請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43478
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 伍安怡 | |
dc.contributor.author | Sheng-Yang Wu | en |
dc.contributor.author | 巫聖揚 | zh_TW |
dc.date.accessioned | 2021-06-15T02:22:12Z | - |
dc.date.available | 2014-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-19 | |
dc.identifier.citation | Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, and Gurney AL. (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17.Journal of Biological Chemistry. 278(3):1910-4.
Allen HL and Deepe GS Jr. (2006) B cells and CD4-CD8- T cells are key regulators of the severity of reactivation histoplasmosis. Journal of Immunology. 177(3):1763-71. Allendoerfer. R, Deepe GS Jr. (1997) Intrapulmonary response to Histoplasma capsulatum in gamma interferon knockout mice. Infection and immunity. 65(7):2564-9. Abbas AK, Lichtman AH. (2002) Cellular and Molecular Immunology. 5 edition. Saunders. Allendörfer R, Brunner GD, Deepe GS Jr. (1999) Complex requirements for nascent and memory immunity in pulmonary histoplasmosis. Journal of Immunology. 162(12):7389-96. Ashman RB. (1999) Enhancement of MHC class II antigen expression by exposure to Candida albicans. Immunology letters. 30(2):255-60. Awane M, Andres PG, Li DJ, Reinecker HC.(1999) NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. Journal of Immunology. 162(9):5337-44. Bernardes ES, Silva NM, Ruas LP, Mineo JR, Loyola AM, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC.(2006) Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. American Journal of Pathology. 168(6):1910-20. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441(7090):235-8. Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, Romani L. (2002) Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. Journal of Immunology. 168(3):1362-71. Bozza S, Zelante T, Moretti S, Bonifazi P, DeLuca A, D'Angelo C, Giovannini G, Garlanda C, Boon L, Bistoni F, Puccetti P, Mantovani A, Romani L.(2008) Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection. J Immunol. 180(6):4022-31. Bullock WE, Wright SD. (1987) Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. Journal of Experimental Medicine. 165(1):195-210. Cain JA, Deepe GS Jr. (1998) Evolution of the primary immune response to Histoplasma capsulatum in murine lung. Infection and Immunity. 66(4):1473-81. Carol A. Kauffman. (2007) Histoplasmosis: a clinical and laboratory update. Clinical Microbiology Reviews. 20(1):115-32. Carol Li. (2008) To Investigate the Influence of Low I-A Expression on T Cell Activation in a Histoplasma capsulatum Infection Model. Graduate Institute of Immunology College of Medicine, Vol. Master. National Taiwan University, Taipei, Taiwan. Darling Samuel. (1906) A protozoan general producing pseudo tubercules in the lungs and focal necroses in the liver, spleen, and lymph nodes. Journal of the American Medical Association. 46: 1283-1285. Deepe GS Jr, Gibbons RS. (2009) Interleukins 17 and 23 Influence the Host Response to Histoplasma capsulatum. Journal of Infectious Disease. 200(1):142-51. Deepe GS. Jr. (1994) Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. Journal of immunology. 152(7):3491-500. Deepe GS. Jr. (2000) Immune response to early and late Histoplasma capsulatum infections. Current Opinion in Microbiology. 3(4):359-362. Demetriou M, Granovsky M, Quaggin S, Dennis JW. (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 409(6821):733-9. Dumic J, Dabelic S, Flögel M. (2006) Galectin-3: an open-ended story. Biochimica et Biophysica Acta. 1760(4):616-35. Dumic J, Dabelic S, Flögel M.(2006) Galectin-3: an open-ended story. Biochim Biophys Acta. 1760(4):616-35. Durand B, Sperisen P, Emery P, Barras E, Zufferey M, Mach B, Reith W. (1997) RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency. EMBO Journal. 16(5):1045-55. Eissenberg LG, Goldman WE, Schlesinger PH. (1993) Histoplasma capsulatum modulates the acidification of phagolysosomes. Journal of Experimental Medicine. 177(6):1605-11. Ferraz LC, Bernardes ES, Oliveira AF, Ruas LP, Fermino ML, Soares SG, Loyola AM, Oliver C, Jamur MC, Hsu DK, Liu FT, Chammas R, Roque-Barreira MC. (2008) Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. European Journal of Immunology. 38(10):2762-75. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S. (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. Journal of Experimental Medicine. 183(6):2593-603 Gao J, De BP, Han Y, Choudhary S, Ransohoff R, Banerjee AK. (2001) Human parainfluenza virus type 3 inhibits gamma interferon-induced major histocompatibility complex class II expression directly and by inducing alpha/beta interferon. Journal of Virology. 75(3):1124-31. Gildea LA, Morris RE, Newman SL. (2001) Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. Journal of Immunology. 166(2):1049-56. Gomez AM, Bullock WE, Taylor CL, Deepe GS Jr. (1988) Role of L3T4+ T cells in host defense against Histoplasma capsulatum. Infection and immunity. 56(7):1685-91. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, Roark C, Born WK, O'Brien R, Ikuta K, Ishikawa H, Nakae S, Iwakura Y, Ohta T, Matsuzaki G.(2008) IL-17A produced by gammadelta T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. Journal of immunology. 181(5):3456-63. Heninger E, Hogan LH, Karman J, Macvilay S, Hill B, Woods JP, Sandor M.(2006) Characterization of the Histoplasma capsulatum-induced granuloma. Journal of immunology. 177(5):3303-13. Hess J, Ladel C, Miko D, Kaufmann SH. (1996) Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. Journal of Immunology. 156(9):3321-6. Huang W, Na L, Fidel PL, Schwarzenberger P. (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. Journal of infectious disease. 190(3):624-31. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP. (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. Journal of Immunology. 160(7):3513-21. Jr-Shuian Lin. (2005) Functionals of CD8 T Cells in Protective Immune Response to Histoplasmosis. Master Thesis. Graduate Institute of Immunology College of Medicine, Vol. Ph.D. National Taiwan University, Taipei, Taiwan. Kauffman CA, Israel KS, Smith JW, White AC, Schwarz J, Brooks GF. (1978) Histoplasmosis in immunosuppressed patients. The American Journal of Medicine. 64(6):923-32. Kauffman Carol A. (2007) Histoplasmosis: a clinical and laboratory update. Clinical microbiology reviews. 20(1):115-132. Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA. (2005) Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infection and Immunity. 73(1):617-21. Kenneth M. Murphy, Paul Travers, Paul Travers, Mark Walport. (2007) Janeway's Immunobiology. 7 edition. Garland Science. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK. (2006) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 448(7152):484-7. Lane TE, Wu-Hsieh BA, Howard DH.(1993) Gamma interferon cooperates with lipopolysaccharide to activate mouse splenic macrophages to an antihistoplasma state. Infection and Immunity. 61(4):1468-73. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine. 201(2):233-40. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L. (1999) Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annual Review of Immunology. 17:221-53. Lin JS, Yang CW, Wang DW, Wu-Hsieh BA.(2005) Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection by Histoplasma capsulatum. Journal of immunology. 174(10):6282-91. Lüder CG, Lang C, Giraldo-Velasquez M, Algner M, Gerdes J, Gross U. (2003) Toxoplasma gondii inhibits MHC class II expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA. Journal of Neuroimmunologh. Journal of Virology. 134(1-2):12-24. Mandell W, Goldberg DM, Neu HC. (1986) Histoplasmosis in patients with the acquired immune deficiency syndrome. The American Journal of Medicine. 81(6):974-8. Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, Aebersold R, Sanchez JC, Hochstrasser DF, Mach B, Reith W. (1998) A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nature Genetics. 20(3):273-7. McMahon-Pratt D, Alexander J. (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunological Revies. 201:206-24. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. Journal of Experimental Medicine. 193(3):271-80. Nagarajan UM, Louis-Plence P, DeSandro A, Nilsen R, Bushey A, Boss JM. (1999) RFX-B is the gene responsible for the most common cause of the bare lymphocyte syndrome, an MHC class II immunodeficiency. Immunity. 10(2):153-62. Newman SL, Gootee L, Gabay JE. (1993) Human neutrophil-mediated fungistasis against Histoplasma capsulatum. Localization of fungistatic activity to the azurophil granules. Journal of clinical investigation. 92(2):624-31. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, Tian Q, Watowich SS, Jetten AM, Dong C. (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 448(7152):480-3. Pai M, Flores LL, Pai N, Hubbard A, Riley LW, Colford JM Jr. (2003) Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. The Lancet Infectious Disease. 3(10):633-43. Patiño MM, Williams D, Ahrens J, Graybill JR. (1987) Experimental histoplasmosis in the beige mouse. Journal of leukocyte biology. 41(3):228-35. Rabinovich GA, Toscano MA. (2009) Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature Reviews. Immunology. 9(5):338-52. Reith W, LeibundGut-Landmann S, Waldburger JM. (2005) Regulation of MHC class II gene expression by the class II transactivator. Nature Reviews. Immunology. 5(10):793-806. Reith W, Mach B. (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annual Review of Immunology. 19:331-73. Rudner XL, Happel KI, Young EA, Shellito JE. (2007) Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity. 75(6):3055-61. Saidinejad M, Burns MM, Harper MB. (2004) Disseminated histoplasmosis in a nonendemic area. The Pediatric Infectious Disease Journal. 23(8):781-2. Salvin SB.(1953) Immunization of mice against Histoplasma capsulatum. Journal of immunology. 70(3):267-70. Schnur RA, Newman SL. (1990) The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. Journal of immunology. 144(12):4765-72. Steimle V, Otten LA, Zufferey M, Mach B. (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 75(1):135-46. Torchinsky MB, Garaude J, Martin AP, Blander JM. (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature. 458(7234):78-82. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G. (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. Journal of Immunology. 178(6):3786-96. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24(2):179-89. Wei L, Laurence A, Elias KM, O'Shea JJ. (2007) IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. Journal of Biological Chemistry. 82(48):34605-10. Williams DM, Graybill JR, Drutz DJ.(1978) Histoplasma capsulatum infection in nude mice. Infection and immunity. 21(3):973-7. Wood JP. (2002) Histoplasma capsulatum molecular genetics, pathogenesis, and responsiveness to its environment. Fungal genetics and biology. 35(2):81-97. Wood JP. (2008) Knocking on the right door and making a comfortable home: Histoplasma capsulatum intracellular pathogenesis. Current opinion microbiology. 6(4):327-31. Wu-Hsieh BA, Howard DH. (1987) Inhibition of the intracellular growth of Histoplasma capsulatum by recombinant murine gamma interferon. Infection and immunity. 55(4):1014-6. Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK. (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. American Journal of Respiratory Cell and Molecular Biology. 25(3):335-40. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L. (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology. 37(10):2695-706. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L.(2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European journal of immunology. 37(10):2695-706. Zhong G, Fan T, Liu L. (1999) Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. Journal of experimental medicine. 189(12):1931-8. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology. 8(9):967-74. Zhou P, Freidag BL, Caldwell CC, Seder RA. (2001) Perforin is required for primary immunity to Histoplasma capsulatum. Journal of immunology. 166(3):1968-74. Zhou P, Miller G, Seder RA.(1998) Factors involved in regulating primary and secondary immunity to infection with Histoplasma capsulatum: TNF-alpha plays a critical role in maintaining secondary immunity in the absence of IFN-gamma. Journal of immunology. 160(3):1359-68. Zhou P, Sieve MC, Bennett J, Kwon-Chung KJ, Tewari RP, Gazzinelli RT, Sher A, Seder RA. (1995) IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-gamma. Journal of immunology. 155(2):785-95. Zhou P, Sieve MC, Tewari RP, Seder RA. (1997) Interleukin-12 modulates the protective immune response in SCID mice infected with Histoplasma capsulatum. Infection and immunity. 65(3):936-42. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43478 | - |
dc.description.abstract | 組織胞漿菌是一種雙型態的真菌,自然狀況下以菌絲的型態生長於酸性土壤中,一旦吸入動物體內,會寄生於宿主的巨噬細胞,進行繁衍。在組織胞漿菌感染的小鼠模式中,小鼠須仰賴第一型免疫反應的活化清除體內的真菌。當胞漿菌進入小鼠體內後會被吞噬細胞所吞噬,進而活化T細胞,T細胞活化後產生的細胞激素IFN-γ可進一步活化巨噬細胞,協助巨噬細胞清除胞內的組織胞漿菌。在MHC class II基因剔除時,小鼠體內無法分化出CD4 T細胞狀況下感染組織胞漿菌,會使得真菌無法清除而造成慢性感染,但仍可藉由CD8 T細胞的活化控制真菌的生長,避免宿主的死亡。
而為了進一步探討MHC II分子在組織胞漿菌感染的小鼠中所扮演的角色,我利用了來自中研院基因突變小鼠中心一隻利用ENU導致MHC II分子產生突變的小鼠P-235,這隻小鼠在MHC II基因上有點突變導致其蛋白質轉譯量是正常小鼠的五分之一,更重要的是本隻小鼠的CD4 T細胞數量並未受到影響。因此我可利用本隻MHC II表現低量的小鼠回答當小鼠帶有正常數量的CD4 T細胞時,MHC II這個分子在組織胞漿菌感染中所扮演的角色。在我們實驗室先前實驗指出,在2.5X104組織胞漿菌感染後,P235小鼠T細胞的活化程度顯著低於正常小鼠,但卻其清除真菌的能力卻與正常小鼠相當,因此我們推斷是由於真菌數量過少的狀況下,縱然T細胞活化狀況較低,仍可順利清除真菌。進而我利用了2.5X10^5組織胞漿菌感染P235小鼠,仍是得到結果,但令人意外的是P235小鼠血清中IFN-γ卻顯著高於正常小鼠,直接證明了雖然T細胞活化程度較低,但仍可產生足夠的IFN-γ以活化巨噬細胞清除胞內組織胞漿菌。為了進一步釐清CD4 T細胞的角色,我去除P235小鼠體內CD8 T細胞後感染組織胞漿菌。結果顯示,P235小鼠可順利清除真菌的原因並非由於活化的CD8 T細胞彌補了活化的CD4 T細胞之不足。除此之外,P235小鼠的巨噬細胞吞噬組織胞漿菌的能力以及在IFN-γ的刺激下產生iNOS並且抑制胞內組織胞漿菌的生長能力和正常小鼠一樣,但在組織胞漿菌的感染下,P235小鼠的巨噬細胞卻無法產生iNOS,也暗示了MHC II表現量低的小鼠體內所產生的巨噬細胞與正常小鼠的活化條件不儘相同。繼續研究是否P235小鼠的巨噬細胞活化方式與正常小鼠不同,因而使得感染後的P235小鼠縱然有較少的活化T細胞,仍可順利清除真菌。 為了研究第一型與第十七型免疫反應在組織胞漿菌感染後的調控,我利用了Galectin-3基因剔除小鼠。Galectin-3基因剔除小鼠在感染弓漿蟲及馬紅球菌後,第一型免疫反應上升,使得器官內細胞浸潤狀況加遽,但第一型反應的上升卻不代表病原清除效率的上升以及小鼠死亡率的下降,例如Galectin-3缺失後,造成弓漿蟲在宿主的體內數量上升;非致死量的馬紅球菌感染下,Galectin-3基因剔除小鼠死亡率高於正常小鼠。在上述二篇文獻中,器官的切片都提到有嚴重白血球或中性顆粒球浸潤的現象,由於第十七型免疫反應的主要功能便是吸引大量中性顆粒球至發炎部位,因此我也大膽假設第十七型反應也參與在Galectin-3基因剔除小鼠的感染中。我的實驗利用組織漿胞菌感染小鼠後,發現小鼠的確有IL-17的產生,並且Galectin-3基因剔除小鼠會產生顯著高量的IL-17,而在感染的晚期這隻小鼠的第一型免疫反應也低於正常小鼠。這結果顯示在組織胞漿菌的感染下,Galecin-3扮演的免疫調控角色是有別於弓漿蟲以及馬紅球菌感染的狀況,而是促進第一型免疫反應,並且抑制第十七型免疫反應。除此之外,我的實驗也首度證實了組織漿胞菌感染小鼠後,IL-17的產生可協助宿主清除真菌。目前我的首要目標便是找出在組織胞漿菌感染後IL-17的來源細胞,並希冀找出Galectin-3影響IL-17產生的主要機制。 | zh_TW |
dc.description.abstract | Histoplasma capsulatum (Hc) is opportunistic dimorphic fungal pathogen. It grows as mycelium in the soil in nature and transforms into yeast form upon inhalation of its microconidia or hyphal fragments into lungs, residing within alveolar macrophages as intracellular pathogen. Clearance of Hc infection needs the development of Th1 immune response and IFN-γ production by CD4 T cells. Mice depleted IFN-γ or MHC class II gene knockout mice fail to clear fungus and succumb to sublethal dose of Hc infection. B cell has been proved to play a mild role in Hc primary and secondary infection, although it can be activated by IFN-γ and underwent isotype switch, producing immunoglobulin G after infection.
There is no report that addressed the question that whether the existence of B cells reduces the availability of IFN-γ. I used ENU-mutagenized mice P-235, which are characterized by low MHC class II expression and fewer B cell counts, to investigate the balance between IFN-γ production by CD4 T cells and IFN-γ comsumption by B cells. My results showed that despite of fewer IFN-γ-producing T cells, the fungal clearances in P-235 mice are as effecicient as in WT mice after primary and secondary Hc infection, since the absence of B cells resulted in higher IFN-γ levels in different tissues of P-235 mice than WT mice. It indicated that B cells consumed IFN-γ produced by T cells and affected host resistence to Hc infection. Moreover, this effect is uncovered only in P-235 mice, because IFN-γ produced by activated T cells in WT mice is enough to clear Hc infection. It has been reported that galectin-3 regulated proinflammatory responses and Th1 immune response in Toxplasma gondii, Rhodococcus equi, and Streptococcus pneumonia infection. Moreover, recent research indicated that IL-17-producing cells contributed to inflammation in Mycobacterium tuberculosis and Candida albicans infection. It remains to be elucidated that whether the regulation of immune responses by galectin-3 is through IL-17 production, and whether the bias of immune responses in galectin-3 knockout mice affects fungal clearance after Hc infection. Using the mouse model of systemic histoplasmosis characterized by a strong Th1 response, I demonstrated that the fungal load in galectin-3 knockout mice was lower than in WT mice, and the increased IL-17 production by CD4 T cells and neutrophils in galectin-3 knockout mice contributed to this result. Based on these results, I can investigate how galectin-3 regulates IFN-g and IL-17 productions further. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:22:12Z (GMT). No. of bitstreams: 1 ntu-98-R96449006-1.pdf: 2238583 bytes, checksum: afa90b7e2bc527c5a87506c2e203104f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Abstract i
摘要 iii 目錄 vii 第一章、前言 1 一、組織胞漿菌(Histplasma capsulatum)及其感染 2 二、MHC class II對宿主抵抗病原感染的影響 6 三、ENU-mutagenized P-235小鼠 8 四、Galectin-3分子及其對免疫反應的調控 9 五、IL-17和第十七型輔助T細胞 10 第二章、研究目標 14 一、低MHC class II表現量在2.5X105組織胞漿菌的感染下,對小鼠T細胞的活化以及真菌清除能力的影響 15 二、組織胞漿菌感染的小鼠模式中,Galectin-3分子在免疫反應及真菌清除能力上扮演的角色 16 第三章、研究材料及方法 17 一、 材料 18 1. 小鼠 18 2. 抗體用於流式細胞儀、組織切片染色和Western blotting 18 3. ELISA 19 4. 緩衝液及細胞培養液 19 5. 化學藥品與試劑 22 6. 實驗耗材與設備 23 二、 方法 25 1. 組織胞漿菌及其感染 25 2. 組織胞漿菌數量的計算 25 3. 小鼠體內IL-17的中和以及CD4 T細胞、CD8 T細胞的去除 25 4. 脾臟細胞的製備 25 5. 小鼠腹腔細胞的取得 26 6. Heat-killed組織胞漿菌細胞的製備 26 7. Phagocytosis assay 26 8. 分析組織胞漿菌感染或IFN-γ刺激下巨噬細胞iNOS的表現量 26 9. 胞內真菌生長速度及IFN-g 刺激下巨噬細胞抑制胞內真菌生長的能力 27 10. 細胞表面抗原染色 27 11. 胞內細胞激素染色 27 12. ELISA assay 28 13. 器官切片和螢光染色 28 第四章、結果 29 一、 P-235小鼠以2.5X105組織胞漿菌感染後其免疫反應及體內真菌數量 30 1. 組織胞漿菌感染後,小鼠的細胞免疫反應 30 2. 在2.5X105組織胞漿菌感染後,P-235小鼠體內真菌的清除情況 31 3. 在缺乏CD8 T細胞協助以及第二次感染組織胞漿菌的狀態下,P-235小鼠體內真菌數量仍和正常小鼠一樣。 31 4. P-235小鼠組織胞織菌感染七天後,體內器官及血清中IFN-g與IL-17的濃度 32 5. P-235小鼠巨噬細胞的吞噬能力和IFN-g活化後表現iNOS以及抑制胞內菌生長的能力與正常小鼠一致。 33 二、 組織胞漿菌感染的小鼠模式中IL-17A扮演的角色 34 1. 野生型小鼠全身性感染組織胞漿菌的初期,IL-17A可以抑制真菌生長 34 2. 感染後Galectin-3基因剔除小鼠脾臟內真菌數量較低 35 3. 組織胞漿菌的感染中,脾臟內CD4 T細胞和中性顆粒球可產生的IL-17A。 36 第五章、討論 37 一、低MHC class II表現量對組織胞漿菌感染後,小鼠免疫反應及真菌清除的影響 38 1. 不同感染劑量下,野生型小鼠T細胞反應的變化 38 2. 不同感染劑量下,P-235小鼠脾臟細胞的組成及T細胞反應的變化 38 3. 感染後,低I-Aa的表現量造成小鼠血清及器官內IFN-g的濃度上升,使得小鼠可有效清除真菌感染 39 二、Galectin-3分子在組織胞漿菌感染中扮演的角色 43 1. 在組織胞漿菌感染的小鼠模式中IL-17的產生 43 2. 組織漿胞菌感染後,Galectin-3對細胞激素產生的調控 44 第六章、文獻 46 Figure 59 | |
dc.language.iso | zh-TW | |
dc.title | 探討低MHC class II表現量和Galectin-3在清除組織胞漿菌感染中扮演的角色 | zh_TW |
dc.title | To investigate the role of low MHC class II expression and galectin-3 in clearance of Histoplasma capsulatum infection | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孔祥智,繆希椿 | |
dc.subject.keyword | 組織胞漿菌, | zh_TW |
dc.subject.keyword | ENU,P-235,IL-17, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。