Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43613
Title: 正則雙分圖與有限共鄰圖上之隨機著色
Randomly Coloring Regular Bipartite Graphs and Graphs with Bounded Common Neighbors
Authors: Ching-Chen Kuo
郭慶徵
Advisor: 呂學一(Hsueh-I Lu)
Keyword: 馬可夫鏈,隨機著色,圖,葛勞柏動態過程,
Markov chai,random coloring,graph,Glauber dynamics,
Publication Year : 2009
Degree: 碩士
Abstract: 給定G是一個有n個點,最大度數為△的圖。葛勞柏動態過程是一個在G的所有著色上執行的馬可夫鏈。葛勞柏動態過程目前已被證明出在各種不同圖上可以達到快速趨近。近幾年來的研究焦點著重在△≧d log2 n,d是某些足夠大的常數。本篇論文結果如下:
1.給定α≒1.645為(1-e^{{-1}/x})^2+ 2xe^{-1/x}=2之根。若G為正則雙分圖,且k≥(α+ε) △,則葛勞柏動態過程的結合時間為O(nlog n)。
2. 給定β≒1.763為x=e^{1/x}之根。若G上任二相鄰點的共同鄰居個數至多為ε^{1.5}Delta/360e且k≥(1+ε)β△,則葛勞柏動態過程的結合時間為O(nlog n)。
Let G be an n-node graph with maximum degree △. The Glauber dynamics for G, defined by Jerrum, is a Markov chain over the k-colorings of G. Many classes of G on which the Glauber dynamics mixes rapidly have been identified. Recent research efforts focus on the important case that △≧d log_2 n holds for some sufficiently large constant d. We add the following new results along this direction, where ε can be any constant with 0 < ε < 1.
1. Let α≒1.645 be the root of (1-e^{{-1}/x})^2+ 2x
e^{-1/x}=2. If G is regular and bipartite and k≥(α+ε) △, then the mixing time of the Glauber dynamics for G is O(nlog n).
2.Let β≒1.763 be the root of x=e^{1/x}. If the number
of common neighbors for any two adjacent nodes of G is at most ε^{1.5}Delta/360e且k≥(1+ε)β△, then the mixing time of the Glauber dynamics is O(nlog n).
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43613
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
396.2 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved