Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳瑞碧
dc.contributor.authorFang-Chi Chengen
dc.contributor.author鄭芳琪zh_TW
dc.date.accessioned2021-06-15T01:30:51Z-
dc.date.available2010-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-21
dc.identifier.citation行政院衛生署。行政院衛生署衛生統計資訊網。2009。http://www.doh.gov.tw
吳寧容。番石榴葉萃出物對streptozotocin-nicotinamide誘發第二型糖尿病大白鼠血糖之影響。2007。國立台灣大學食品科技研究所碩士論文。
中山保子、陳雪芬、林玉盞和徐型堅。關於番石榴-對於Alloxan糖尿病家兔的降血糖作用及當作健康食品的評估。北醫學報。1979。10: 97-102。
甘偉松。台灣藥用植物誌。1970。3:614-616。中國醫藥出版社。台北。
吳宗儒。番石榴葉之酚性成分之研究。1992。台北醫學院藥學研究所碩士論文。
吳亮宜。茶對血糖及胰島素敏感性之影響。2003。國立台灣大學食品科技研究所博士論文。
林惠美。脫水番石榴果實切片之水抽出物改善大白鼠耐糖效果與其機制之研究。1995。國立台灣大學食品科技研究所碩士論文。
林進丁。胰島素。藥學雜誌。1986。2: 57-63。
侯珈禎。升麻及紅番石榴葉極性成分之研究。1996。台北醫學院藥學研究所碩士論文。
許振耀。食療與健康。1993。錦明印刷有限公司。台北。
葉昌河。紅番石榴及綠珊瑚極性成分之研究。1997。台北醫學院藥學研究所碩士論文。
趙有誠、傅茂祖、宣立人、鄭啟源、許會垣、黃漢文、李佳彗和張仙平。國人常用水果對糖尿病患者血糖及血清胰島素之影響。醫學研究。1986。6:243-248。
鄭瑞棠和楊仁壽。番石榴對家兔的降血糖作用。中華醫誌。1983。31: 182-187。
鄭澄意。老化伴生脂質代謝異常之研究。1992。國防醫學院醫學科學研究所博士論文。

Abdel-Hassan, I.A.; Abdel-Barry, J.A.; Mohammeda, S.T. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J. Ethnopharmacol. 2000, 71, 325-330.
Ahmad, M.; Akhtar, M.S.; Malik, T.; Gilani, A.H. Hypoglycaemic action of the flavonid fraction of Cuminum nigrum seeds. Phytother. Res. 2000, 14, 103-106.
Al-Awwadi, N.; Azay, J.; Poucheret, P.; Cassanas, G.; Krosniak, M.; Auger, C.; Gascm F.; Rouanet, J.M.; Cros, G.; Teissedre, P.L. Antidiabetic activity of red wine polyphenolic extract, ethanol, or both in streptozotocin-treated rats. J. Agric. Food Chem. 2004, 52, 1008-1016.
American Diabetes Association. Diagnosis and classification of diabetes. Diabetes Care 2005, 28, s37-s42.
Andrew, W.J.; Vasquez, B.; Nagulesparan, M.; Klimes, I.; Foley, J.; Unger, R.; Reaven, G.M. Insulin therapy in obese non-insulin-independent diabetes induces improvement in insulin action and secretion that are maintained for two weeks after insulin withdrawal. Diabetes 1984, 30, 634-642.
Anjaneyulu, M.; Chopra, K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 2004, 31, 244-248.
Baldwin, S.A.; Liengard, G.E. Glucose transport across plasma membrane: facilitated diffusion systems. Trends Biochem. Sci. 1981, 6, 208-211.
Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V. Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in human. Am. J. Physiol. 1988, 255, E769−E774.
Begum, S.; Hassan, S.I.; Siddiqui, B.S.; Shaheen, F.; Ghayur, M.N.; Gilani, A.H. Triterpenoids from the leaves of Psidium guajava. Phytochem. 2002b, 61, 399-403.
Bell, G.I.; Kayano, T.; Buse, J.B.; Burant, C.F.; Takeda, J.; Lin, D.; Fukumoto, H.; Seino, S. Molecular biology of mammalian glucose transporter. Diabetes Care 1990, 13, 198-243.
Bergman, R.N.; Ader, M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 2000, 11, 351-356.
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
Brady, M.J.; Nairn, A.C.; Saltiel, A.R. The regulation of glycogen synthase by protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for DARPP-32 in insulin action. J. Biol. Chem. 1997, 272, 29698-29703.
Broadhurst, C.L.; Polansdy, M.M.; Anderson, R.A. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J. Agric. Food Chem. 2000, 48, 849-852.
Bucki, R.; Pastore, J.J.; Giraud, F.; Sulpice, J.C.; Janmey, P.A. Flavonoid inhibition of platelet proagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003, 1, 1820-1828.
Chan, J.; Siu, K.; Fung, K. Effect of arsenic trioxide on multidrug resistant hepatocellular carcinoma cells. Cancer Lett. 2005, 227, 153-162.
Chang, C.J; Kao, J.T; Lee, T.L; Lai, C.W; Cheng, J.T. Comparison of isoproterenol with BRL37344 in activation of beta 3-adrenoceptors to inhibit the uptake of [14C]-deoxy-D-glucose and translocation of glucose transport (GLUT4) to membrane fraction in rat adipocytes. J. Auton. Nerv. Syst. 1996, 61,191-194.
Chen, J.T.; Yang, R.S. Hypoglycemic effect of guava juice in mice and human subjects. Am. J. Chi. Med. 1983, 9, 74-76.
Chen, Y.T.; Zheng, R.L.; Jia, Z.J.; Ju, Y. Flavonoids as superoxide scavengers and antioxidants. Free Radic. Biol. 1990, 9, 19-21.
Chu, Y.F; Sun, J.; Wu, X; Liu, R.H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem. 2002, 50, 6910-6916.
Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res. 2005, 51, 117-123.
Cross, D.A.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785-789.
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. 2005, 26, 343-356.
Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356.
Ferrer, J.C.; Favre, C.; Gomis, R.R.; Fernandez-Novell, J.M.; Garica-Rocha, M.; de la Iglesia, N.; Cid, E.; Guinovart, J.J. Control of glycogen deposition. FEBS Letter 2003, 546, 127-132.
Galati, G.; Lin, A.; Sultan, A.M.; Peter, J.; O'Brien, P.J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic. Biol. Med. 2006, 40, 570-580.
Gutiérrez, R.M.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1-27.
Haenen, G.R.M.M.; Bast, A. Nitric oxide radical scavenging of flavonoids. Methods Enzymol. 1990, 301, 490-503.
Harris, M.I.; Hadden, W.C.; Knowler, W.C.; Bennett, P.H. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in the U.S. population ages 20-74 yr. Diabetes 1987, 36, 523-534.
Hollman, P.; van Trijp, J.; Mengelers, M.; de Vries, J.; Katan, M. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett. 1997, 114, 139-140.
Illsley, N.P. CURRENT TOPIC: Glucose Transporters in the Human Placenta. Placenta 2000, 21, 14-22.
Johnson, A.B.; Webster, J.M.; Sum, C.F.; Heseltine, L.; Argyraki, M.; Cooper, B.G. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type 2 diabetic patients. Metabolism 1993, 42, 1217-1222.
Keilson, L.; Mather, S.; Walter, Y.H. Synergistic effects of nategtlinide and meal administration on insulin secretion in patients with type 2 diabetic mellitus. J. Clin. Endocrinol. Metab. 2000, 85, 1081-1086.
Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 2007, 14, 778-784.
Lee, E.S.; Lee, H.E.; Shin, J.Y.; Yoon, S.; Moon, J.O. The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J. Pharm. Pharmacol. 2003, 55, 1169-1174.
Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxison proliferators-activatedreceptor gamma (PPARγ). J. Biol. Chem. 1995, 270, 12953-12956.
Lozoya, X.; Meckes, M.; Abou-Zaid, M.; Tortoriello, J.; Nozzolillo, C.; Arnason, J.T. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch Med. Res. 1994, 25, 11-15.
Manosroi, J.; Dhumtanom, P.; Manosroi, A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006, 235, 114-120.
Maruyams, Y.; Matsuda, H.; Matsuda, R.; Kubo, M.; Hatano, T.; Okuda, T. Study on Psidium guajava L. (1) Antidiabetic effect and effective components of the leaf of Psidium guajava L. (Part 1) Shoyakugaku Zasshi 1985, 39, 261-269.
McEvoy, G.K. AHFS drug information. American Society of Health-System Pharmacists 2000, 2862-2864.
Meckes, M.; Calzada, F.; Tortoriello, J.; Gonzalez, J.L.; Matinez, M. Terpenoids isolatedfrom Psidium guajava hexane extract with depressant activity on central nervous system. Phytother. Res. 1996, 10, 600-603.
Mittelman, S.D.; Fu, Y.Y.; Rebrin, K.; Bergman, R.N. Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia. Diabetes, Modified militaris (Linn.) Link Chem. SOC. 2005, 2299-2300.
Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 1994, 219, 713-725.
Mukhtar, H.M.; Ansari, S.H.; Ali, M.; Naved, T.; Bhat, Z.A. Effect of water extract of Psidium guajava leaves on alloxan-induced diabetic rats. Pharmazie 2004, 59, 734-735.
Nijveldt, R.J.; van Nood, E.; van Hoom, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418-425.
Oh, W.K.; Lee, C.H.; Lee, M.S.; Bae, E.Y.; Sohn, C.B.; Oh, H.; Kim, B.Y.; Ahn, J.S. Antidiabetic effects of extracts from Psidium guava. J. Ethnopharmacol. 2005, 96, 411-415.
Ojewole, J.A. Hypoglycemic and hypotensive effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract. Methods Find Exp. Clin. Pharmacol. 2005, 27, 689-695.
Okada, T.; Kawano, Y.; Sakakibara, T.; Hazeki, O.; Ui, M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 1994, 269, 3568-3573.
Ong, K.C.; Khoo, H.E. Tannic acid inhibits insulin-stimulated lipogenesis and glucose transport in rat adipocytes but not glucose transporter translocation. Biochem. Pharmacol. 1996, 51, 423-429.
Pajor, A.M.; Hirayama, B.A.; Wright, E.M. Molecular biology approaches to comparative study of Na+-glucose co-transport. Am. J. Physiol. 1992, 263, R489-R495.
Panunti, B.; Jawa, A.A.; Fonseca, V.A. Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discovery Today: Disease Mechanisms 2004, 1, 151-157.
Pari, L.; Satheesh, M.A. Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes. J. Ethnopharmacol. 2004, 91, 109-113.
Patti, M.E.; Khan, C.R. The insulin receptor-a critical link in glucose homeostasis and insulin action. J. Basic Clin. Physiol. Pharmacol. 1998, 9, 89-109.
Pérez, N.; Moisan, J.; Sirois, C.; Poirier, P.; Grégoire, J.P. Initiation of insulin therapy in elderly patients taking oral antidiabetes drugs. Can. Med. Assoc. J. 2009, 180, 1310-1316.
Perez-Vizcaino, F.; Bishop-Bailley, D.; Lodi, F.; Duarte, J.; Cogolludo, A.; Moreno, L.; Bosca, L.; Mitchell, J.A.; Warner, T.D. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2006, 346, 919-925.
Pessin, J.E.; Bell, G.I. Mammalian facilitative glucose transporter family: Structure and molecular regulation. Annu. Rev. Physiol. 1992, 54, 911-930.
Rangwala, S.M.; Lazar, M.A. Peroxisome proliferators-activated receptor in diabetes and metabolism. Trend Pharmacol. Sci. 2004, 25, 331-336.
Rate, S.M. Plants as source of drugs. Toxicon. 2001, 39, 603-613.
Roa, B.K.; Sudarshan, P.R.; Rajasekhar, M.D.; Nagaraju, N.; Roa, C.A. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats. J. Ethnopharmacol. 2003, 85, 169-172.
Sabu, M.C.; Smitha, K.; Ramadasan, K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 2002, 83, 109-116.
Saltiel, A.R.; Kahn, C. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799-806.
Sargent, J.M. The use of the MTT assay to study drug resistance in fresh tumour samples. Recent Results Cancer Res. 2003, 161, 13-25.
Schattenberg, J.M; Schuchmann, M. Diabetes and apoptosis: liver. Apoptosis 2009. (forthcoming)
Seshadri, T.R.; Vasishta, K. Polyphenols of the leaves of Psidium gujava – quercetin, guaijaverin, leucocyanidin and amritoside. Phytochem. 1965, 4, 989-992.
Shepherd, P.R.; Kahn, B.B. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 1999, 341, 248-257.
Shen, S.C; Cheng, F.C; Wu, N.J. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother. Res. 2008, 22, 1458-64.
Su, H.C.; Hung, L.M.; Chen, J.K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1339-E1346.
Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928-931.
Takana, T.; Ishida, N.; Ishimatsu, M.; Nonaka, G.; Nishioka, I. Tannins and related compounds.CXⅥ. Six new complex tannins, guajavins, psidinins and psiguavin from the bark of Psidium guajava L. Chem. Pharm. Bull. 1992, 40, 2092-2098.
Tsuchiya, H. Effects of green tea catechins on membrane fluidity. Pharmacology 1999, 59, 34-44.
Umathe, S.N.; Dixit, P.V.; Kumar, V.; Bansod, K.U.; Wanjari, M.M. Quercetin pretreatment increases the bioavailability of pioglitazone in rats: involvement of CYP3A inhibition. Biochem. Pharmacol. 2008, 75, 1670-1676.
Ueno, I.; Nakano, N.; Hirono, I. Metabolic fate of [14C]quercetin in the ACI rat. Jpn. J. Exp. Med. 1982, 53, 41-50.
Vander, J.; Sherman, J.H.; Luciano, D.S. Human physiology, 6th ed. McGraw-Hill Inc. New York. 1991.
Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozotocin-induced diabetic rats. Comp. Biochem. Physiol. 2003, C135, 357-364.
White, M.F.; Kahn, C.R. The insulin signaling system. J. Biol. Chem. 1994, 269, 1-4.
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047-1053.
Yusof, R.M.; Said, M. Effect of high fibre fruit (Psidium guajava L.) on the serum glucose level in induced diabetic mice. Asia Pac. J. Clin. Nutr. 2004, 13(Suppl), S135.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42968-
dc.description.abstract糖尿病為現今常見的慢性代謝疾病之一,會造成終生的病態,增加大小血管、腎病變等之併發症風險。而由於生活品質的提升及物質充裕,糖尿病病患的比例也日益增加。世界衛生組織預測,到西元2025年,全球罹患糖尿病的人數將達到三億人。因此,糖尿病的治療為健康管理中急待解決的重要課題。番石榴(Psidium guajava Linn.)屬桃金孃科(Myrtaceae),民間常將野生番石榴果實或葉片曬乾,熬湯飲用,作為降火氣、清血、降血糖之用,是坊間盛行的糖尿病藥草療法之一,然而番石榴的降血糖成分並不清楚。本研究將以細胞模式配合不同之管柱層析進行番石榴葉之分離及純化,以達到番石榴葉降血糖活性成分確立之目的。
本研究分為兩個部分,第一部分係利用Diaion HP20管柱配合不同極性甲醇溶液將番石榴葉成分以極性高低分離,再以細胞模式觀察番石榴葉管柱區分物對大鼠肝細胞(Clone 9 cell)之葡萄糖攝入作用(glucose uptake)效果。第二部分則以各種管柱層析法,針對葡萄糖攝取活性較高的區分物進行分離及純化,搭配核磁共振儀(nuclear magnetic resonance)鑑定結構及高效能液相層析法(high performance liquid chromatography)進行定性,期能找出番石榴葉中可能之降血糖成分。
由實驗結果發現,番石榴葉的高極性區分物(D25、D50)能夠增加clone 9細胞的葡萄糖攝入能力(p<0.05)。在時間效應方面,以番石榴葉區分物短時間(12及24小時內)處理clone 9細胞,對細胞葡萄糖攝入能力有較佳之提升效果;濃度效應方面,clone 9細胞在相同時間(30分鐘)樣品刺激時,其葡萄糖攝入能力會隨番石榴葉區分物濃度增加而上升,且具有濃度效應(dose-dependent manner)。由初步結果得知,番石榴葉水萃物經由Diaion HP-20管柱流洗後,高極性的區分物(D25)對clone 9 cell具有較高之葡萄糖攝入效果。因此,針對此一高極性之區分物(D25)進行分離及純化,結果發現,番石榴葉D25區分物中可分離出降血糖成分檞皮素(quercetin),而quercetin可有效增加細胞之葡萄糖攝取功能,其作用方式可能是透過改變細胞膜的流動性來增加葡萄糖的吸收,或藉由調控細胞內與胰島素相關訊息傳導分子的作用,進而達到降血糖之功效。
zh_TW
dc.description.abstractDiabetes mellitus (DM) is a chronic metabolic disease associated with significant lifelong morbidity. In 2008, DM was the fifth of top ten cause of death in Taiwan and more than 95% are type 2 DM. It is one of the major diseases that human being eagerly wants to overcome. Guava (Psidium guajava Linn.) is one of the most important economic fruit in Taiwan. People boil guava leaves in water and drink the extract as a folk medicine for diabetes. However the efficient component is unclear. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound.
The guava leaf aqueous extract was eluted with MeOH-H2O solutions through Diaion, Sephadex and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-14C ] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC).
In the results, the high polarity fractions (D25, D50) of guava leaf extract could increase significantly the glucose uptake of clone 9 cells (p<0.05). The glucose uptake of clone 9 cells treated with guava leaf extracts at short time (24 hrs) was higher than at long time (48 hrs). When treated at the same time, the glucose uptake of clone 9 cells increased as the rising dosage. It was a dose-dependent reaction. The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and quercetin is the major active compound after H1-NMR and HPLC analysis.
In a conclusion, we suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells through the membrane property of cells or modulation of insulin signaling transduction pathway, and that contributes to the alleviation of hypoglycemia in diabetes as a consequence.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:30:51Z (GMT). No. of bitstreams: 1
ntu-98-D93641007-1.pdf: 858090 bytes, checksum: 407f863e9db62452b2c1ca526be9d118 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents頁數
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 viii
表目錄 x

第一章 緒論……………………………………………………………... 1
第二章 文獻回顧………………………………………………………... 3
第一節 糖尿病之流行病學…………………………………………... 3
2.1.1糖尿病的流行病學…………………………………………….. 3
2.1.2糖尿病的介紹………………………………………………….. 3
2.1.3胰島素簡介…………………………………………………….. 5
2.1.4胰島素的作用………………………………………………….. 6
2.1.5胰島素在細胞層次之作用…………………………………….. 7
2.1.6胰島素受器(Insulin receptor, IR)………………………………. 7
2.1.7葡萄糖轉運蛋白(glucose transporter, GLUT)……………… 8
2.1.8周邊組織細胞之葡萄糖轉運…………………………………... 10
2.1.9胰島素的訊息傳遞……………………………………………... 10
第二節 抗糖尿病物質………………………………………………... 13
2.2.1常見抗糖尿病藥物…………………………………………….. 13
2.2.2植物成分抗糖尿病之研究……………………………………... 15
第三節 番石榴之介紹………………………………………………... 16
2.3.1番石榴…………………………………………………………... 16
2.3.2番石榴葉成分之研究…………………………………………... 16
2.3.3番石榴葉降血糖之研究………………………………………... 17
第四節 研究動機與實驗設計…………………………………………. 19
第三章 番石榴葉萃取物之組成份及降血糖活性分析………………... 21
第一節 前言……………………………………………………………. 21
第二節 實驗材料………………………………………………………. 22
3.2.1實驗樣品來源………………………………………………….. 22
3.2.2實驗細胞……………………………………………………….. 22
3.2.3實驗藥品及試劑……………………………………………….. 22
3.2.4實驗藥品配製………………………………………………….. 23
3.2.5儀器設備……………………………………………………….. 24
第三節 實驗方法……………………………………………………... 25
3.3.1番石榴葉熱水萃取物之製備………………………………….. 25
3.3.2大鼠肝細胞clone 9之保存與培養……………………………. 25
3.3.3 Clone 9細胞生長抑制率測定(MTT還原分析法)…………… 26
3.3.4一般成分分析…………………………………………………... 26
3.3.5 Diaion HP20管柱區分…………………………………………. 28
3.3.6 Clone 9細胞對葡萄糖之攝入作用……………………………. 28
3.3.7統計分析………………………………………………………... 29
第四節 結果與討論…………………………………………………... 30
3.4.1番石榴葉熱水萃取物之一般成分分析…………………………... 30
3.4.2番石榴葉熱水萃取物對clone 9細胞的生長抑制情形………. 30
3.4.3番石榴葉Diaion HP20區分物之一般成分分析……………… 32
3.4.4番石榴葉Diaion HP20區分物對clone 9細胞之葡萄糖攝入作用……………………………………………………………... 33
第五節 結論…………………………………………………………... 36
第四章 番石榴葉降血糖活性成分之純化與鑑定……………………... 50
第一節 前言…………………………………………………………... 50
第二節 實驗材料……………………………………………………... 51
4.2.1實驗樣品來源………………………………………………….….. 51
4.2.2實驗細胞………………………………………………………... 51
4.2.3實驗藥品及試劑………………………………………………... 51
4.2.4實驗藥品配製…………………………………………………... 52
4.2.5儀器設備………………………………………………………... 52
第三節 實驗方法……………………………………………………... 53
4.3.1番石榴葉降血糖成分之分離…………………………………... 53
4.3.2番石榴葉降血糖成分之活性試驗……………………………... 54
4.3.3番石榴葉降血糖成分之鑑定…………………………………... 55
4.3.4統計分析………………………………………………………... 56
第四節 結果與討論…………………………………………………... 57
4.4.1番石榴葉活性物質之分離純化與結構鑑定………………….. 57
4.4.2番石榴葉管柱純化物對細胞葡萄糖攝入作用之效果……….. 58
4.4.3番石榴葉純化物Quercetin降血糖作用之探討………………. 59
第五節 結論…………………………………………………………... 62
第四章 總結……………………………………………………………... 70
參考文獻…………………………………………………………………... 71
dc.language.isozh-TW
dc.title番石榴葉水萃物降血糖作用及有效成分分離zh_TW
dc.titleThe Hypoglycemic Effect of Guava (Psidium guajava L.) Leaf Aqueous Extract and Its Active Compounden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭瑞棠,陳水田,江孟燦,徐鳳麟,吳明昌,王進崑,沈賜川
dc.subject.keyword番石榴,糖尿病,quercetin,降血糖作用,zh_TW
dc.subject.keywordPsidium guajava L.,glucose uptake,quercetin,diabetes,phenolic,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
837.98 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved