Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43397
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽
dc.contributor.authorYu Fuen
dc.contributor.author傅榆zh_TW
dc.date.accessioned2021-06-15T01:54:13Z-
dc.date.available2014-08-18
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation1. D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg & J. F. Wager, Crit. Rev. Solid State Mater. Sci. 2008, 33:2, 101-132
2. S. M. Sze, Physics of Semiconductor Devices 1982, Wiley, New York
3. Yugang Sun, John A. Rogers, Adv. Mater. 2007, 19, 1897
4. Sazonov, C. McArthur, J. Vac. Sci. Technol. A 2004, 22, 2052
5. I.-C. Cheng, S. Wagner, Appl. Phys. Lett. 2002, 80, 440
6. P. C. van der Wilt, M. G. Kane, A. B. Limanov, A. H. Firester, L. Goodman, J. Lee, J. R. Abelson, A. M. Chitu, J. S. Im, MRS Bull. 2006, 31, 461
7. H. Klauk, M. Halik, U. Zschieschang, G. Schimd, W. Radik, W. Weber, J. Appl. Phys. 2002, 92, 5259
8. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Appl. Phys. Lett. 2004, 84, 3789
9. Dodabalapur, Mater. Today 2006, 9, 24
10. M. M. Payen, S. R. Parkin, J. E. Anthony, C.-C. Kuo, T. N. Jackson, J. Am. Chem. Soc. 2005, 127, 4986
11. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. lkeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732
12. P. Gao, D. Beckmann, H. N. Tsao, X. Feng, V. Enkelmann, M. Baumgarten, W. Pisula, K. Mu¨llen, Adv. Mater. 2009, 21, 213
13. S. Dhoot, J. D. Yuen, M. Heeney, l. McCulloch, D. Moses, A. J. Heeger, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11834
14. H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112
15. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, M. F. Toney, Nat. Mater. 2006, 5, 328
16. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sarciftci, A. Montaigne, H. Sitter, M. Co¨lle, D. M. de Leeuw, Appl. Phys. Lett. 2006, 89, 213504
17. B. A. Jones, A. Facchetti, T. J. Marks, M. R. Wasielewski, Chem. Mater. 2007, 19, 2703
18. C. See, C. Landis, A. Sarjeant, H. E. Katz, Chem. Mater. 2008, 20, 3609
19. Letizia, A. Facchetti, C. L. Stern,M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476
20. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chem, Int. Ed. 2004, 43, 6363
21. Yoo, B. A. Jones, D. Basu, D. Fine, T. Jung, S. Mohapatra, A. Facchetti, K. Dimmler, M. R. Wasielewski, T. J. Marks, A. Dodabalapur, Adv. Mater. 2007, 19, 4028
22. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, Appl. Phys. Lett. 2007, 90, 212114
23. S.-H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, S. Im, Adv. Mater. 2009, 21, 678–682
24. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, Z. L. Zhang, Appl. Phys. Lett. 2009, 95, 072112
25. S Bang, S Lee, J Park, S Park, W Jeong, H. Jeon, J. Phys. D: Appl. Phys. 2009, 42, 235102
26. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 2003, 93, 1624
27. J. Siddiqui, E. Cagin, D. Chen, J. D. Phillips, Appl. Phys. Lett. 2006 88, 212903
28. P. F. Carcia, R. S. Mc Lean, M. H. Reilly, Appl. Phys. Lett. 2006, 88, 123509
29. H.-H. Hsieh, C.-C. Wu, Appl. Phys. Lett. 2006, 89, 041109
30. B. S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, J. Am. Chem. Soc. 2005, 129, 2750
31. H. Faber, M. Burkhardt, A. Jedaa, D. Kalblein, H. Klauk, M. Halik, Adv. Mater. 2009, 21, 3099–3104
32. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, V. Osinniy, Appl. Phys. Lett. 2008, 92, 023502
33. H. Bong, W. H. Lee, D. Y. Lee, B. J. Kim, J. H. Cho, K. Cho, Appl. Phys. Lett. 2010, 96, 192115
34. S.-H. K. Park, C.-S. Hwang, H. Y. Jeong, H. Y. Chu, K. I. Cho, Electrochem. Solid-State Lett. 2008, 11, H10-H14
35. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. USA 2001, 98, 4835.
36. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA 2004, 101, 9966.
37. Junho Yeo, Sang-Gook Moon, Jae-Young Jung, Microw. Opt. Techn. Lett., 50, 494, 2008
38. D. A. Mourey, M. S. Burberry, D. A. Zhao, Y. V. Li, S. F. Nelson, L. Tutt, T. D. Pawlik, D. H. Levy, T. N. Jackson, Journal of the SID 2010, 18, 753
39. J.-S. Park, J. K. Jeong1, Y.-G. Mo, H. D. Kim, S.-I. Kim, Appl. Phys. Lett. 2007, 90, 262106
40. B. D. Ahn, H. S. Shin, H. J. Kim, J.-S. Park, J. K. Jeong, Appl. Phys. Lett. 2008, 93, 203506
41. C. G. Van de Walle, Phys. Rev. Lett. 2000, 85, 1012
42. J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008)
43. J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, H. D. Kim, Appl. Phys. Lett. 2008, 92, 072104
44. S. R. Forrest, Nature 2004, 428, 911
45. R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, R. Lujan, Mater. Today 2006, 9, 32
46. C.-H. Lee, A. Sazonov, A. Nathan, Appl. Phys. Lett. 2005, 86, 222 106.
47. M. Wu, K. Pangal, J. C. Sturm, S. Wagner, Appl. Phys. Lett. 1999, 75, 2244
48. M. Wu, S. Wagner, Appl. Surf. Sci. 2001, 175–176, 753
49. J. Ficker, H. von Seggern, H. Rost, W. Fix, W. Clemens, I. McCulloch, Appl. Phys. Lett. 2004, 85, 1377
50. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig & D. M. de Leeuw, Nature 1999, 401, 685.
51. Kunigunde H. Cherenack, Niko S. Münzenrieder, Gerhard Tröster, IEEE Electron Device Lett. 2010, 31, 1254
52. C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 1998, 73, 108
53. M.M. Ling, Z. Bao, Chem. Mater. 2004, 16, 4824
54. Z. Bao, A. Dodabalapur, A.J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108
55. Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, A.J. Lovinger, Chem. Mater. 1997, 9, 1299
56. S. P. Speakman, G. G. Rozenberg, K. J. Clay, W. I. Milne, A. Ille, I. A. Gardner, E. Bresler, J. H. G. Steinke, Org. Electron. 2001, 2, 65
57. D. R. Hines, A. E. Southard, A. Tunnell, V. Sangwan, T. Moore, J.-H. Chen, M. S. Fuhrer, E. D. Williams, Proc. of SPIE 2007, 66580Y
58. S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A.J. Heeger, M. Surin, R. Lazzaroni, J. Appl. Phys. 2006, 100, 114503.
59. G. Wang, J. Swensen, D. Moses, A.J. Heeger, J. Appl. Phys. 2003, 93, 6137.
60. Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, J. I. Han, Jpn. J. Appl. Phys. 2004, 43, 3605
61. G. H. Gelinck, T. C. T. Geuns, D. M. de Leeuw, Appl. Phys. Lett. 2000, 77, 1487
62. W. Fix, A. Ullmann, J. Ficker, W. Clemens, Appl. Phys. Lett. 2002, 81, 1735
63. W. Clemens, W. Fix, J. Ficker, A. Knobloch, A. Ullmann, J. Mater. Res. 2004, 19, 1963–1973
64. S.M. Goetz, C.M. Erlen, H. Grothe, B. Wolf, P. Lugli, G. Scarpa, Org. Electron. 2009, 10, 573–580
65. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, Adv. Mater. 2003, 15, 1519
66. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher, Adv. Funct. Mater. 2004, 14, 757
67. J.-F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. Solling, M. Giles, I.M. Culloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772.
68. H. Yang, T.J. Shin, L. Yang, K. Cho, C.Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
69. L. A. Majewski, J. W. Kingsley, C. Balocco, A. M. Song, Appl. Phys. Lett. 2006, 88, 222108.
70. D.H. Kim, Y.D. Park, Y. Jang, H. Yang, Y.H. Kim, J.I. Han, D.G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C.Y. Ryu, K. Cho, Adv. Funct. Mater. 2005, 15, 77
71. S. Grecu, M. Roggenbuck, A. Opitz, W. Brutting, Org. Electron. 2006, 7, 276–286
72. M.S.A. Abdou, S. Holdcroft, Macromolecules 1993, 26, 2954–2962.
73. J.-M. Zhuo, L.-H. Zhao, R.-Q. Png, L.-Y. Wong, P.-J. Chia, J.-C. Tang, S. Sivaramakrishnan, M. Zhou, E.C.-W. Ou, S.-J. Chua, W.-S. Sim, L.-L. Chua, P.K.-H. Ho, Adv. Mater. 2009, 21, 4747–4752.
74. S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, K. Yase, J. Appl. Phys. 2004, 95, 5088
75. S. Ferrari, F. Perissinotti, E. Peron, L. Fumagalli, D. Natali, M. Sampietro, Org. Electron. 2007, 8, 407–414
76. S.P. Tiwaria , P. Srinivasa, S. Shrirama, N. S. Kalea, S.G. Mhaisalkarb, V. R. Raoa, Thin Solid films 2008, 516, 770
77. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, Appl. Phys. Lett. 2004, 85, 2541
78. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, L. M. Irving, Appl. Phys. Lett. 2008, 92, 19210
79. S. Bang, S. Lee, J. Park, S. Park, W. Jeong, H. Jeon, J. Phys. D: Appl. Phys. 2009, 42, 235102
80. Huby, S. Ferrari E. Guziewicz, M. Godlewski, V. Osinniy, Appl. Phys. Lett. 2008, 92, 023502
81. S. J. Lim, S.-j. Kwon, H. Kim, J.-S. Park, Appl. Phys. Lett. 2007, 91, 183517
82. J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, C.-W. Byun, J.-I. Lee, H. Y. Chu, ETRI 2009, 31, 62-64
83. E.P. Gusev , E. Cartier , D.A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt , C. D’Emic, Microelectron. Eng. 2001, 59, 341–349
84. S. Maikap, P. J. Tzeng, H. Y. Lee, C. C. Wang, T. C. Tien, L. S. Lee, M.-J. Tsai, Appl. Phys. Lett. 2007, 91, 043114
85. S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H. J. Chang, H.-H. Park, J. Electrochem. Soc. 2008, 155 , H738-H743
86. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, S. M. George, J. Phys. Chem. C, 2008, 112, 4573-4580
87. M. Juppo, M. Ritala, M. Leskela, J. Vac. Sci. Technol. A1997, 15, 2330.
88. M. Ritala, M. Leskela‥, E. Rauhala, J. Jokinen, J. Electrochem. Soc. 1998, 145, 2916.
89. H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Bottger, R Waser, Microelectron. Eng. 2005, 80, 296–304
90. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, J. Chung, Appl. Phys. Lett. 2007, 90, 192101
91. J. K. Jeong, H. W. Yang, J. H. Jeong, Y.-G. Mo, H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008)
92. J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, H. D. Kim, Appl. Phys. Lett. 2008, 92, 072104
93. F. Carcia , R. S. McLean , M. H. Reilly , G. Nunes , Jr. , Appl. Phys. Lett. 2003 , 82 , 1117
94. M. S. Oh, W. C., K. Lee, D. K. Hwang, S. Ima, Appl. Phys. Lett. 2008, 93, 033510
95. K. Song , J. Noh , T. Jun , Y. Jung , H.-Y. Kang, J. Moon, Adv. Mater. 2010, 22, 4308–4312
96. G. H. Gelinck, H. Edzer, A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106
97. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, Robert A. Street, Y. Wu, P. Liu, B. Ong, Appl. Phys. Lett. 2004, 85, 3304
98. H. Sirringhaus, N. Tessler, R.H. Friend, Science 1998, 280, 1741–1744 l
99. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, T.N. Jackson, Appl. Phys. Lett. 2006, 88, 083502
100. J.W. Jeong, Y.D. Lee, Y.M. Kim, Y.W. Park, J.H. Choi, T.H. Park, C.D. Soo, S.M. Won, I.K. Han, B.K. Ju, Sens. Actuators B 2010, 146, 40-45
101. J. Huang, J. Miragliotta, A. Becknell, H.E. Katz, J. Am. Chem. Soc. 2007, 129, 9366–9376
102. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. de Leeuw, IEEE J. Solid-State Circuits 2007, 42, 84.
103. K. Myny, S. Steudel, P. Vicca, M.J. Beenhakkers, N.A.J.M. van Aerle, G.H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, Solid-State Electron. 2009, 53, 1220
104. C.D. Dimitrakopoulos, P.R. L. Malenfant, Adv. Mater. 2002, 14, 99
105. B.S. Ong, Y. Wu, Y. Li, P. Liu, H. Pan, Chem. Eur. J. 2008, 14, 4766
106. Coppo, S.G. Yeates, Adv. Mater. 2005, 17, 3001–3005
107. Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, Y. Ma, Appl. Phys. Lett. 2003, 83, 1644
108. P. Pacher, A. Lex, V. Proschek, H. Etschmaier, E. Tchernychova, M. Sezen, U. Scherf, W. Grogger, G. Trimmel, C. Slugovc, E. Zojer, Adv. Mater. 2008, 20, 3143–3148
109. D. H. Dunlap, P. E. Parris, V. M. Kenkre, Phys. Rev. Lett. 1996, 77, 542
110. W. A. Sears, M. L. Hudolin, H. A. Jenkins, R. C. Mawhinney, C. D. Mackinnon, J. Coord. Chem. 2008, 61, 825–835
111. Z.-X. Wang, B.-S. Zheng, X.-Y. Yu, P.-G. Yi, J. Mol. Struct. 2008, 857, 13–19
112. M. Fourmigu, P. Batail, Chem. Rev. 2004, 104, 5379-5418
113. K. E. Riley, K. M. Merz, J. Phys. Chem. A 2007, 111, 1688-1694
114. S.P. Tiwari, P. Srinivas , S. Shriram, N.S. Kale, S.G. Mhaisalkar, V. Rao, Thin Solid Films 2008, 516, 770–772
115. N.S. Sangaj, V.C. Malshe, Prog. Org. Coat. 2004, 50, 28–39
116. M.Kobashi, H.Takeuchi, Macromolecules 1998, 31,7273–7278
117. D. H. Kim, Y. D. Park, Y. Jang, S. Kim, K. Cho, Macromol. Rapid Commun. 2005, 26, 834–839
118. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, T. Zyung, Synth. Met. 2005, 148, 75
119. D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv. Funct. Mater. 2005, 15, 77
120. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864
121. C. Reese, Z. Bao, J. Appl. Phys. 2009, 105, 024506
122. B. H. Hamadani, D. A. Corley, J. W. Ciszek, J. M. Tour, D. Natelson, Nano Lett. 2006, 6, 1304
123. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H.-h. Park, H. Jeon, Semicond. Sci. Technol. 2009, 24, 035015
124. Dennis M. Hausmann, Roy G. Gordon, J. Cryst. Growth 2003, 249, 251–261
125. T. Hsu, J. H. Scott, Jr., RCA Rev. 1975, 36, 240
126. N. Sasaki, R. Togei, Solid-St. Electron. 1979, 22, 417-421
127. S. Takeda, M. Fukawa, Mater. Sci. and Eng. B 2005, 119, 265–267
128. R. Hutson, Phys. Rev. 1957,108, 222–230
129. K. Maeda, M. Sato, I. Niikura, T. Fukuda, Semicond. Sci. Technol. 2005, 20, S49–S54
130. F. M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, J. Appl. Phys. 2003, 94, 7768
131. J. Jang , Thin-Film Transistors 2003, Marcel & Dekker, Inc , New York
132. S. Hariguchi, T. Kobayashi, and K. Saito, J. Appl. Phys. 1985, 58, 387
133. G. Mattmann, H. R.Oswald, F. Schweizer, Helv. Chim. Acta 1972, 55, 1249.
134. J. B. Peri, J. Phys. Chem. 1965, 69, 211.
135. J. W. Elam, Z. A. Sechrist, S. M. George, Thin Solid Films 2002, 414, 43–55
136. S. M. Sze, Semiconductor Devices Physics and Technology Ch. 6
137. A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Thin Solid Films 1997, 292, 135.
138. B. Mukhopadhyay, J. F. Sanz, and C. B. Musgrave, Chem. Mater. 2006, 18, 3397-3403
139. Chiang, H. Q. Ph.D. Thesis, Oregon State University, 2007
140. D. Hong, J. F.Wager, J. Vac. Sci. Technol. B 2005, 23, L25.
141. P. T. Liu, Y. T. Chou, L. F. Teng, Appl. Phys. Lett. 2009, 95, 233504
142. S. J. Lim, J.-M. Kim, D. Kim, S. Kwon, J.-S. Park, H. Kim, J. Electrochem. Soc. 2010, 157, H214-H218
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43397-
dc.description.abstract此研究提出開發可撓曲且大氣穩定、適合大面積生產之薄膜電晶體。研究的重點包含兩種材料:第一,溶液製程之3-己基噻吩;第二,原子層氣相沉積之氧化鋅。在3-己基噻吩研究中,專注於開發低溫溶液塗布製程來製作符合一般電性需求之薄膜電晶體。此外,更利用溶液塗布之封裝技術來增進3-己基噻吩薄膜電晶體之大氣穩定度。於原子層氣相沉積氧化鋅之研究中,則利用原子層氣相沉積技術開發高載子飄移速率且低起始電壓之可撓式薄膜電晶體。此外,還利用原子層氣相沉積之氧化鋁來鈍化氧化鋅薄膜電晶體,並大幅提升氧化鋅薄膜電晶體之閘極偏壓應力穩定性。
  本研究的貢獻有四點:第一,提出並歸納空氣與封裝層對3-己基噻吩薄膜電晶體所造成之劣化,並成功的利用溶液塗布封裝技術來封裝元件。被封裝之3-己基噻吩薄膜電晶體於封裝過程中無明顯劣化,經5500小時儲存於大氣中後仍保持其原有電性。第二,開發出飽和溶液蒸汽壓的後處理,促使3-己基噻吩薄膜再流動,並使薄膜電晶體之載子飄移速率比未處理前增加84倍。第三,歸納介電層表面性質對原子層氣相沉積氧化鋅薄膜電晶體電性之影響。經由最佳化表面性質,在聚對苯二甲酸乙二醇酯(PET)塑膠基板上製備出高效能之薄膜電晶體,其載子飄移速率高出先前文獻達七倍。第四,利用原子層氣相沉積之氧化鋁來鈍化氧化鋅薄膜電晶體,並增加元件閘極偏壓應力穩定性。本研究結果可提供務實且有用的資訊,以促進適合大面積製程、可撓曲之薄膜電晶體相關產業發展。
zh_TW
dc.description.abstractIn this study, we have demonstrated methods for fabricating air-stable flexible thin film transistor (TFT) that are suitable for large-area production, with two main focuses: (1) solution-processed poly (3-hexylthiophene) (P3HT) TFTs, and (2) atomic-layer-deposited (ALD) zinc oxide (ZnO) TFTs. With P3HT TFTs, we developed a low-temperature and solution-based fabrication process that yields high device performance. Additionally, we developed solution-processed thin-film encapsulation methods to obtain air-stability from the P3HT TFTs. With ZnO TFTs, we developed ALD processes for the ZnO film, the dielectric layer, and the passivation layer, achieving high field-effect mobility, low operation voltage, mechanical flexibility, and stability under a bias stress. The accomplishments of this study include: (1) we systematically determined the causes and characteristics of the air- and encapsulation-induced degradations of P3HT OTFTs, and based on the obtained knowledge, we developed a solution-based encapsulation process that yielded air-stable P3HT OTFTs (nearly free of degradation for > 5500 h in air) without encapsulation- induced degradation; (2) we demonstrated a solvent-vapor-annealing technique which induces reflow of the P3HT film, resulting in drastically improved field-effect mobility (by a factor of 84, to 0.11 cm2/V s); (3) we systematically studied the ZnO/dielectric interface to determine the factors governing the device performance, obtaining exceptionally high field-effect mobility from ALD ZnO TFTs on polyethylene terephthalate (PET) substrate, 16.9 cm2/V s, which was unprecedented for ALD ZnO-based TFTs; moreover, the TFTs exhibited excellent flexibility: nearly free of degradation upon repeated bending (1000 times) to 0.83 cm of radius; (4) we demonstrated ALD passivation of the ZnO TFTs, improving the bias-stress stability of the devices. The results from my research will provide practical information to the development of large-area-processible flexible TFTs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:54:13Z (GMT). No. of bitstreams: 1
ntu-100-D96527026-1.pdf: 5620315 bytes, checksum: 48bb3adba9be3655c528214020aab1ea (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents謝誌 II
摘要 III
Abstract IV
Table of Contents VI
List of Figures IX
List of Tables XIV
Chapter 1 Introduction 1
1.1 Overview of Thin Film Transistors (TFT) 1
1.1.1 Definition of TFTs 1
1.1.2 Operation Principle of TFTs 3
1.1.3 Materials and Current Processes of TFTs 7
1.1.4 Challenges of TFTs 12
1.2 Motivation and Objective 16
1.2.1 Motivation 16
1.2.2 Literature Survey 18
1.2.3 Objective Statement 34
Chapter 2 Encapsulation for P3HT OTFTs 36
2.1 Introduction 36
2.2 Experimental 38
2.3 Results and Discussion 40
2.3.1 Air-Induced Degradations 40
2.3.2 Encapsulation-Induced Degradation 46
2.3.3 Devices Encapsulation 51
2.4 Summary 54
Chapter 3 Morphology Manipulation for P3HT OTFTs 55
3.1 Introduction 55
3.2 Experimental 57
3.3 Results and Discussion 59
3.4 Summary 67
Chapter 4 Interface Engineering for ZnO TFTs 68
4.1 Introduction 68
4.2 Experimental 71
4.3 Results and Discussion 75
4.3.1 Effects of Air on the Interface Properties 78
4.3.2 Temperature Dependence of the Interface Properties 86
4.3.3 Interface Properties of Difference Dielectrics: Al2O3 vs. HfO2 89
4.3.4 Flexible TFTs 90
4.4 Summary 93
Chapter 5 Passivation for ZnO TFTs 94
5.1 Introduction 94
5.2 Experimental 95
5.3 Results and Discussion 98
5.4 Future work: 100
Chapter 6 Conclusion and Future Work 101
6.1 Conclusion 101
6.2 Future Work 104
Chapter 7 Reference 105
dc.language.isoen
dc.subject3-己基噻zh_TW
dc.subject氧化鋅zh_TW
dc.subject薄膜電晶體zh_TW
dc.subject吩zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject封裝zh_TW
dc.subjectatomic layer depositionen
dc.subjectencapsulationen
dc.subjectthin film transistoren
dc.subjectTFTen
dc.subjectpoly(3-hexylthiophene)en
dc.subjectZnOen
dc.title高載子飄移速率、高穩定度高分子與氧化鋅薄膜電晶體之介面與表面型態工程zh_TW
dc.titleInterface and Morphology Engineering for Polymer and ZnO Thin-Film Transistors: toward High Mobility and Stabilityen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee林唯芳,薛景中,謝宗霖,陳奕君,郭錦龍
dc.subject.keyword薄膜電晶體,氧化鋅,3-己基噻,吩,原子層沉積技術,封裝,zh_TW
dc.subject.keywordthin film transistor,TFT,poly(3-hexylthiophene),ZnO,atomic layer deposition,encapsulation,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved