請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞碧(James Swi-Bea Wu) | |
| dc.contributor.author | Hsiang-Yu Chou | en |
| dc.contributor.author | 周香妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:19:57Z | - |
| dc.date.available | 2012-07-28 | |
| dc.date.copyright | 2009-07-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-26 | |
| dc.identifier.citation | 王光輝。1983。白蘭地的釀造與蒸餾。製酒科技專論彙編。5:39-44。
王光輝。1984。二氧化硫在葡萄酒保存之應用。製酒科技專論彙編。 6:110-120。 王光輝、冉亦文。1984。葡萄白蘭地釀製技術之研究改進(三)葡萄白蘭地中揮發性成分與品質之探討。酒類試驗所研究年報。113-120。 王峻禧。1998。果汁導電度與含蘋果粒兩相系統電阻加熱之研究。國立台灣大學食品科技研究所博士論文。 王維麒。1999。電阻加熱技術之原理及影響因子。食品工業。31(2):8-14。 冉亦文。1984。法國白蘭地的釀造與陳熟。製酒科技專論彙編。 6:28-38。 李進益譯。1998。電化學的原理及應用。台北。高立圖書有限公司。 吳明達。2007。導電度作為豬肉外加水量、脂肪量及乳化狀態判定方法之研究。國立中興大學動物科學研究所碩士論文。 胡鳳綬。1982。白蘭地香氣成分。製酒科技專論彙編。4:29-39。 侯金日、劉景平、郭華仁。2000。電導度法檢定落花生種子活力之研究。中華農藝學會。10:131-142。 施佳宏、郭華仁。1996。木瓜種子的電導度測驗。台灣大學農學院研究報告。36(4):247-258。 徐敏修。2004。龍眼香甜酒製程之研究。國立台灣大學食品科技研究所碩士論文。 郭晟贊。1999。組織結構對蔬菜導電度的影響。國立台灣大學食品科技研究所碩士論文。 連振昌。2005。泌乳牛乳房炎導電度檢測之研究。國立中興大學生物產業機電工程所博士論文。 野村孝一、中溝公明、中島正利、坂根康伸、松本清、筬島豊。1981。電導度測定法に基礎を置く柑橘果汁中の糖含量測定法。日食工誌。28:381-386。 黃村能。1990a。巴梨白蘭地之研製。酒類試驗所研究年報。79:97-109。 黃村能。1990b。蒸餾酒泛論。製酒科技專論彙編。12:87-100。 黃村能。1993。法國白蘭地的蒸餾技術。製酒科技專論彙編。15:161-181。 黃村能。1994。橡木桶與白蘭地熟陳的關係。製酒科技專論彙編。16:361-368。 黃村能、倪德全。1994。鳳梨白蘭地之研製(一)發酵與蒸餾試驗。酒類試驗所研究年報。16:107-123。 楊炳輝。1999a。含顆流體食品電阻加熱製程設計之考量因素。食品工業。31(2):1-7。 楊炳輝。1999b。食品電阻加熱技術之應用及其發展。食品工業。 31(2):15-2。 蔡國珍。1985。香蕉白蘭地釀製之研究。國立台灣大學食品科技研究所碩士論文。 賴志誠。2006。蒸餾酒類相關法規與標準。食品工業。38(10):55-66。 闕信玉、冉亦文。1982。葡萄白蘭地釀製技術之研究改進(一)蒸餾過程中揮發性成分之探討。酒類試驗所研究年報。117-122。 Amerine, M. A.; Ough, C. S. Method for analysis of must and wines. A Willey-Interscience Publication. New York, USA. 1980. Arockiadoss, T.; Xavier, F. P.; Prabhu, B. K.; Babu, M. Electrical conductivity as a tool for identification of metal contaminated fish protein. J. Food Eng. 2008, 88, 405-410. Assiry, A. M.; Sastry S. K.; Samaranayake C. P. Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during ohmic heating using stailess stell electrodes. Bioelectrochemistry 2006, 68, 7-13. Athayde, A. L.; Ivory, C. F. The effect of AC fields on carrier-mediated transport. J. Membrane Sci. 1985, 23, 241-256. Bauer, B. A.; Knorr, D. Electrical conductivity: A new tool for the determination of high hydrostatic pressure-induced starch gelatinsation. Innov. Food Sci. Emerg. 2004, 5, 437-442. Berti, L. A. Problems of the production of distilling material and fortifying brandy. Proc. Wine Tech. Conf. 1949, 129-134. Bridgman, P. W. Physic of high pressure. New York: Dover, 1970, 360-362. BNIC. Bureau National Interprofessionnel Du Congac. 2005 http://www.bnic.fr/cognac/_en/2_cognac/index.aspx Chaplin, M. F.; Kennedy, J. F. Carbohydrate analysis: A practical approach. Oxford, Washington. 1986. Castro, I.; Teixeira, J. A.; Salengke, S.; Sastry, S. K.; Vicente, A. A. Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innov. Food Sci. Emerg. 2004, 5, 27-36. Colombié, S.; Latrille, E.; Sablayrolles, J.M. Interest of on-line monitoring electrical conductivity during wine fermentation. Eur. Food Res. Technol. 2008, 226, 1553-1557. Colombié, S.; Latrille, E.; Sablayrolles, J.M. Online estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions. J. Biosci. Bioeng. 2007, 3, 229-235. de Alwis, A. A. P.; Fryer, P. J. Operability of the ohmic heating process: electrical conductivity effects. J. Food Eng. 1992, 15, 21-48. Fox, P. F.; McSweency, P. L. H. Dairy chemistry and biochemistry. London: Blackie. 1998. Friedman, H. L. Relaxation term of the limiting law of the conductance of electrolyte mixtures. J. Chem. Phys. 1965, 42, 462. García-Brejio, E.; Barat, J. M.; Torres, O. L.; Grau, R.; Gil, L.; Ibáñez, J.; Alcañiz, M.; Masot, R.; Fraile, R. Development of puncture electronic device for electrical conductivity measurements throughout meat saling. Sensor. Actuat. A-phys. 2008, 148, 63-67. Goodling, R. C.; Rogers, G. W.; Cooper, J. B.; Rune, B., Heritability estimates for electrical conductivity of milk and correlations with predicted transmitting abilities for somatic cell scores. J. Dairy Sci. 2000, 83(Suppl. 1), 71. Guymon, J. F. Wine Vines. 1975, 56, 38-40. Halden, K.; de Alwies, A. A. P.; Fryer, P. J. Changes in the electrical conductivity of foods during ohmic heating. J. Food Sci. Tech. 1990, 25, 9-25. Ibanez, J. G.; Carreon-Alvarez, A.; Barcena-Soto, M.; Casillas, N. Metals in alcoholic beverages: A review of sources, effects, concentrations, removal, speciation, and analysis. J. Food Compos. Anal. 2008, 21, 672-683. Icier, F.; Ilicali, C. Temperature dependent electrical conductivities of fruit purees. Food Res. Int. 2005, 38, 1135-1142. Kohlarush, F., Über Concentration-verschiebungen durch elektrolyse im innerenvon lösungsgemischen, Ann. Phys. Chem.(Leipzig) 1897, 62, 209-239. Lafon, J.; Couillaud, P.; Gaybellile, F. Le Cognac; Sa distillation, 5th Edition. J.-B. Baillière et Fils, Paris. 1973. Lawton, B. A.; Pethig, R. Determining the fat content of milk and cream using AC conductivity measurements. Meas. Sci. Technol. 1993, 4, 38-41. Mabrook, M. F.; Petty, M. C. Application of electrical admittance measurements to the quality control of milk. Sensor. Actuator. 2002, 84, 136-141. Mabrook, M. F.; Petty, M. C. Effect of composition on the electrical conductance of milk. J. Food Eng. 2003, 60, 321-325. Madrera, R. R.; Gomis, D. B.; Alonso, J. J. Influence of distillation system, oak wood type, and aging time on volatile compounds of cider brandy. J. Agric. Food Chem. 2003, 51, 5709-5714. Mavroudis, N. E.; Dejmek, P.; Sjoholm, I. Studies on some raw material characteristics in different Swedish apple varieties. J. Food Eng. 2004, 62, 121-129. Min, S.; Sastry, S. K.; Balasubramaniam, V. M., In situ electrical conductivity measurement of select liquid foods under hydrostatic pressure to 800 MPa. J. Food Eng. 2007, 82, 489-497. Mitchell, F. R. G.; de Alwis, A. A. P. Electrical conductivity meter for food samples. J. Phys. E: Sci. Instrum. 1989, 22, 554-556. Monotoya, M. M.; De La Plaza, J. L.; López-Rodriquez, V. Relationship between changes in electrical conductivity and ethylene production in avocado fruits. Lebensm-Wiss. Technol. 1994, 27, 482-486. Norberg, E. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastits: A review. Livest. Prod. Sci. 2005, 96, 129-139. Norberg, E.; Hogeveen, H.; Korsgaard, I. R.; Friggens, N. C.; Løvendahl, P. Electrical conductivity of milk-ability to predict mastits status. J. Dairy Sci. 2004a, 87, 1099-1107. Norberg, E.; Rogers, G. W.; Goodling, R. C.; Cooper, J. B.; Madsen, P. Genetic parameters for test-day electrical conductivity of milk for first lactation cows from random regression models. J. Dairy Sci. 2004b, 87, 1917-1924. Nose, A; Hojo, M; Hydrogen bonding of water-ethanol in alcoholic beverages. J. Biosci. Bioeng. 2006, 102, 269-280. Novak, J. What is conductivity and how is measure? A Technical Handbook For Industry. 2003 Nykanen, L.; Puputti, E.; Suomalainen, H. Volatile fatty acids in some brands of Whisky, Cognac and Rum. J. Food Sci. 1968, 33, 88-92. Onsager, L., Fuoss, R. M. Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes J. Phys. Chem. 1932, 36, 2689-2779. Onsager, L.; Kim. S. K. Wien effect in simple strong strong electrolytes. J. Phys. Chem. 1957, 61, 198-215. Osorio, D.; Pérez-Correa, J. R.; Agosin, E.; Cabrera, M. Soft-sensor for on-line estimation of ethanol concentrations in wine stills. J. Food Eng. 2008, 87, 571-577. Palaniappan, S.; Sastry, S. K. Electrical conductivities of selected juices: influences of temperature, solids content, applied voltage, and particle size. J. Food Proc. Eng. 1991a, 14, 247-260. Palaniappan, S.; Sastry, S. K. Electrical conductivities of selected solid foods during ohmic heating. J. Food Proc. Eng. 1991b, 14, 221-236. Paquet, J.; Lacroix, C.; Audet, P.; Thibault, J. Electrical conductivity as a tool for analyzing fermentation processes for production of cheese starters. Int. Dairy J. 2000, 10, 391-399. Payot, T.; Fick, M. On-line estimation of lactic acid concentration by conductivity measurement in formation. Biotechnol. Tech. 1997, 11, 17-20. Pongviratchai, P.; Park J. W. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating. J. Food Sci. 2007, 72, 503-507. Prakke, F.; Stiasny, E. The impact of the thiosulfate on the diluted acid solutions. Recl. Trav. Chim. Pay-B. 1933, 52, 615-639. Prentice, J. H. The conductivity of milk the effect of the volume and degree of dipersion of the fat. J. Dairy Res. 1962, 29, 131-139. Quint, J.; Viallard, A. Electrical Conductance of Electrolyte Mixtures of Any Type [J ] . J . Solution Chem. 1978, 7, 533-5481. Renzinck, D. Ohmic heating of fluid foods. Food Tech. 1996, 50, 250-251. Sarang, S.; Sastry, S. K.; Knipe, L. Electrical conductivity of fruits and meats during ohmic heating. J. Food Eng. 2008, 87, 351-356. Sastry, S. K.; Palaniappan, S. Mathematical modeling and experimental studies on ohmic heating of liquid-particle mixtures in a static heater. J. Food Proc. Eng. 1992, 15, 241-261. Schroeter, L. C. Sulfur dioxide application in foods beverages and pharmaceuticals. Pergamon Press, New York. 1966. Schwarz, M.; Rodríguez, M.; Martínez, C.; Bosquet, V.; Guillén, D.; Barroso, C. G. Antioxidant activity of brandy de Jerez and other aged distillates, and correlation with their polyphenolic content. Food Chem. 2009, 116, 29-33. Shirsat, N.; Lyng, J. G.; Bruunton, N. P.; McKenna, B. Ohmic processing: electrical conductivities of pork cuts. Meat Sci. 2004, 67, 507-514. Smedley, S. I. The interpretation of ionic conductivity in liquids. Plenum Press, New York. 1980. Smedt, P. De.; Liddle, P. A. P. Identification of 1,1’-diethoxypropan-2-one in spirits aged in wood. Am. J. Enol. Vitc. 1978, 29, 286-288. Torija, M. J.; Beltran, G.; Novo, M.; Poblet, M.; Rozès, N.; Mas, A.; Guillamón, J. M. Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. J. Agric. Food Chem. 2003, 51, 916-922. Wang, W. C.; Sastry, S. K. Salt diffusion into vegetable tissue as a pretreatment for ohmic heating: electrical conductivity profiles and vacuum infusion studies. J. Food Eng. 1993, 20, 299-309. Yongsawatdigul, J.; Park, J. W.; Kolbe, E. Electrical conductivity of pacific whiting surimi paste during ohmic heating. J. Food Sci. 1995, 60, 922-925. Zoeckein, B. W.; Fugelsang, K. C.; Gump, B. H.; Nury, F. S. Production wine analysis. Van Nostrand Reinhold, New York. 1990. Zotou, A.; Loukou, Z.; Karava, O. Method development for the determination of seven organic acids in wines by reversed-phase high performance liquid chromatography. Chromatographia 2004, 60, 39-44. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42693 | - |
| dc.description.abstract | 白蘭地為白葡萄酒置於蒸餾鍋進行二次蒸餾所得產物,蒸餾過程中成分所產生之變化會影響白蘭地的品質與香氣;然目前製酒工業中尚缺乏相關之即時監控儀器,因此若探討可應用於蒸餾過程之即時監控方法,將有助於產品品質之穩定及提升。本研究即針對蒸餾過程中未熟成白蘭地之成分與其導電度之變化進行研究,探討將導電度研究應用於製酒工業之可行性。
本研究分為三個部分,第一部分為初蒸過程和複蒸過程中酒液成分與導電度之變化;第二部分測量白葡萄酒、初蒸液、初蒸液(含銅)、複蒸液及複蒸液(含銅)的成分分析。第三部分以未熟成白蘭地成分配製模式溶液,觀察乙醇、醋酸及二氧化硫對酒液導電度之影響。 結果顯示經過二次蒸餾所得之未熟成白蘭地酒精度為73%,非揮發性有機酸、醣類皆被去除,揮發性酸以醋酸為主。蒸餾過程酒液之乙醇、醋酸、二氧化硫含量變化與導電度呈線性關係,因此可利用本實驗之經驗方程式作為酒液蒸餾之即時監測。配製模式白蘭地發現乙醇、醋酸及二氧化硫皆為導電度之影響因子,且醋酸及二氧化硫為提供導電度之物質,乙醇則為抑制導電度之主要成分,故可以利用乙醇、醋酸與二氧化硫之含量來推導模式白蘭地蒸餾過程之導電度。 | zh_TW |
| dc.description.abstract | Brandy is a spirit produced by the distillation of white wine. The traditional distillation process is double distillation in copper stills. The composition change during the distillation process would influence the flavor and quality of brandy. However, no on-line monitoring sensors for improving the quality of brandy have been applied in bandy industry yet. The objective of this study is to develop a method for estimating the content of volatile acids in non-aged brandy by measuring electrical conductivity of the distillate in the distillation process.
This study was divided into three parts: the first part was to monitor the change of brandy composition and electrical conductivity in first distillation and second distillation. The second part was to analyze the composition of white wine, brouillis, brouillis-contacted with copper, bonne chauffe and bonne chauffe-contacted with copper. The last part used model solution prepared by non-aged brandy to investigate the effects of ethanol, acetic acid and sulfuric dioxide on the electrical conductivity. The results showed that all organic acids except acetic acid and total sugar were almost completely removed during distilling for the non-aged brandy at 73% ethanol content. Linear correlation was found between electrical conductivity and ethanol content, acetic acid content, or sulfuric dioxide during distillation. The empirical equations were deduced. As an influential factor on, ethanol would reduce the electrical conductivity, whereas acetic acid and sulfuric dioxide would increase it. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:19:57Z (GMT). No. of bitstreams: 1 ntu-98-R96641029-1.pdf: 1386242 bytes, checksum: 341a9f1333c4545cefc3b3415733dfd6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 文獻整理 2 第一節 導電度 2 一、 定義 2 二、 影響導電度的因子 5 (一) 組成份 5 (二) 溫度 8 (三) 電場強度 9 (四) 高壓處理 9 三、 食品導電度相關應用 11 (一) 即時監測 11 (二) 電阻加熱 14 第二節 白蘭地 15 一、 簡介 15 二、 製造流程 16 (一) 原料 16 (二) 蒸餾 18 (三) 陳化 25 (四) 即時監控 26 三、 未熟成白蘭地導電成分 26 (一) 有機酸化合物 26 (二) 二氧化硫 27 第三章 材料與方法 28 第一節 實驗材料 28 第二節 實驗設備 29 第三節 實驗架構 30 第四節 實驗方法 33 一、 蒸餾過程成分變化 33 二、 成分分析 33 三、 模式系統 35 (一) 模式未熟成白蘭地之導電度 35 (二) 影響導電度之變因 35 (三) 白蘭地導電度之預測方程式 35 (四) 調整pH之探討 35 (五) 稀釋方法之探討 35 第五節 分析方法 36 一、 導電度測定 36 二、 酸鹼值 36 三、 酒精度 36 四、 總酸 36 五、 揮發性酸 37 六、 總醣 37 七、 二氧化硫 39 八、 有機酸 39 九、 脂肪酸 40 十、雜醇油 40 十一、金屬元素 41 第六節 數據分析 41 一、 統計分析 41 第四章 結果與討論 42 第一節 蒸餾過程成分變化 42 一、 初蒸過程 42 二、 複蒸過程 50 三、 蒸餾液成分與導電度關係之探討 57 第二節 白蘭地導電度成因之探討 62 一、 白蘭地化學成分分析 62 二、 酒液之有機酸分析 65 三、 酒液之揮發性酸分析 65 第三節 模式系統 72 一、 以模式系統探討未熟成白蘭地之導電度影響因子 72 二、 模式白蘭地各成分對導電度之影響 74 三、 白蘭地導電度之預測方程式 74 四、 調整pH值之探討 80 五、 稀釋方法之探討 80 第五章 結論 84 第六章 參考文獻 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 揮發性酸 | zh_TW |
| dc.subject | 導電度 | zh_TW |
| dc.subject | 白蘭地 | zh_TW |
| dc.subject | 即時監控 | zh_TW |
| dc.subject | volatile acid | en |
| dc.subject | electrical conductivity | en |
| dc.subject | on-line monitoring | en |
| dc.subject | brandy | en |
| dc.title | 未熟成白蘭地成分與其導電度關係之研究 | zh_TW |
| dc.title | The Relation between Composition and Electrical Conductivity of Non-aged Brandy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏雄,陳雪娥,林讚峰,王峻禧 | |
| dc.subject.keyword | 導電度,白蘭地,揮發性酸,即時監控, | zh_TW |
| dc.subject.keyword | electrical conductivity,brandy,volatile acid,on-line monitoring, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
