Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4443
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorYu-Ren Chuen
dc.contributor.author褚喻仁zh_TW
dc.date.accessioned2021-05-14T17:42:17Z-
dc.date.available2015-08-20
dc.date.available2021-05-14T17:42:17Z-
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation1. R.W. Cahn, P. Haasen, and E.J. Kramer, Materials Science and Technology: a Comprehensive Treatment. Vol. 8. Structure and Properties of Nonferrous Alloys, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 2 (1996)
2. W.F. Smith, Structure and Properties of Engineering Alloys 2nd ed., McGraw-Hill Inc., New York, NY, 537 (1993)
3. Y. Kojima, Mater. Sci. Forum, 350-351, 7 (2000)
4. E. Aghion, B. Brofin, and D. Eliezer, J. Mater. Process. Technol, 117, 381 (2001)
5. B.L. Mordike and T. Ebert, Mater. Sci. Eng., A, 302, 37 (2001)
6. S. Kamado, J. Koike, K. Kondoh, and Y. Kawamura, Mater. Sci. Forum, 419-422, 21 (2003)
7. Y. Chino, A. Yamamoto, H. Iwasaki, M. Mabuchi, and H. Tsubakino, Mater. Sci. Forum, 419-422, 671 (2003)
8. M. Inoue, M. Iwai, K. Matsuzawa, S. Kamodo, and Y. Kojima, Mater. Sci. Forum, 419-422, 691 (2003)
9. L. Zhang and T. Dupont, Mater. Sci. Forum, 546-549, 25 (2007)
10. J.H. Nordlien, S. Ono, N. Masuko, and K. Nişancioğlu, J. Electrochem. Soc., 142(10), 3320 (1995)
11. J.H. Nordlien, K. Nişancioğlu, S. Ono, and N. Masuko, J. Electrochem. Soc., 143(8), 2564 (1996)
12. J.H. Nordlien, K. Nişancioğlu, S. Ono, and N. Masuko, J. Electrochem. Soc., 144(2), 461 (1997)
13. J.E. Gray and B. Luan, J. Alloys Compd., 335, 88 (2002)
14. A. Yamamoto, A. Watanabe, K. Sugahara, S. Fukumoto, and H. Tsubakino, Mater. Trans., JIM, 42(7), 1237 (2001)
15. C. Gu, J. Lian, J He, Z. Jiang, and Q. Jiang, Surf. Coat. Technol., 200, 5413 (2006)
16. C.A. Huang, T.H. Wang, T. Weirich, and V. Neubert, Electrochim. Acta, 53, 7235 (2008)
17. Y. Bai, F.L. Yu, J. Du, W.X. Wang, Z.Q. Cui, Z.H. Han, and J.F. Yang, Mater. Sci. Forum, 724, 307 (2012)
18. A.K. Sharma, M.R. Suresh, H. Bhojraj, H. Narayanamurthy, and R.P. Sahu, Met. Finish., 96(3), 10 (1998)
19. H. Huo, Y. Li, and F. Wang, Corros. Sci., 46(6), 1467 (2004)
20. Z.C. Wang, L. Yu, F. Jia, and G.L. Song, J. Electrochem. Soc., 159(7), D406 (2012)
21. F.A. Bonilla, A. Berkani, Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, C. John, and K. Stevens, J. Electrochem. Soc., 149(1), B4 (2002)
22. R. Arrabal, E. Natykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corros. Sci., 50(6), 1744 (2008)
23. L.D. Liu, S.F. Hsieh, C.Y. Lee, and C.S. Lin, J. Electrochem. Soc., 155(7), C307 (2008)
24. F. Liu, D. Shan, Y. Song, E.H. Han, and W. Ke, Corros. Sci., 53(11), 3845 (2011)
25. H. Umehara, S. Terauchi, and M. Takaya, Mater. Sci. Forum, 350-351, 273 (2000)
26. L. Kouisini, M. Azzi, M. Zertoubi, F. Dalard, and S. Maximovitch, Surf. Coat. Technol., 185, 58 (2004)
27. Y. Song, D. Shan, R. Chen, F. Zhang, and E.H. Han, Surf. Coat. Technol., 203, 1107 (2009)
28. T. Ishizaki, R. Kudo, T. Omi, K. Teshima, T. Sonoda, I. Shigematsu, and M. Sakamoto, Electrochim. Acta, 62 19 (2012)
29. J.K. Lin and J.Y. Uan, Corros. Sci., 51(5), 1181 (2009)
30. J. Chen, Y. Song, D. Shan, and E.H. Han, Corros. Sci., 65, 2681 (2012)
31. H. Umehara, M.Yakaya, and Y. Kojima, Mater. Trans., JIM, 42(8), 1691 (2001)
32. H. Umerhara, M. Takaya, and S. Terauchi, Surf. Coat. Technol., 169-170, 666 (2003)
33. D. Hawke and D.K. Albright, Met. Finish., 93(10), 34 (1995)
34. K.Z. Chong and T.S. Shih, Mater. Chem. Phys., 80, 191 (2003)
35. C.S. Lin, C.Y. Lee, W.C. Li, Y.S. Chen, and G.N. Fang, J. Electrochem. Soc., 153(3), B90 (2006)
36. M. Mosiałek, G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, R.P. Socha, and J. Michalska, Surf. Coat. Technol., 206, 51 (2011)
37. Y.L. Lee, Y.R. Chu, W.C. Li, and C.S. Lin, Corros. Sci., 70, 74 (2013)
38. A.L. Rudd, C.B. Breslin, and F. Mansfeld, Corros. Sci., 42(2), 275 (2000)
39. M. Dabalá, K. Brunelli, E. Napolitani, and M. Magrini, Surf. Coat. Technol., 172, 227 (2003)
40. C.S. Lin and S.K. Fang, J. Electrochem. Soc., 152(2), B54 (2005)
41. H.Y. Su, W.J. Li, and C.S. Lin, J. Electrochem. Soc., 159(5), C219 (2012)
42. C.S. Lin, H.C. Lin, K.M. Lin, and W.C. Lai, Corros. Sci., 48(1), 93 (2006)
43. H.H. Elsentriecy, K. Azumi, and H. Konno, Surf. Coat. Technol., 202(3), 532 (2007)
44. Y.H. Huang, Y.L. Lee, and C.S. Lin, J. Electrochem. Soc., 158(9), C310 (2011)
45. Y.L. Lee and C.S. Lin, J. Electrochem. Soc., 157(5), C187 (2010)
46. Y.L. Lee, Y.R. Chu, F.J. Chen, and C.S. Lin, Appl. Surf. Sci., 276, 578 (2013)
47. Y. Jiang, H. Zhou, and S. Zeng, Trans. Nonferrous Met. Soc. China., 19, 1416 (2009)
48. X. Chen, G. Li, J. Lian, and Q. Jiang, Appl. Surf. Sci., 255, 2322 (2008)
49. J. Liu, Y. Guo, and W. Huang, Surf. Coat. Technol., 201, 1536 (2006)
50. C.H. Liang, R.F. Zheng, N.B. Huang, and L.S. Xu, J. Appl. Electrochem., 39(10), 1857 (2009)
51. S. Zhang, Q. Li, B. Chen, and X. Yang, Electrochim. Acta, 55, 870 (2010)
52. C. Wang, S. Zhu, F. Jiang, and F. Wang, Corros. Sci., 51(12), 2916 (2009)
53. X.B. Chen, N. Birbilis, and T.B. Abbott, Corrosion, 67(3), 035005-1 (2011)
54. M. Alvarez-Lopez, M. Dolores Pereda, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, and M.L. Escudero, Acta Biomater., 6(5), 1763 (2010)
55. J.Y. Uan, J.K. Lin, Y.S. Sun, W.E. Yang, L.K. Chen, and H.H. Huang, Thin Solid Films, 518(24), 7563 (2010)
56. N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H.J. Davies, and N. Birbilis, JOM, 63(6), 28 (2011)
57. N.T. Kirkland, Corrosion Engineering, Science and Technology, 47(5), 322 (2012)
58. H. Hornberger, S. Virtanen, and A. R. Boccaccini, Acta Biomater., 8(7), 2442 (2012)
59. C.H. Yang, Materials Science - Advanced Topics, Intech (2013)
60. J.F. Nie, X.L. Xiao, C.P. Luo, and B.C. Muddle, Micron, 32(8), 857 (2001)
61. M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.L. Song, and A. Atrens, Corros. Sci., 51(3), 602 (2009)
62. A.D. Südholz, N.T. Kirkland, R.G. Buchheit, and N. Birbilis, Electrochem. Solid-State Lett., 14(5), C5 (2011)
63. G. Song, A. Atrens, and M. Dargusch, Corros. Sci., 41(2), 249 (1998)
64. C.J. Boehlert and K. Knittel, K. Mater. Sci. Eng., A, 417(1), 315 (2006)
65. S.C. Park, J.D. Lim, D. Eliezer, and K.S. Shin, Mater. Sci. Forum, 419-422, 159 (2003)
66. S. Bhan and A. Lai, J. Phase Equilib., 14(5), 634 (1993)
67. G. Bergman, J.L. Waugh, and L. Pauling, Acta Crystallogr., 10(4), 254 (1957)
68. C. Blawert, D. Fechner, D. Höche, V. Heitmann, W. Dietzel, K.U. Kainer, P. Živanović, C. Scharf, A. Ditze, J. Gröbner, and R. Schmid-Fetzer, Corros. Sci., 52(7), 2452 (2010)
69. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, Corros. Sci., 60, 238 (2012)
70. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, Corros. Sci., 65, 322 (2012)
71. S. Kamado, T. Ashie, Y. Ohshima, and Y. Kojima, Mater. Sci. Forum, 350-351, 55 (2000)
72. H. Takuda, S. Kikuchi, N. Yoshida, and H. Okahara, Mater. Trans., JIM, 44(11), 2266 (2003)
73. C.C. Hsu, J.Y. Wang, and S. Lee, Mater. Trans., JIM, 49(11), 2728 (2008)
74. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Acta Metall. Sinica, 21(5), 313 (2008)
75. C. Zhang, X. Huang, M. Zhang, L. Gao, and R. Wu, Mater. Lett., 62(14), 2177 (2008)
76. Y. Song, D. Shan, R. Chen, and E.H. Han, Corros. Sci., 51(5), 1087 (2009)
77. D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Acta Mater., 59, 6176 (2011)
78. E. Ghali, W. Dietzel, and K.U. Kainer, J. Mater. Eng. Perform., 13(1), 7 (2004)
79. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution 2nd ed., NACE, Houston, Texas, 187 (1974)
80. P.L. Miller, B.A. Shaw, R.G. Wendt, and W.C. Moshier, Corrosion, 51(12), 922 (1995)
81. Y.L.Song, Y.H. Liu, S.R. Yu, X.Y. Zhu, and S.H. Wang, Journal of Materials Science, 42(12), 4435 (2007)
82. P. Campestrini, E.P.M. Van Westing, A. Hovestad, and J.H.W. De Wit, Electrochim. Acta, 47(7), 1097 (2002)
83. A.A.O. Magalhaes, B. Tribollet, O.R. Mattos, I.C.P. Margarit, and O.E. Barcia, J. Electrochem. Soc., 150(1), B16 (2003)
84. Y. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, and K. Shimizu, Corros. Sci., 46(2), 297 (2004)
85. G. Li, L. Niu, J. Lian, and Z. Jiang, Surf. Coat. Technol., 176(2), 215 (2004)
86. C.Y. Tsai, J.S. Liu, P.L. Chen, and C.S. Lin, Corros. Sci., 52(10), 3385 (2010)
87. C.Y. Tsai, J.S. Liu, P.L. Chen, and C.S. Lin, Corros. Sci., 52(12), 3907 (2010)
88. H.Y. Su and Lin, Corros. Sci., 83, 137 (2014)
89. M.P. Staiger, A.M., Pietak, J. Huadmai, and G. Dias, Biomaterials, 27(9), 1728 (2006)
90. S. Shadanbaz, and G.J. Dias, Acta Biomater., 8(1), 20 (2012)
91. U.C. Nwaogu, C. Blawert, N. Scharnagl, W. Dietzel, and K.U. Kainer, Corros. Sci., 52(6), 2143 (2010)
92. S. Roweton, S.J. Huang, and G. Swift, J. Environ. Polym. Degrad., 5(3), 175 (1997)
93. Y. Tachibana, M. Kurisawa, H. Uyama, T. Kakuchi, and S. Kobayashi, Chem. Commun., 1, 106 (2003)
94. S.M. Thombre, and B.D. Sarwade, J. Macromol. Sci. Part A Pure Appl. Chem., 42(9), 1299 (2005)
95. M. Jiang, W. Chen, P. Fang, S. Chen, J. Bai, Y. Huang, M. Han, P. Lu, and J. Dong, Polym. Sci., Part A: Polym. Chem., 50(18), 3819 (2012)
96. F. El-Taib Heakal, O.S. Shetata, and N.S. Tantawy, Corros. Sci., 56, 86 (2012)
97. Z. Shi, M. Liu, and A. Atrens, Corros. Sci., 52(2), 579 (2010)
98. T.R. Thomaz, C.R. Weber, T. Pelegrini Jr., L.F.P. Dick, and G. Knörnschild, 52(7), 2235 (2010)
99. G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, J. Electrochem. Soc., 154(2), C108 (2007)
100. H. Ardelean, I. Frateur, and P. Marcus, Corros. Sci., 50(7), 1907 (2008)
101. N. Pébère, C. Riera, and F. Dabosi, Electrochim. Acta, 35(2), 555 (1990)
102. G. Song, A. Atrens, D. St. John, X. Wu, and J. Nairn, Corros. Sci., 39(10-11), 1981 (1997)
103. G. Galicia, N. Pébère, B. Tribollet, and V. Vivier, Corros. Sci., 51(8), 1789 (2009)
104. S.Y. Jian, Y.R. Chu, and C.S. Lin, Corros. Sci., 93(8), 301 (2015)
105. Z. Stein and E. Gileadi, J. Electrochem. Soc., 132(9), 2166 (1985)
106. E. Gileadi and E. Kirowa-Eisner, Electrochim. Acta, 51(27), 6003 (2006)
107. G. Song and D. St. John, Corros. Sci., 46(6), 1381 (2004)
108. L. Wang, T. Shinohara, and B.P. Zhang, J. Alloys Compd., 496(1), 500 (2010)
109. S. Aktas, Hydrometallurgy, 106(3-4), 175 (2011)
110. E.É. Kiss, M. Jezowska-Bojczuk, and T. Kiss, J. Coord. Chem., 40, 157 (1996)
111. R.I. Lizama Tzec and G. Oskam, ECS Trans., 25(27), 195 (2010)
112. J.D. Reid and A.P. David, J. Electrochem. Soc., 134(6), 1389 (1987)
113. W.C. Tsai, C.C. Wan, and Y.Y. Wang, J. Appl. Electrochem., 32 (12), 1371 (2002)
114. C. Gabrielli, P. Moçotéguy, H. Perrot, and R. Wiart, J. Electroanal. Chem., 572 (2), 267 (2004)
115. A. A. Ogwu, T. H. Darma, and E. Bouquerel, JAMME, 24(1), 172 (2007)
116. S. Nouraei and S. Roy, J. Electrochem. Soc., 155(2), D97 (2008)
117. F. M. Li, R. Waddingham, W. I. Miline, A. J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, and M. Thwaites, Thin Solid Films, 520 (4), 1278 (2011)
118. L. De Los Santos Valladares, D. Hurtado Salinas, A. Bustamante Dominguez, D. Acosta Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. Albino Aguiar, and Y. Majima, Thin Solid Films, 520 (20), 6368 (2012)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4443-
dc.description.abstract鎂合金具有良好的比強度、比剛性與生物相容性,然而當暴露於腐蝕環境時,鎂合金的腐蝕速率極高,大大限制了鎂合金的工程應用。本研究以檸檬酸鹽為主要反應物種,嘗試建立一可應用於鎂合金之無鉻環保鈍化系統,以調控鎂合金之腐蝕速率及腐蝕行為。實驗包含三個部分:第一部分包含在水溶液與甘油溶液系統中以輥塗製程進行檸檬酸鹽化成處理,藉此探討鎂合金上檸檬酸鹽化成皮膜之成長機制;第二部分藉由添加銅離子與硫酸根離子,探討不同添加物在水溶液與甘油溶液系統中對檸檬酸鹽化成皮膜之影響;第三部份則是透過一後處理製程,在檸檬酸鹽化成皮膜上披覆一以檸檬酸基聚醯胺醯亞胺為主結構之高分子,以嘗試更進一步提升其抗蝕能力。
實驗發現,不論是水溶液或甘油溶液,檸檬酸鹽化成處理可以在AZ31鎂合金表面形成一層具有獨特微結構特徵的化成皮膜,且此化成皮膜可以降低AZ31鎂合金於動電位極化曲線中的腐蝕電流,並提高電化學交流阻抗分析中的阻抗值。在添加物的方面,硫酸根有抑制檸檬酸鹽化成皮膜成膜的傾向;在甘油溶液系統中添加銅離子時,可以觀察到富含銅的顆粒在鎂合金表面析出,且動電位極化曲線中的腐蝕電位也會隨之提高,而在水溶液中添加銅離子時,則會析出銅氧化物顆粒,造成動電位極化曲線中的腐蝕電流大幅提升。在電化學交流阻抗測試評估中,檸檬酸鹽化成處理可將AZ31鎂合金之阻抗值自5,000 Ωcm2左右提升至約10,000 Ωcm2, 當再披覆檸檬酸基聚醯胺醯亞胺之高分子作為後處理時,更可進一步提升至約20,000 Ωcm2。
zh_TW
dc.description.abstractMagnesium alloys are known for their high specific strength, high specific stiffness, and good biocompatibility. However, their engineering applications are still limited, due to their extremely high corrosion rate when exposed in corrosive environment. In order to develop an environmental friendly passivation process for magnesium alloys, a citrate conversion coating system has been developed in this study. To investigate the formation mechanism of the citrate conversion coating on AZ31 magnesium alloy, the conversion coating process is performed in both aqueous and glycerin solutions. As the result, citrate conversion coatings formed in aqueous and glycerin solutions are similar in both microstructure and corrosion properties, which includes the reduced corrosion current density in potentiodynamic polarization and the elevated total impedance in electrochemical impedance measurement. Despite the similarity of pure citrate conversion coating, the effect of cupric ion shows significant difference in aqueous and glycerine solutions. In glycerin solution, the copper-rich clusters are formed on the citrate conversion coating with cupric ion added, and an apparently higher corrosion potential in potentiodynamic polarization can be observed. On the other hand, oxide particles are formed with cupric added in aqueous solution, which leads to an intense increase in corrosion current density. A post treatment using a citrate-based polyamide-imide (PAI) is also proposed in this study. It was found that the impedance of the AZ31 in EIS increases from around 5,000 to 10,000 Ωcm2 after citrate-based conversion coating, and can be further elevated to near 20,000 Ωcm2 with the PAI post treatment.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:17Z (GMT). No. of bitstreams: 1
ntu-104-D01527001-1.pdf: 17696435 bytes, checksum: 0b883a80e17132a2325d286390279c48 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
總目錄 iii
圖目錄 vi
表目錄 ix
第 1 章 緒論 1
第 2 章 文獻回顧 3
2.1 常見鎂合金系統 4
2.1.1 鋁 4
2.1.2 鋅 5
2.1.3 鋰 7
2.2 鎂合金的腐蝕行為 8
2.2.1 均勻腐蝕(General Corrosion) 8
2.2.2 局部腐蝕(Localized Corrosion) 10
2.3 鎂合金化成處理 12
2.3.1 鉻酸鹽化成處理 12
2.3.2 磷酸鹽�碳酸鹽化成處理 15
2.3.3 錳酸鹽化成處理 17
2.3.4 鈰鹽化成處理 17
2.3.5 錫酸鹽化成處理 19
2.3.6 有機酸化成處理 20
2.4 檸檬酸基聚醯胺醯亞胺 22
第 3 章 實驗方法 24
3.1 化成處理 25
3.1.1 試樣前處理 25
3.1.2 化成液配製 25
3.1.3 輥塗製程 26
3.2 聚琥珀醯亞胺檸檬醯胺後處理 27
3.3 電化學性質量測 28
3.3.1 動電位極化曲線量測(Potentiodynamic Polarization) 28
3.3.2 電化學交流阻抗分析(Electrochemical Impedance Spectroscopy) 29
3.4 微結構與成分分析 29
3.4.1 表面形貌觀察 29
3.4.2 橫截面影像觀察 29
第 4 章 實驗結果 31
4.1 檸檬酸鹽化成處理 31
4.1.1 化成液成分分析 31
4.1.2 動電位極化曲線量測 32
4.1.3 電化學交流阻抗分析 37
4.1.4 鈍化膜表面形貌 43
4.1.5 鈍化膜橫截面影像與成分分析 45
4.2 聚琥珀醯亞胺檸檬醯胺(PSICA)後處理 48
4.2.1 PSICA塗層微結構分析 48
4.2.2 PSICA塗層電化學交流阻抗分析 49
4.2.3 PSICA塗層腐蝕微結構分析 52
第 5 章 討論 55
5.1 檸檬酸鹽鈍化膜成膜機制與水含量之效應 55
5.2 銅離子與硫酸根於檸檬酸鹽化成處理之影響 57
5.3 以電化學交流阻抗進行鎂合金腐蝕行為定性分析 62
5.4 聚琥珀醯亞胺檸檬醯胺(PSICA)塗層腐蝕行為 66
第 6 章 結論 69
第 7 章 未來研究方向 70
參考文獻 71
dc.language.isozh-TW
dc.subject檸檬酸鹽zh_TW
dc.subject聚醯胺醯亞胺zh_TW
dc.subject化成處理zh_TW
dc.subject鎂合金zh_TW
dc.subject電化學交流阻抗分析zh_TW
dc.subjectEISen
dc.subjectMagnesiumen
dc.subjectCitrateen
dc.subjectPolyamide-imideen
dc.subjectConversion Coatingen
dc.titleAZ31鎂合金檸檬酸鹽化成處理zh_TW
dc.titleCitrate Conversion Coating on AZ31 Magnesium Alloysen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊聰仁,林景崎,李文錦,李岳聯
dc.subject.keyword鎂合金,檸檬酸鹽,聚醯胺醯亞胺,化成處理,電化學交流阻抗分析,zh_TW
dc.subject.keywordMagnesium,Citrate,Polyamide-imide,Conversion Coating,EIS,en
dc.relation.page78
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf17.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved