Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫璐西
dc.contributor.authorTzu-Hung Chenen
dc.contributor.author陳姿虹zh_TW
dc.date.accessioned2021-06-15T02:49:05Z-
dc.date.available2014-08-12
dc.date.copyright2009-08-12
dc.date.issued2009
dc.date.submitted2009-08-06
dc.identifier.citation一、中文文獻
于達元。濃度效應對介質研磨纖維素流變性質的影響;國立台灣大學 食品科技研究所碩士論文:台北市,2008。
尹邦躍。奈米微粒的特性。奈米時代;五南圖書:台北市,2002;pp. 3-5。
王素梅。我國茶類飲料市場之發展。食品市場資訊,2008,97 (3),7-9。
甘子能。茶中的咖啡因。食品工業,1980,12 (7),19-23。
曲萊、曲源、曲少忠。納米茶製備三步法及其應用。發明專利申請公開說明書;知識產權出版社:中華人民共和國國家知識產權局,2003。
呂維明、戴怡德。粉粒體粒徑量測概論。粉粒體粒徑量測技術;高立圖書:台北市,1998;pp. 1-20。
李興傳。綠茶製造學。台灣新聞資料供應社:台北市,1954;pp. 48-49。
吳振鐸。台灣茶葉分類。台灣茶葉研究彙報,1985,4,155-158。
吳聲舜,陳國任。加工方法對綠粉茶色澤及品質之影響。台灣茶業研究彙報,2000,19,125-137。
統計資料。食品市場資訊,2006a,95 (4),91。
統計資料。食品市場資訊,2006b,95 (11),92。
施倩、陳林、張正竹、李平、宛曉春。茶葉中L-茶氨酸HPLC-PDAD分析方法的建立。安徽農業大學學報,2006,33 (3),347-350。
馬遠榮。奈米材料。奈米科技;商周:台北市,2002;pp. 40-45。
徐敬添、張義和、簡維誼、蔡書雅。奈米微分散技術與材料應用。2001材料奈米技術專刊;經濟部技術處:台北市,2001;pp. 140-148。 。
夏濤。中國綠茶;中國輕工業:北京,2006,pp. 60-62。
黃仁毅。纖維素於介質研磨下之破碎模式;國立台灣大學 食品科技研究所碩士論文:台北市,2007。
黃雅玲。柳橙皮與百香果籽果渣纖維理化性質;國立中興大學 食品科學研究所碩士論文:台中市,2003。
黃媛媛、王煜、胡秋輝。抹茶冰淇淋、抹茶奶茶和抹茶麵條的研製。食品科學,2004,25 (4),122-124。
莊允中。奈米表面技術概要。奈米表面技術發展趨勢,金屬工業研究發展中心:台北市,2003;pp. 17-32。
楊曉萍、周立亭、崔建國、林玉花。超微綠茶粉蛋糕加工工藝研究。食品工業,2006,27 (6),16-18。
董海洲、劉傳富、侯漢學。綠茶月餅加工工藝參數及其理化特性。食品與發酵工業,2003,29 (8),88-91。
葉安義。奈米科技與食品。科學發展,2007,418,42-47。
葉勇。茶飼料的應用及發展前景。中國茶葉,2000,22 (4),14-15。
陳右人。多元化茶葉產品開發與技術轉移。台灣茶葉發展研討會專集,茶業改良場:桃園,1991;pp. 34-41。
陳右人。臺灣茶業之回顧與展望。園藝產業回顧與展望研討會專集,國立台灣大學園藝系:台北市,2006a;pp. 127-146。
陳仁英。奈米級粉體之研磨及其分散技術上之探討。工業材料雜誌,2004,205,160-167。
陳仲仁。溼式球磨技術與應用。食品工業,2007,39 (8),8-15。
陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究;國立台灣大學 食品科技研究所碩士論文:台北市,2006b。
陳惠英與顏國欽。自由基、抗氧化防禦與人體健康。Nutr. Sci. J., 1998, 23: 105-121.
陳朝榮、陳彥良、王振宇、潘善鵬、安惠榮。奈米尺寸檢測儀器及標準介紹。科儀新知,2004,26 (3),26-34。
賴正南。綠茶製造。茶業技術推廣手冊--製茶技術,茶業改良場:台北市,2001;pp. 19-21。
簡國諭、陳志豪。溼式奈米粉體球磨技術及設備簡介。機械月刊,2005,31 (3),80-91。
蕭家煌。添加維生素C對綠茶粉貯藏品質之影響;私立輔仁大學 食品營養學系碩士論文:台北縣,2000。
蘇志杰。奈米粉體粒徑檢測方法簡介。機械工業雜誌,2004,255,131-139。
二、西文文獻
Anan, T. The lipids of tea. Jarq.-Jpn. Agric. Res. Q. 1983, 16, 253-257.
AOAC International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, 2005.
Babu, P. V.; Liu, D. Green tea catechins and cardiovascular health: An update. Curr. Med. Chem. 2008, 15, 1840-50.
Bernhardt, C.; Reinsch, E.; Husemann, K. The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol. 1999, 105, 357-361.
Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930-933.
Bush, A. I.; Goldstein, L. E. Specific metal-catalysed protein oxidation reactions in chronic degenerative disorders of ageing: Focus on alzheimer's disease and age-related cataracts. Novartis Found Symp. 2001, 235, 26-38; discussion 38-43.
Cabrera, C.; Artacho, R.; Gimenez, R. Beneficial effects of green tea - a review. J. Am. Coll. Nutr. 2006, 25, 79-99.
Cabrera, C.; Gimenez, R.; Lopez, M. C. Determination of tea components with antioxidant activity. J. Agric. Food Chem. 2003, 51, 4427-4435.
Cao, G.; Alessio, H. M.; Cutler, R. G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303-311.
Chau, C. F.; Wang, Y. T.; Wen, Y. L. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 2007, 100, 1402-1408.
Chau, C. F.; Wen, Y. L.; Wang, Y. T. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. J. Sci. Food Agr. 2006, 86, 2380-2386.
Chen, J.; Yu, S.; Liu, H.; Fu, S.; Hsu, B. R. In vitro evaluation of growth and anabolism for C3A/HepG2 hepatoma cells with logistic equation and linear regression expression. Transplant Proc. 2001, 33, 656-657.
Chen, Z. M.; Wang, H. F.; You, X. Q.; Xu, N. The chemistry of tea non-volatiles. In Tea; Zhen, Y. S., Ed.; Harwood Academic press, Amsterdam, The Netherlands, 2002; pp 57-88.
Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359-1362.
Chu, D. C.; Juneja, L. R. General chemical composition of green tea and its ihfusion. In Chemistry and Applications of Green Tea; Yamamoto, T., Ed.; CRC press: New York, 1997; pp 13-22.
Chung, F. L.; Schwartz, J.; Herzog, C. R.; Yang, Y. M. Tea and cancer prevention: Studies in animals and humans. J. Nutr. 2003, 133, 3268S-3274S.
Coimbra, S.; Castro, E.; Rocha-Pereira, P.; Rebelo, I.; Rocha, S.; Santos-Silva, A. The effect of green tea in oxidative stress. Clin. Nutr. 2006, 25, 790-796.
Davies, M. J.; Fu, S.; Wang, H.; Dean, R. T. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol. Med. 1999, 27, 1151-1163.
Draper, H. H.; Agarwal, S.; Nelson, D. E.; Wee, J. J.; Ghoshal, A. K.; Farber, E. Effects of peroxidative stress and age on the concentration of a deoxyguanosine-malondialdehyde adduct in rat DNA. Lipids 1995, 30, 959-961.
Fendler, J. H. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 1987, 87, 877-899.
Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. The SEM and its modes of operation. In Scanning Electron Microscopy and X-ray Microanalysis; Springer Science+Business Media, New York, 2003; pp 21-29.
Halliwell, B.; Gutteridge, J. M. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1-85.
Halliwell, B.; Gutteridge, J. M.; Cross, C. E. Free radicals, antioxidants and human disease: where are we now. J. Lab. Clin. Med. 1992, 119, 598-620.
Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell-growth cell kill. J. Immunol. Methods 1989, 119, 203-210.
Hideki, H.; Katsuhori, K. Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis. J. Chromatogr. A. 2000, 881, 425-438.
Hong, J.; Lu, H.; Meng, X.; Ryu, J. H.; Hara, Y.; Yang, C. S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002, 62, 7241-7246.
Hu, E. L.; Shaw, D. T. Synthesis and assembly. In Nanoscience Structure and Technology; Siegel, R. W., Hu, E. L., Roco, M. C., eds; National Science and Technology Council, California, 1999; pp 15-33.
Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J. A.; Prior, R. L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437-4444.
Huang, D.; Ou, B.; Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841-1856.
Imlay, J. A.; Fridovich, I. Assay of metabolic superoxide production in escherichia coli. J. Biol. Chem. 1991, 266, 6957-6965.
Jacob, R. A.; Burri, B. J. Oxidative damage and defense. Am. J. Clin. Nutr. 1996, 63, 985S-990S.
Julkunen-tiitto, R., Phenolic constituents in the leaves of northern willows-methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213-217.
Juneja, L. R.; Chu, D. C.; Okubo, T.; Nagato Y.; Yokogoshi, H. L-theanine⎯⎯a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci. Tech. 1999, 10, 199-204.
Kavanagh, D.; Renehan, J. Fluoride in tea--its dental significance: A review. J. Ir. Dent. Assoc. 1998, 44, 100-105.
Koca, N.; Karadeniz, F.; Burdurla, H. S. Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem. 2006, 100, 609-615.
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006, 312, 179-186.
Koo, S. I.; Noh, S. K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179-183.
Linnert, T.; Mulvaney, P.; Henglein, A. Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate. J. Phys. Chem. 1993, 97, 679-682.
Liu, Y. Y.; Chen, X. Q.; Xin, J. H. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinsp. Biomim. 2008, 3, 1-8.
Lunder, T. Tannins of green tea and black tea: nutritional value, physiological properties and determination. Farmaceutisch Tijdschrift Voor België 1989, 66, 34-42.
Lorenz, M.; Urban, J.; Engelhardt, U.; Baumann, G.; Stangl, K.; Stangl, V. Green and black tea are equally potent stimuli of no production and vasodilation: New insights into tea ingredients involved. Basic Res. Cardiol. 2009, 104, 100-110.
Maeda, K.; Kuzuya, M.; Cheng, X. W.; Asai, T.; Kanda, S.; Tamaya-Mori, N.; Sasaki, T.; Shibata, T.; Iguchi, A. Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier. Atherosclerosis 2003, 166, 23-30.
Mates, J. M.; Perez-Gomez, C.; Nunez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595-603.
Matsumoto, M.; Minami, T.; Sasaki, H.; Sobue, S.; Hamada, S.; Ooshima, T. Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res. 1999, 33, 441-445.
McKay, D. L.; Blumberg, J. B. The role of tea in human health: An update. J. Am. Coll. Nutr. 2002, 21, 1-13.
Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113-120.
Merisko-Liversidge, E.; McGurk, S. L.; Liversidge, G. G. Insulin nanoparticles: a novel formulation approach for poorly water soluble Zn-insulin. Pharm. Res. 2004, 21, 1545-1553.
Mertens, A.; Holvoet, P. Oxidized LDL and HDL: Antagonists in atherothrombosis. FASEB J. 2001, 15, 2073-2084.
Mosmann, T. Rapid colorimetric assay for cellular growth and suvival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65: 55-63.
Müller, R. H.; Jacobs, C. Buparvaquone mucoadhesive nanosuspension:preparation, optimization and long-term stability. Int. J. Pharm. 2002, 237, 151-161.
Muniyappan, T.; Karatgi, P.; Prabhu, R.; Pillai, R. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev. Ind. Pharm. 2008, 7, 1-10.
Munoz-Munoz, J. L.; Garcia-Molina, F.; Molina-Alarcon, M.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J. N. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea. J. Agric. Food Chem. 2008, 56, 9215-9224.
Naguib, Y. M. A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal. Biochem. 2000, 284, 93-98.
Patravale, V. B.; Date, A. A.; Kulkarni, R. M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 2004, 56, 827-840.
Polidori, M. C.; Mecocci, P. Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with alzheimer disease. J. Alzheimers Dis. 2002, 4, 517-522.
Prior, R. L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agri. Food Chem. 2003, 51, 3273-3279.
Puhl, H.; Waeg, G.; Esterbauer, H. Methods to determine oxidation of low-density lipoproteins. Methods Enzymol. 1994, 233, 425-441.
Pye, K.; Blott, S. J. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Sci.Int. 2004, 144, 19-27.
Raederstorff, D. G.; Schlachter, M. F.; Elste, V.; Weber, P. Effect of egcg on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003, 14, 326-332.
Rasheed, A.; Haider, M. Antibacterial activity of camellia sinensis extracts against dental caries. Arch. Pharm. Res. 1998, 21, 348-352.
Reiter, R. J. Oxidative damage in the central nervous system: Protection by melatonin. Prog. Neurobiol. 1998, 56, 359-384.
Reto, M.; Figueira, M. E.; Filipe, H. M.; Almeida, C. M. M. Chemical composition of green tea (Camellia sinensis) infusions commercialized in portugal. Plant Foods Hum. Nutr. 2007, 62, 139-144.
Sanderson, G. W. The chemistry of tea and tea manufacturing. In Recent advances in phytochemistry; Tso, T. C., Ed.; Academic press: New York, 1972.
Sang, S.; Lee, M. J.; Hou, Z.; Ho, C. T.; Yang, C. S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478-9484.
Shekunov, B. Y.; Chattopadhyay, P.; Tong, H. H.; Chow, A. H. Particle size analysis in pharmaceutics: Principles, methods and applications. Pharm. Res. 2007, 24, 203-227.
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y. Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion. J. Agric. Food Chem. 1995, 43, 1616-1620.
Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152-178.
Stevanato, R.; Fabris, S.; Momo, F. New enzymatic method for the determination of total phenolic content in tea and wine. J. Agric. Food Chem. 2004, 52, 6287-6293.
Tangsathitkulchai, C. Acceleration of particle breakage rates in wet batch ball milling. Powder Technol. 2002, 124, 67-75.
Trowell, H. Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. Am. J. Clin. Nutr. 1976, 29, 417-427.
Umberto C. Antioxidant use in nutraceuticals. Clin. Dermatol. 2009, 27, 175-194.
Vallar, S.; Houivet, D.; Fallah, J. E.; Kervadec, D.; Haussonne, J.-M. Oxide slurries stability and powders dispersion: optimization with zeta potential and rheologicl measurements. J. Eur. Ceram. Soc. 1999, 19, 1017-1021.
Van Eerdenbrugh, B.; Froyen, L.; Martens, J. A.; Blaton, N.; Augustijns, P.; Brewster, M.; Van den Mooter, G. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-hiv agent loviride prepared by media milling. Int. J. Pharm. 2007, 338, 198-206.
Weemaes, C. A.; Ooms, V.; Van Loey, A. M.; Hendrickx, M. E. Kinetics of chlorophyll degradation and color loss in heated broccoli juice. J. Agric. Food Chem. 1999, 47, 2404-2409.
Williams, D. B.; Carter, C. B. The transmission electron microscope. In Transmission electron microscopy; Plenum Press: New York, 1996; pp 5-14.
Wolfe, K. L.; Liu, R. H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896-8907.
Wolfe, K. L.; Liu, R. H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 2008, 56, 8404-8411.
Wu, C. H.; Lu, F. H.; Chang, C. S.; Chang, T. C.; Wang, R. H.; Chang, C. J. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes. Res. 2003, 11, 1088-1095.
Xiao, P. G.; Li, Z. Y. Botanical classification of tea plants. In Tea; Zhen, Y. S.; Harwood Academic press: New York, 2002; pp 17-34.
Yang, C. S.; Landau, J. M. Effects of tea consumption on nutrition and health. J. Nutr. 2000, 130, 2409-2412.
Yang, D.-J.; Hwang, L. S.; Lin, J.-T. Effects of different steeping methods and storage on caffeine, catechins and gallic acid in bag tea infusions. J. Chromatogr. A 2007, 1156, 312-320.
Young, I. S.; McEneny, J. Lipoprotein oxidation and atherosclerosis. Biochem. Soc. Trans. 2001, 29, 358-362.
Zaveri, N. T. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006, 78, 2073-2080.
Zhang, J.; Kashket, S. Inhibition of salivary amylase by black and green teas and their effects on the intraoral hydrolysis of starch. Caries Res. 1998, 32, 233-238.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44287-
dc.description.abstract綠茶中因含有豐富的兒茶素,但兒茶素水溶性不高,故市售綠茶飲料的加工過程無法將茶葉之兒茶素完全萃取出,同時亦會產生大量廢棄物,如:茶葉渣與茶梗等。據文獻指出經介質研磨的奈米級藥物,可有效提高其於水中的溶解度,並可完全利用物料而無廢棄物之產生。本研究將比較微奈米綠茶、傳統水萃綠茶與微奈米茶渣製成之綠茶產品在理化特性、化學成分與抗氧化活性之差異 。
適當研磨條件為0.3 mm釔鋯珠、3500 rpm轉速,水懸浮液之綠茶粉濃度為0.38% (w/v),研磨時間90分鐘,粒數平均粒徑降至108 nm、體積平均粒徑降至7.83 μm;以相同操作條件研磨水萃綠茶之茶渣,微奈米茶渣之粒數平均粒徑降至114 nm、體積平均粒徑降至16.87 μm,顯示介質研磨降低綠茶粉與綠茶渣之粒徑均達到微奈米等級。
在理化性質方面,綠茶粉懸浮液、綠茶渣懸浮液經微奈米化後,pH值下降,可能由於酸性物質於研磨過程中釋放;色澤則不若水萃綠茶明亮與黃綠。以每克原料綠茶粉換算有效成分的釋放量,微奈米綠茶可釋放較大量兒茶素與茶胺酸,且介質研磨可能將EGCG轉變為EGC與gallic acid;微奈米綠茶可釋放111.43 mg總酚,顯著較水萃綠茶(80.31 mg)與微奈米茶渣(38.82 mg)為高;微奈米綠茶可利用之總膳食纖維含量為66.14 g/100 g綠茶粉乾重,顯著較水萃綠茶與微奈米茶渣加總(53.49 g/100 g綠茶粉乾重)為高。顯示微奈米綠茶可較傳統水萃綠茶與微奈米茶渣有效利用每克的綠茶粉原料。
以每克綠茶粉可提供之抗氧化能力作為比較基準,微奈米綠茶的抗氧化能力較水萃綠茶佳,其抗氧化能力主要來自酚類化合物,總酚含量與ORAC或Tlag之間的相關性(R2)均達0.88以上。於細胞抗氧化試驗,微奈米綠茶組有無PBS wash處理並不顯著影響防禦細胞被自由基侵襲的能力,顯示微奈米綠茶中化學成分組成較易進入細胞或與細胞膜表面有緊密連接,或是小粒徑的粒子較多,較容易與細胞作用而提供抗氧化能力。
本研究發現介質研磨可增加綠茶粉中有效成分的利用,使微奈米綠茶之總兒茶素、茶胺酸與總酚收率較水萃綠茶為高,而膳食纖維含量亦大幅提高;微奈米綠茶可開發為新型保健產品,作為國人補充抗氧化物質與膳食纖維來源之一。介質研磨方式可有效利用原料綠茶粉,或許將來可發展作為新式提取兒茶素或多酚類物質的方法。
zh_TW
dc.description.abstractGreen tea contains abundant catechins, but the extraction yield of catechins is low due to its poor water-solubility. Large amounts of wastes including tea leaves and stems are produced during the commercial processing of green tea beverages. Recently, nanotechnology via media milling has been reported to improve some poorly water-soluble drugs into stable, biologically active nanoparticlulate dispersion and enable the use of whole raw materials. This thesis aims at preparing micron/nano-sized green tea by media milling and finding the appropriate media-milling conditions. Physicochemical properties, chemical components and antioxidant activities will be compared among micron/nano-sized green tea suspension, green tea extract and micron/nano-sized green tea waste.
The appropriate milling condition was to use 0.3 mm Y.Z.T. (yttria-stabilized zirconia) beads and 3500 rpm to mill green tea powder suspension (0.38%, w/v) for 90 min. The particle size of micron/nano-sized green tea was 108 nm of number mean diameter (Dnm) and 7.83 μm of volume mean diameter (Dvm); the particle size of micron/nano-sized green tea waste was 114 nm of Dnm and 16.87 μm of Dvm. The green tea powder suspension and waste suspension were ground to micron/nanoscales.
For physicochemical properties, the Hunter L, a, b color results showed that green tea extract was more bright and yellow-green than the media-milled products; the media-milled products had lower pH that might be caused by the release of acidic substances. Comparison of the chemical components (on one-gram basis of dry green tea powder) among the micron/nano-sized green tea suspension, green tea extract and micron/nano-sized green tea waste showed that micron/nano-sized green tea could release more catechins and L-theanine. Some components such as EGCG would be converted into EGC and gallic acid. Micron/nano-sized green tea released 111.43 mg of total phenollics that was significantly higher than those of the green tea extract (80.31 mg) and micron/nano-sized green tea waste (38.82 mg). Total dietary fiber of micron/nano-sized green tea was found to be 66.14 g/100 g of dry green tea powder that was higher than the sum of those from green tea extract and micron/nano-sized green tea waste (53.49 g/100 g green tea powder). These results showed that micron/nano-sized green tea could release higher amounts of effective components than green tea extract.
Comparison of antioxidant activities among micron/nano-sized green tea suspension, green tea extract and micron/nano-sized green tea waste on one-gram basis of dry green tea powder showed that micron/nano-sized green tea had higher antioxidant activity such as ORAC and LDL oxidation. The presence of abundant phenolic components might lead to a high antioxidant activity, while the correlations (R2) between ORAC and total phenolics as well as Tlag and total phenolics were above 0.88. In CAA assay, with or without PBS wash treatment did not affect the antioxidant activity of micron/nano-sized green tea significantly. It showed that the chemical components in micron/nano-sized green tea were easily uptake by cells or bound to the surface of cell membrane, or there might be some other smaller particles interacting with cells to present antioxidant activity.
This study showed that media-milling process could release high amounts of effective components. The yields of total catechins, L-theanine, total phenolics and dietary fiber from micron/nano-sized green tea were higher than those from green tea extract and therefore, micron/nano-sized green tea was expected to be a new green tea product with rich source of antioxidant and dietary fiber. Media-milling process could help collect effective components from green tea powder, it is also possible develop a new method to collect catechins and other phenolic components.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:49:05Z (GMT). No. of bitstreams: 1
ntu-98-R96641022-1.pdf: 23563839 bytes, checksum: 72ce1383c1ea76011dfa431763f850f0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖次 xi
表次 xiii
壹、前言 1
貳、文獻整理 2
一、綠茶的簡介 2
(一) 茶的分類與命名 2
(二) 綠茶的製程與原理 2
1.綠茶的製程 2
2.綠茶粉的加工方法 4
(三) 台灣茶業的現況與特色 5
1.台灣茶業面臨國際化競爭 5
2.台灣茶飲料的現況 5
3.製作茶飲料之廢棄物產量 5
二、綠茶茶菁的化學成分 8
(一) 多酚類化合物 10
(二) 植物鹼 12
(三) 蛋白質與游離胺基酸 12
(四) 碳水化合物 13
(五) 植物色素 13
(六) 脂質與脂肪酸 14
(七) 微量成分 14
三、綠茶的生理功效 15
(一) 降低心血管疾病罹患率 15
(二) 預防癌症 16
(三) 控制體重 16
(四) 口腔健康 16
四、奈米科技 20
(一) 奈米科技之定義 20
(二) 奈米粒子之特性 21
1.表面效應 22
2.尺寸效應 22
3.量子效應 22
4.交互作用 23
(三) 奈米材料之製備方式 23
1.由上而下 23
2.由下而上 27
(四) 奈米材料之量測方式 27
1.掃描式電子顯微鏡 28
2.穿透式電子顯微鏡 28
3.原子力顯微鏡 28
4.雷射粒徑分析儀 28
5.表面電位分析儀 31
(五) 奈米科技於食品與藥物之應用 32
1.奈米科技於食品之應用 32
2.奈米科技於藥物之應用 33
五、氧化壓力與常見抗氧化物質 33
(一) 氧化壓力與疾病 33
1.脂質 34
2.蛋白質 34
3.DNA 34
(二) 自由基來源 35
(三) 氧化壓力之測定 35
1.偵測物質被氧化的程度 35
2.偵測物質的電子自旋共振 (Electron spin resonance) 37
3.偵測物質的螢光 (Fluorescent) 或冷光 (Luminescent) 變化 37
4.偵測物質的抗氧化能力 37
參、研究目的與實驗架構 40
一、研究目的 40
二、實驗架構 41
肆、材料與方法 42
一、實驗材料 42
二、實驗細胞株 42
三、實驗藥品與溶劑 42
(一) 化學藥品 42
(二) 溶劑 44
四、細胞實驗培養基配方 44
(一) 毒性實驗 44
1.Phosphate-buffered saline (PBS) 44
2.Serum free WME (SF-WME) 45
3.Complete WME (c-WME) 45
4.MTT溶液 45
(二) 抗氧化實驗 45
1.Phosphate-buffered saline (PBS) 45
2.Antioxidant treatment medium 45
3.Complete WME (c-WME) 45
4.Oxidant treatment medium 46
五、儀器設備 46
(一) 一般儀器設備 46
(二) 介質研磨相關儀器設備 47
(三) 化學分析相關儀器設備 47
(四) 細胞實驗相關儀器設備 48
六、實驗方法 49
(一) 綠茶粉原料之一般成分分析 49
1.粗蛋白 (Crude protein) 49
2.粗脂肪 (Crude fat) 50
3.膳食纖維 (Dietary fiber) 51
3.1非水溶性膳食纖維 (Insoluble dietary fiber, IDF) 51
3.2水溶性膳食纖維 (Soluble dietary fiber, SDF) 51
4.水分 (Moisture) 52
5.灰分(Ash) 52
6.無氮抽出物含量 (Nitrogen free extract, NFE) 53
(二) 樣品製備 53
1.水萃綠茶 53
2.介質研磨 54
(三) 粒徑分析 55
1.粒徑分布測定 55
2.形態觀察 56
(四) 穩定性分析 56
1.表面電位之測定 56
2.濁度分析 57
(五) 物性分析 57
1.pH值 57
2.茶湯水色測定 57
(六) 化性分析 57
1.兒茶素含量之測定 57
2.茶胺酸之測定 58
3.總酚類化合物含量之測定 59
4. 膳食纖維含量之測定 59
(七) 抗氧化活性分析 60
1.氧自由基吸收能力之測定 60
1.1 樣品前處理 60
1.2 ORAC 測定 60
2.抑制銅離子誘導人類低密度脂蛋白氧化反應 61
2.1樣品前處理 61
2.2以超高速離心方法分離取得LDL 61
2.3透析LDL 61
2.4膽固醇濃度之測定 61
2.5抑制銅離子誘導LDL氧化之測定 62
3.細胞抗氧化活性之測定 63
3.1樣品前處理 63
3.2HepG2細胞培養條件與繼代培養 63
3.3細胞保存 63
3.4細胞解凍 63
3.5細胞存活率分析⎯MTT assay 64
3.6細胞抗氧化活性之測定 64
七、統計分析 65
伍、結果與討論 66
一、水萃綠茶之製備與一般成分分析 66
(一) 水萃綠茶之製備 66
(二) 一般成分分析 66
二、綠茶粉之適當研磨條件 67
(一) 操作條件之探討 67
1.轉速之影響 67
2.固形物含量之影響 69
3.鋯珠大小之影響 70
4.研磨時間之影響 70
(二) 平均粒徑分布 72
1.綠茶粉水懸浮液與微奈米綠茶 72
2.綠茶茶渣水懸浮液與微奈米茶渣 72
3.離心後之微奈米綠茶與微奈米茶渣 73
(三) 形態觀察 77
1.肉眼觀察 77
2.光學顯微鏡觀察 77
3.穿透式電子顯微鏡觀察 79
三、穩定度分析 82
(一) 濁度 82
(二) 表面電位 84
四、理化性質 86
(一) pH值 86
(二) Hunter L, a, b值 86
五、化學成分 88
(一) 兒茶素與茶胺酸含量 88
(二) 總酚含量 93
(三) 膳食纖維含量 95
六、抗氧化活性 97
(一) 氧自由基吸收能力分析(ORAC) 97
(二) 抑制銅離子誘導人類LDL氧化分析 101
(三) 細胞抗氧化活性分析 (CAA) 104
1.細胞存活率分析⎯MTT assay 104
2.細胞抗氧化能力測定⎯CAA assay 107
陸、結論 113
柒、參考文獻 115
一、中文文獻 115
二、西文文獻 116
捌、附錄 123
dc.language.isozh-TW
dc.subject抗氧化活性zh_TW
dc.subject微奈米綠茶zh_TW
dc.subject介質研磨zh_TW
dc.subject粒徑分布zh_TW
dc.subject兒茶素zh_TW
dc.subject膳食纖維zh_TW
dc.subjectmedia millingen
dc.subjectMicron/nano-sized green teaen
dc.subjectantioxidant activityen
dc.subjectdietary fiberen
dc.subjectcatechinsen
dc.subjectparticle size distributionen
dc.title微奈米綠茶之理化特性與抗氧化活性研究zh_TW
dc.titleStudies on the physicochemical properties and antioxidant activities of micron/nano-sized green teaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor葉安義
dc.contributor.oralexamcommittee周志輝,許明仁,何其儻,羅翊禎
dc.subject.keyword微奈米綠茶,介質研磨,粒徑分布,兒茶素,膳食纖維,抗氧化活性,zh_TW
dc.subject.keywordMicron/nano-sized green tea,media milling,particle size distribution,catechins,dietary fiber,antioxidant activity,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2009-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
23.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved