. Hegde, Y. Leung, R. Avasare, C. Testa, P. M. Alexander, R. Langer and M. Sur, “Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics,” Biomaterials, vol. 26, pp. 3511-3519, 2005. [33] P. Artursson, “Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells,” Journal of Pharmaceutical Sciences, vol. 79, pp. 476-482, 1990. [34] A. R. Özdural, “A new technique for the determination of overall mass-transfer coefficients in continuous dialyzers,” Developments in Chemical Engineering and Mineral Processing, vol. 2, pp. 138-148, 1993. [35] K. H. Keller and T. R. Stein, “A two-dimensional analysis of porous membrane transport,” Mathematical Biosciences, vol. 1, pp. 421-437, 1967. [36] H. Okamoto, F. Yamashita, K. Saito and M. Hashida, “Analysis of drug penetration through the skin by the two-layer skin model,” Pharmaceutical Research, vol. 6, pp. 931-937, 1989. [37] C. W. Versluijs and J. A. M. Smit, “Nonstationary diffusion through a membrane separating two finite volumes of stirred or unstirred solutions,” Journal of Membrane Science, vol. 4, pp. 183-207, 1987. [38] J. Crank, “The mathematics of diffusion,” Oxford University Press, Second edition, pp. 40, 1975. [39] M. P. Bohrer, “Diffusional boundary layer resistance for membrane transport,” Industrial & Engineering Chemistry Fundamentals, vol. 22, pp. 72-78, 1983. [40] E. Smela, “Microfabrication of PPy microactuators and other conjugated polymer devices,” Journal of Micromechanics and Microengineering, vol. 9, pp. 1-18, 1999. [41] J. Zhang, L. B. Kong, H. Li, Y. C. Luo and L. Kang, “Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials,” Journal of Materials Science, vol. 45, pp. 1947-1954, 2010. [42] X. Wang and E. Smela, “Color and volume change in PPy(DBS),” Journal of Physical Chemistry C, vol. 113, pp. 359-368, 2009. [43] X. Wang, B. Shapiro and E. Smela, “Visualizing ion currents in conjugated polymers,” Advanced Materials, vol. 16, pp. 1605-1609, 2004. [44] L. Pugliese, A. Coda, M. Malcovati and M. Bolognesi, “Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2-7 Å resolution,” Journal of Molecular Biology, vol. 3, pp. 698-710, 1993. [45] S. Shimoda and E. Smela, “The effect of pH on polymerization and volume change in PPy(DBS),” Electrochimica Acta, vol. 44, pp. 219-238, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44858 | - |
dc.description.abstract | 本論文利用多孔性電致動高分子聚吡咯(polypyrrole)做出可利用其材料本身之氧化還原來控制材料的透水性,利用此材料特性可以做出可重覆使用之奈米閥門陣列,聚吡咯可在內含鈉離子之溶液中驅動,包含人體體液。同時此奈米閥門陣列也提供了混合藥物的供應,此外該微送藥系統反應時間短(<1s),並且具有極低功耗。
在本文章中,我們在氧化鋁薄膜(anodic aluminum oxide)上先鍍上一層金,接著再用電化學反應將聚吡咯聚合在金之上,最後再將鍍完聚吡咯後的薄膜合軟性電路板整合成微送藥系統。 此奈米閥門送藥系統可應用於植入式微送藥系統或生物感測晶片,因聚吡咯材料有相當高的重覆使用性,加上其應變量大,僅需極低的驅動能量(電壓<1 V,電流~10-5 A),可在室溫下操作,易進行微製程,亦可在溶液中驅動。 | zh_TW |
dc.description.abstract | The electro-active polymer polypyrrole has small power consumption in aqueous working media. Due to its stability, incorruptibility and micromachining compatibility, polypyrrole plays an important role in developing micro/nano-actuators for biological in vivo applications. This thesis presents a flexible and reusable polypyrrole nano-valve array for controllable drug delivery. This system works in aqueous media even in the body fluid. It also provides mixable drugs. The system has extremely low power consumption and short response time. The nano-valves are formed by depositing polypyrrole by a novel method on an anodic aluminum oxide (AAO) film which has uniform nano-holes. This method ensures the uniformlity of the polypyrrole and the integrity of the AAO film. After the deposition, the nano-valves are integrated with a flexible print circuit. The valves are actuated through the oxidation and reduction of the polypyrrole. The reduction state of the polypyrrole makes sodium ions entering the polypyrrole and hence swells the polypyrrole. During the swelling situation, the polypyrrole becomes permeable. Hence the valve is opened. Conversely, the polypyrrole is compressed and becomes impermeable in the oxidation state. By controlling the open/close time with constant voltage, the diffusive characteristics of the nano-valves can be easily changed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:56:39Z (GMT). No. of bitstreams: 1 ntu-99-R97522518-1.pdf: 5551633 bytes, checksum: 53838f3e820c6301e494e03a15aca5a5 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 II
Abstract III 摘要 V Contents VI List of Figures VIII List of Tables XIV List of Symbols XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Overview of drug delivery systems 1 1.3 Introduction of polypyrrole 6 1.4 Motivation 8 Chapter 2 Theory and simulation 10 2.1 Introduction 10 2.2 Mathematical analysis of diffusion 11 2.3 Summary 15 Chapter 3 Device design and fabrication 17 3.1 System design 17 3.2 Fabrication process 19 3.3 A novel method of electroplating 23 3.3.1 Traditional electroplating method 23 3.3.2 Indirect electroplating method 24 3.4 Post process 29 Chapter 4 Experiment 32 4.1 Preparation of nano-vale array 32 4.2 Experiment design and set up 34 4.2.1 Release test of dye 34 4.2.2 Release test of avidin fluorescence conjugate 34 Chapter 5 Results and discussion 38 5.1 Comparing the experiment to one-dimensional diffusion model 38 5.2 Results of the on/off test 43 5.3 Discussion of bistable property 47 Chapter 6 Conclusions and future work 50 References 54 | |
dc.language.iso | en | |
dc.title | 可控制透水性聚吡咯奈米閥門陣列於微送藥系統之研究 | zh_TW |
dc.title | A permeability-switchable polypyrrole nano-valve array for reusable drug delivery systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林啟萬(Chii-Wann Lin),黃榮山(Long-Sun Huang),戴子安(Chi-An Dai) | |
dc.subject.keyword | 電致動高分子,聚?咯,奈米閥門,微送藥系統,透水性,非接觸式電鍍, | zh_TW |
dc.subject.keyword | polypyrrole,nano-valve,drug delivery system,permeability,indirect electroplating, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-06-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。