Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42425
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorYeh Tsaien
dc.contributor.author蔡曄zh_TW
dc.date.accessioned2021-06-15T01:13:34Z-
dc.date.available2014-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationchapter1 Reference
[1] M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential”, Solar Energy 74 (2003) 181–192.
[2] Y. Tsunomura, Y. Yoshiminea, M. Taguchia, T. Babaa, T. Kinoshitaa, H. Kannoa, H. Sakataa, E. Maruyamaa and M. Tanakaa, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells 93 (2009) 670-673.
[3] J. Luschitz, B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, W. Jaegermann, “CdTe thin film solar cells: Interrelation of nucleation, structure, and performance”, Thin Solid Films 517 (2009) 2125–2131.
[4] Hussam Eldin A. Elgamel, “High-efficiency polycrystalline silicon film solar cells”, Solar Energy Materials and Solar Cells 53 (1998) 269-275.
[5] M. J. Chen, Y. T. Shih, M. K. Wu, and F. Y. Tsai, “Enhancement in the efficiency of light emission from silicon by a thin Al2O3 surface-passivating layer grown by atomic layer deposition at low temperature”, Journal of Applied Physics 101 (2007) 033130
[6] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 ¬¬¬“, Applied Physics Letters 89 (2006) 042112.
[7] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters”, Applied Physics Letters 92 (2008) 253504.
[8] H. Kim, A. Piqu´e, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, ”Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices”, Thin Solid Films 377-378 (2000) 798-802.
[9] R. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD”, Thin Solid Films 260 (1995) 19 -20.
[10] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition”, Thin Solid Films 445 (2003) 263–267
[11] G. Fang, D. Li and B. L. Yao, “Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode”, Journal of Physics D: Applied Physics 35 (2002) 3096–3100.
[12] T. Y. Ma, S. C. Lee, “Effects of aluminum content and substrate temperature on the structural and electrical properties of aluminum-doped ZnO films prepared by ultrasonic spray pyrolysis”, Journal of Materials Science: Materials in Electronics 11 (2000) 305-309.
[13] S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers”, Applied Physics Letters 80 (2002) Number 14
[14] Technical Note WT2000, SEMILAB, “The Theory of μ-PCD for Measuring Lifetime”.
chapter 2 reference
[1] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters”, Nano Letters Vol. 9, No. 4 (2009) 1549-1554.
[2] A. P. Goodey, S. M. Eichfeld, K. Lew, J. M. Redwing, and T. E. Mallouk, “Silicon Nanowire Array Photoelectrochemical Cells”, Journal of the American Chemical Society Vol. 129, No. 41 (2007) 12345.
[3] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications”, Nanotechnology 19 (2008) 255703.
[4] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, and G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Solar Energy Materials & Solar Cells 90 (2006) 3438-3443.
[5] H. Fang, Y. Wu, J.H. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768–3774
[6] C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications”, Applied Physics Letters Vol. 81, No. 16 (2002) 2980-2982.
[7] Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S. Van den Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, “Growth Kinetics and Crystallization Behavior of TiO2 Films Prepared by Plasma Enhanced Atomic Layer Deposition”, Journal of the Electrochemical Society, 155 9 (2008) H688-H692.
[8] Q. Xie, Y.L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, G. P. Ru, B. Z. Li, and X. P. Qu, “Atomic layer deposition of TiO2 from tetrakis-dimethyl -amido titanium or Ti isopropoxide precursors and H2O”, Journal of Applied Physics 102 (2007) 083521.
[9] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. van de Sanden, and W. M. M. Kessels, 'Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3”, Applied Physics Letters 91 (2007) 112107.
[10] S. De Wolf, G. Agostinelli, G. Beaucarne, P. Vitanov, “Influence of stoichiometry of direct plasma-enhanced chemical vapor deposited SiNx films and silicon substrate surface roughness on surface passivation” , Journal of Applied Physics 97 (2005) 063303.
[11] R. Ferre, I. Martín, M. Vetter, M. Garín, and R. Alcubilla, “Effect of amorphous silicon carbide layer thickness on the passivation quality of crystalline silicon surface”, Applied Physics Letters 87 (2005) 202109.
[12] S. De Wolf and G. Beaucarne, ”Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates”, Applied Physics Letters 88 (2006) 022104.
[13] M. J. Chen, Y. T. Shih, M. K. Wu, and F. Y. Tsai, “Enhancement in the efficiency of light emission from silicon by a thin Al2O3 surface-passivating layer grown by atomic layer deposition at low temperature”, Journal of Applied Physics 101 (2007) 033130
chapter 3 reference
[1] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, 2003 May
[2] C. L. Chen, Master Thesis, “Fabrication and Investigation of Nanostructured Single Crystal Silicon Solar Cells”, 2007 June
[3] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, p55~p57,1999 12月
[4] S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers”, Applied Physics Letters Volume 80, Number 14, 8 April 2002
[5] H. C. Liao, Master Thesis, “Study of Znic Oxide Thin Films Deposited on Silicon Substrate by Atomic Layer Deposition”, p34~p50, 2007 July
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42425-
dc.description.abstract太陽能電池近年來已成為重要的議題。隨著材料的發展,太陽能電池的種類也逐漸多樣化。 在矽晶太陽能電池中,重要的關鍵技術在於表面粗糙化(surface texturing)、表面鈍化層(surface passivaiton layer)以及抗反射層(anti-reflection)的應用。在本論文中將從太陽能電池的擴散製程開始,探討利用原子層沉積(atomic layer deposition, ALD)技術成長氧化層當作表面鈍化層以及抗反射層於太陽能電池之應用。
矽晶片上的奈米柱結構(silicon nanowires)被認為是相當有潛力的太陽能基板。隨著化學溶液濃度的調整可以得到不同高度的奈米柱結構。因為這些奈米柱的存在,晶片的反射率將會降低到0.1%, 形成奈米級粗紋化黑色矽晶圓。但是這種晶片的表面卻相當的粗糙,有相當多的缺陷存在。缺陷的存在將會降低太陽能電池的少數載子生命週期。而氧化鋁以及氧化鈦絕緣性質良好,且耐磨耗抗腐蝕,被認為是相當好的保護層材料。本文中研究利用原子層沉積技術成長氧化鋁及氧化鈦於矽晶奈米柱結構上面,發現可以有效增加少數載子生命週期以及增強Photoluminescence 發光頻譜之強度。之後再將此具保護層之奈米級粗紋化黑色矽晶圓作為太陽能電池的基板使用。
另外,由於氧化鋅參雜鋁(ZnO:Al)之薄膜為一相當具有潛力之透明導電膜。 可應用於太陽能電池中作為取代ITO透明電極之材料。因此本論文中將使用ALD技術成長ZnO:Al薄膜同時作為抗反射層與透明導電膜。最後,結合奈米級粗紋化黑色矽晶圓與原子層沉積技術所製做出之太陽能電池,其最好的轉換效率為8.35%。
關鍵字: 原子層沉積技術,太陽能電池,表面鈍化層,透明導電膜,抗反射層,氧化鋅
zh_TW
dc.description.abstractRecently, nano-textured black silicon substrate with silicon nanowires on the surface has attracted considerable attention due to its ultra low reflectivity. However, the defects on the surface of nano-textured black silicon substrate result in significant carrier recombination. In this study, atomic layer deposition (ALD) technique was applied to deposit the Al2O3 and TiO2 surface passivation layers with good step coverage on the nano-textured black silicon substrate. The minority carrier lifetime was improved and the photoluminescence intensity was also significantly enhanced by the surface passivation layers.
The ALD technique was also used to deposit ZnO:Al thin films as transparent conductive oxide (TCO) and anti-reflection coating (ARC) layer on the nano-textured black silicon substrate. Since the refractive index of ZnO:Al (2%) layer was 2.01, ZnO:Al (2%) can be designed as the ARC layer for the silicon substrate. Using the nano-textured black silicon together with the ZnO:Al (2%) layer, the solar cell with low reflectivity of 0.1%~0.04% in visible light region and the conversion efficiency of 8.35% was achieved.
Key words: Atomic layer deposition, solar cell, surface passivation layer, transparent conductive oxide (TCO), anti-reflection coating (ARC), zinc oxide (ZnO)
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:34Z (GMT). No. of bitstreams: 1
ntu-98-R96527060-1.pdf: 7412506 bytes, checksum: 7a38e0854977bfcebaa4bdee4bf2aa32 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
致謝…………………………………………………………………………………….i
摘要……….…………………………………………………………………………..iii
Abstract………………………………………………………………………………iv
Contents……………………………………………………………………………….v
Figure contents viiii
Chapter 1
Introduction 1
1-1 Motivation 1
1-2 Atomic Layer Deposition (ALD) 4
1-3 μ-pcd (microwave photoconductive decay) carrier lifetime measurement 6
1-4 Reference 8
Chapter 2
Nano-Textured Black Silicon Wafer with Surface Passivation Layer Grown by ALD 11
2-1 Fabrication of black silicon 12
2-2 Surface Passivation Layer on Black Silicon: Al2O3 and TiO2 17
2-3 Results 18
2-3-1 μ-pcd carrier lifetime measurement 18
2-3-2 Optical characteristics of passivation layer at room temperature 21
2-3-3 Temperature dependence of photoluminescence intensity 27
2-4 Summary 31
2-5 Reference 32
Chapter 3
Fabrication of Black Silicon Solar Cells by Using the ALD…………………………………………………...……....35
3-1 Diffusion 36
3-2 Structures 39
3-2-1 Black silicon solar cell with 82nm Al2O3 39
3-2-2. Black silicon solar cells with 5nm Al2O3 and 62nm ZnO:Al (2%) 43
3-2-3. Black silicon solar cells with 5nm TiO2 and 62nm ZnO:Al (2%) 45
3-2-4. Black silicon solar cells with 67nm ZnO:Al (2%) 47
3-3 Metal Contact and Contact Annealing 48
3-4 Measurement 49
3-5 Results 50
3-5-1 Black silicon solar cells with 82nm Al2O3 51
3-5-2 Black silicon solar cells with 5nm Al2O3 and 62nm ZnO:Al (2%) 52
3-5-3 Black silicon solar cells with 5nm TiO2 and 62nm ZnO:Al (2%) 54
3-5-4 Black silicon solar cells with 67nm ZnO:Al (2%) 55
3-6 Summary 56
3-7 Reference 57
Chapter 4
Conclusion………...……………………………………58
dc.language.isoen
dc.title原子層沉積技術於奈米級粗紋化黑色矽晶圓太陽能電池之應用zh_TW
dc.titleApplication of Atomic Layer Deposition on Nano-textured Black Silicon Solar Cellsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳學禮(Hsuen-Li Chen),何志浩(Jr-Hau He),徐文慶(Wen-Ching Hsu)
dc.subject.keyword原子層沉積技術,太陽能電池,表面鈍化層,透明導電膜,抗反射層,氧化鋅,zh_TW
dc.subject.keywordAtomic layer deposition,solar cell,surface passivation layer,transparent conductive oxide (TCO),anti-reflection coating (ARC),zinc oxide (ZnO),en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved