Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44487
Title: 非監督式特徵選擇:最小化特徵的資訊冗餘
Unsupervised Feature Selection:
Minimize Information Redundancy of Features
Authors: Chun-Chao Yen
顏君釗
Advisor: 林守德
Keyword: 非監督式特徵選取,機器學習,線性相依,主成分分析,
Unsupervised Feature Selection,Machine Learning,Linear Dependency,Principal Component Analysis,
Publication Year : 2009
Degree: 碩士
Abstract: 在本篇論文中,我們提出了一個非監督式特徵選擇的方式,從資料中移除多餘的特徵。主要的貢獻可以分成兩個部分:第一,我們依照平面對於資料中近乎線性相依的描敘能力,利用特徵分解(eigen-decomposition)來對這些平面的方程式排名。藉由高斯消去法,我們逐步地刪去那些可以被其它特徵取代的特徵。第二,我們證明了此方法接近於對資料進行主成分分析後,進而移除在不重要的主成分上所占比重較大的特徵。然而,我們更進一步的考慮了每次特徵被移除後,對其它特徵的影響。實驗證明我們的方法可以在一個已知特徵相依性的人為資料上,刪去那些和其它特徵相依的特徵。而對於真實世界的資料,相較於其它方法,我們的可以有更好的效果。
In the thesis, we propose an unsupervised feature selection method to remove the redundant features from a dataset. The major contributions are twofold. First, we propose an eigen-decomposition method to rank the hyperplanes (which describes the relations between features) based on their near linear dependency characteristic, and then design an efficient Gaussian-elimination method to one by one remove the feature that is best represented by the rest of the features. Second, we provide a proof showing that our method is similar to removing the features that contribute the most to the PCA components with the smallest eigenvalue, but considering the effect of each removal of features. We perform experiments on an artificial data set created by ourselves, and two other real-world data sets with different characteristics. The experiment show that our method can almost perfectly remove those dependent features without losing any independent dimension in the artificial set and outperforms two other competitive algorithms in the real-world dataset.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44487
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
985.17 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved