Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41507
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫璐西
dc.contributor.authorWan-Yu Hsiehen
dc.contributor.author謝琬喻zh_TW
dc.date.accessioned2021-06-15T00:21:08Z-
dc.date.available2019-12-31
dc.date.copyright2009-02-12
dc.date.issued2009
dc.date.submitted2009-02-06
dc.identifier.citation中華民國統計資訊網。(www.stat.gov.tw)
王俊民。2000。洛神花原兒茶酸對 tert-Butyl hydroperoxide 誘發大白鼠肝毒性之抑制作用。中山醫學院生物化學研究所。碩士論文。
行政院衛生署中醫藥委員會。2003。台灣常用藥用植物圖鑑第一冊。
何雅嵐。2007。蓮子心與芝麻粕之抗氧化活性及其延長線蟲壽命功效之研究。國立台灣大學食品科技研究所。碩士論文。
吳家榮和邱德文。2004。中國常用中草藥彩色圖譜 (修訂本)。
呂季樺。2004。普洱茶抑制 Hep G2 細胞株生合成膽固醇之有效成份探討。國立台灣大學食品科技研究所。碩士論文。
李世代和潘文涵。2004。老年人之睡眠品質、攝護腺肥大、尿失禁及腎功能異常等健康概況。老人營養現況:台灣地區老人營養健康狀況調查1999-2000調查結果,行政院衛生署。
李妙真。2003。原兒茶酸及洛神花水萃取物抑制動脈粥狀硬化機轉之研究。中山醫學大學生物化學研究所。博士論文。
李沐勳和李威。2001。常用中草藥手冊。國立中國醫藥研究所。132。
李時珍。明代。本草綱目。實用書局。
沈宜蓁。2005。龍眼花萃取物抗氧化活性之探討。國立台灣大學食品科技研究所。碩士論文。
林家凱。2006。以Aβ25-35引發PC-12細胞死亡為模式開發抗阿茲海默症食藥材。國立台灣大學食品科技研究所。碩士論文。
林靜宜。2007。桑及桑椹酒之指標成分分析及抗氧化活性之研究。國立屏東科技大學熱帶農業暨國際合作研究所。碩士論文。
美國人口統計署。U.S. Census Bureau. (www.census.gov)
涂可欣譯。2006。啟動長壽基因。科學人雜誌四月號〈長壽基因 留住青春〉。
黃弼臣。1966。第四章 龍眼。農業要覽園藝作物輯果樹篇。臺灣省政府農林廳。193-204。
楊遠波,顏聖紘,林仲剛,黃世富,郭紀凡和梁慧舟。2001。臺灣水生植物圖誌。68。
劉力綱。2002。桑椹萃取物降血脂及預防動脈粥狀硬化形成之作用。中山醫學大學生物化學研究所。碩士論文。
劉業經,呂福原,歐辰雄。1994。台灣樹木誌。
蔡蕙芸。2007。龍眼花水萃物對高果糖誘發代謝症候群大鼠之影響。國立台灣大學食品科技研究所。碩士論文。
謝孟潔。2006。龍眼花抗氧化成份之研究。國立台灣大學食品科技研究所。碩士論文。
3DMET: 3D-structure database of natural metabolites (www.3dmet.dna.affrc.go.jp)
Adachi, H.; Ishii, N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2000, 55, B280-5.
Aden, D. P.; Fogel, A.; Plotkin, S.; Damjanov, I.; Knowles, B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 1979, 282, 615-6.
Ahsan, H.; Ali, A.; Ali, R. Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol 2003, 131, 398-404.
Arnao, M. B.; Casas, J. L.; del Rio, J. A.; Acosta, M.; Garcia-Canovas, F. An enzymatic colorimetric method for measuring naringin using 2,2'-azino-bis- (3-ethylbenzthiazoline-6-sulfonic acid)(ABTS) in the presence of peroxidase. Anal Biochem 1990, 185, 335-8.
ATCC: The Global Bioresource Center (www.atcc.org)
Avery, L.; Thomas, J. H. Feeding and Defecation. In: C. elegans II, Riddle, D. L.; Blumenthal, T.; Meyer, B. J.; Priess, J. R., eds. Cold Spring Harbor Laboratory Press, New York 1997, 679-716.
Baker, K.; Marcus, C. B.; Huffman, K.; Kruk, H.; Malfroy, B.; Doctrow, S. R. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther 1998, 284, 215-21.
Balducci, L. Aging, frailty, and chemotherapy. Cancer Control 2007, 14, 7-12.
Barja, G. Free radicals and aging. Trends Neurosci 2004, 27, 595-600.
Baumeister, R.; Schaffitzel, E.; Hertweck, M. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 2006, 190, 191-202.
Berdichevsky, A.; Guarente, L. A stress response pathway involving sirtuins, forkheads and 14-3-3 proteins. Cell Cycle 2006, 5, 2588-91.
Brown, M. K.; Evans, J. L.; Luo, Y. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 2006, 85, 620-8.
Brys, K.; Vanfleteren, J. R.; Braeckman, B. P. Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exp Gerontol 2007, 42, 845-51.
Cao, G.; Alessio, H. M.; Cutler, R. G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 1993, 14, 303-11.
CGC: (biosci.umn.edu/CGC)
Chan, Y. C.; Wang, M. F.; Chang, H. C. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. Am J Chinese Med 2003, 31, 171-179.
Chang, Y. C.; Huang, K. X.; Huang, A. C.; Ho, Y. C.; Wang, C. J. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chem Toxicol 2006, 44, 1015-23.
Chen, C. C.; Hsu, J. D.; Wang, S. F.; Chiang, H. C.; Yang, M. Y.; Kao, E. S.; Ho, Y. C.; Wang, C. J. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J Agric Food Chem 2003, 51, 5472-7.
Chen, C. C.; Liu, L. K.; Hsu, J. D.; Huang, H. P.; Yang, M. Y.; Wang, C. J. Mulberry extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. Food Chem 2005, 91, 601-607.
Chen, Y.; Wang, M. F.; Rosen, R. T.; Ho, C. T. 2,2-diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thunb. Journal of Agricultural and Food Chemistry 1999, 47, 2226-2228.
Chung, M. J.; Hogstrand, C.; Lee, S. J. Cytotoxicity of nitric oxide is alleviated by zinc-mediated expression of antioxidant genes. Exp Biol Med (Maywood) 2006, 231, 1555-63.
Collins, J. J.; Huang, C.; Hughes, S.; Kornfeld, K. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook 2008, 1-21.
Dani, C.; Bonatto, D.; Salvador, M.; Pereira, M. D.; Henriques, J. A.; Eleutherio, E. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J Agric Food Chem 2008, 56, 4268-72.
Devasagayam, T. P.; Tilak, J. C.; Boloor, K. K.; Sane, K. S.; Ghaskadbi, S. S.; Lele, R. D. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004, 52, 794-804.
Espin, J. C.; Soler-Rivas, C.; Wichers, H. J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphellyl-1-picrylhydrazyl radical. Journal of Agricultural and Food Chemistry 2000, 48, 648-656.
Evason, K.; Huang, C.; Yamben, I.; Covey, D. F.; Kornfeld, K. Anticonvulsant medications extend worm life-span. Science 2005, 307, 258-62.
Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239-47.
Gonzalez, P. K.; Zhuang, J.; Doctrow, S. R.; Malfroy, B.; Benson, P. F.; Menconi, M. J.; Fink, M. P. EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. J Pharmacol Exp Ther 1995, 275, 798-806.
Guarente, L.; Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 2000, 408, 255-262.
Harrington, L. A.; Harley, C. B. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Ageing Dev 1988, 43, 71-8.
Henriquez, C.; Aliaga, C.; Lissi, E. Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures. Int J Chem Kinet 2002, 34, 659-665.
Honda, S.; Ishii, N.; Suzuki, K.; Matsuo, M. Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol 1993, 48, B57-61.
Honda, S.; Matsuo, M. Lifespan shortening of the nematode Caenorhabditis elegans under higher concentrations of oxygen. Mech Ageing Dev 1992, 63, 235-46.
Hope, I. A. Background on Caenorhabditis elegnas. In: C. elegans: A practical approach, Hope, I. A.; Hames, B. D., eds. Oxford University Press, New York 1999, 1-15.
Houthoofd, K.; Braeckman, B. P.; Lenaerts, I.; Brys, K.; De Vreese, A.; Van Eygen, S.; Vanfleteren, J. R. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 2002, 37, 1371-8.
Hu, S.; Chen, S. M.; Li, X. K.; Qin, R.; Mei, Z. N. Antitumor effects of chi-shen extract from Salvia miltiorrhiza and Paeoniae radix on human hepatocellular carcinoma cells. Acta Pharmacol Sin 2007, 28, 1215-23.
Huang, C.; Xiong, C.; Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2004, 101, 8084-9.
Huang, D.; Ou, B.; Prior, R. L. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005, 53, 1841-56.
Huang, Y.; Bai, Y.; Zhao, L.; Hu, T.; Hu, B.; Wang, J.; Xiang, J. Pharmacokinetics and metabolism of neferine in rats after a single oral administration. Biopharm Drug Dispos 2007, 28, 361-72.
Ishii, N.; Senoo-Matsuda, N.; Miyake, K.; Yasuda, K.; Ishii, T.; Hartman, P. S.; Furukawa, S. Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 2004, 125, 41-6.
Johnson, T. E.; de Castro, E.; de Castro, S. H.; Cypser, J.; Henderson, S.; Tedesco, P. Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 2001, 36, 1609-1617.
Johnson, T. E.; Lithgow, G. J. The search for the genetic basis of aging: the identification of gerontogenes in the nematode Caenorhabditis elegans. J Am Geriatr Soc 1992, 40, 936-45.
Julkunentiitto, R. Phenolic Constituents in the Leaves of Northern Willows - Methods for the Analysis of Certain Phenolics. Journal of Agricultural and Food Chemistry 1985, 33, 213-17.
Kampkotter, A.; Gombitang Nkwonkam, C.; Zurawski, R. F.; Timpel, C.; Chovolou, Y.; Watjen, W.; Kahl, R. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch Toxicol 2007a, 81, 849-58.
Kampkotter, A.; Nkwonkam, C. G.; Zurawski, R. F.; Timpel, C.; Chovolou, Y.; Watjen, W.; Kahl, R. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 2007b, 234, 113-23.
Kampkotter, A.; Timpel, C.; Zurawski, R. F.; Ruhl, S.; Chovolou, Y.; Proksch, P.; Watjen, W. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol 2008, 149, 314-23.
Kang, T. H.; Hur, J. Y.; Kim, H. B.; Ryu, J. H.; Kim, S. Y. Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci Lett 2006, 391, 122-6.
Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y. P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K. H. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem 2005, 13, 443-8.
Keaney, M.; Gems, D. No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radical Bio Med 2003, 34, 277-282.
Keaney, M.; Matthijssens, F.; Sharpe, M.; Vanfleteren, J.; Gems, D. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Radical Bio Med 2004, 37, 239-250.
Kim, J.; Takahashi, M.; Shimizu, T.; Shirasawa, T.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 2008, 129, 322-31.
Kohjima, M.; Enjoji, M.; Higuchi, N.; Kato, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M. The effects of unsaturated fatty acids on lipid metabolism in HepG2 cells. In Vitro Cell Dev Biol Anim 2008.
Koj, A.; Jura, J. Complex analysis of genes involved in the inflammatory response: interleukin-1-induced differential transcriptome of cultured human hepatoma HepG2 cells. Acta Biochim Pol 2003, 50, 573-82.
Kregel, K. C.; Zhang, H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007, 292, R18-36.
Li, L.; Ng, T. B.; Gao, W.; Li, W.; Fu, M.; Niu, S. M.; Zhao, L.; Chen, R. R.; Liu, F. Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sci 2005, 77, 230-40.
Li, R. W.; Lin, G. D.; Myers, S. P.; Leach, D. N. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol 2003, 85, 61-67.
Li, Y. M.; Chan, H. Y.; Huang, Y.; Chen, Z. Y. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol Nutr Food Res 2007, 51, 546-54.
Lin, H. H.; Chen, J. H.; Kuo, W. H.; Wang, C. J. Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cells through apoptosis induction and JNK/p38 MAPK signaling activation. Chem Biol Interact 2007, 165, 59-75.
Lin, J. H.; Tsai, C. C. Phenolic Constituents from the Flowers of Euphoria longana Lam. Chin Pharm J 1995, 47, 113-21.
Lin, J. K.; Chou, C. K. In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta 1. Cancer Res 1992, 52, 385-8.
Lin, J. Y.; Tang, C. Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 2007, 101, 140-147.
Lin, S. J.; Defossez, P. A.; Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289, 2126-8.
Lithgow, G. J.; White, T. M.; Melov, S.; Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 1995, 92, 7540-4.
Liu, J. Y.; Chen, C. C.; Wang, W. H.; Hsu, J. D.; Yang, M. Y.; Wang, C. J. The protective effects of Hibiscus sabdariffa extract on CCl4-induced liver fibrosis in rats. Food Chem Toxicol 2006, 44, 336-43.
Mau, J. L.; Chao, G. R.; Wu, K. T. Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem 2001, 49, 5461-7.
McColl, G.; Killilea, D. W.; Hubbard, A. E.; Vantipalli, M. C.; Melov, S.; Lithgow, G. J. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 2008, 283, 350-7.
McElwee, J. J.; Schuster, E.; Blanc, E.; Thornton, J.; Gems, D. Erratum to 'Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans' [Mech. Ageing Dev. 127 (5) (2006) 458-472]. Mech Ageing Dev 2006, 127, 922-36.
Medina-Bolivar, F.; Condori, J.; Rimando, A. M.; Hubstenberger, J.; Shelton, K.; O'Keefe, S. F.; Bennett, S.; Dolan, M. C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007, 68, 1992-2003.
Melov, S.; Ravenscroft, J.; Malik, S.; Gill, M. S.; Walker, D. W.; Clayton, P. E.; Wallace, D. C.; Malfroy, B.; Doctrow, S. R.; Lithgow, G. J. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000, 289, 1567-9.
Miller, D. L.; Roth, M. B. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007, 104, 20618-22.
Muller, F. L.; Lustgarten, M. S.; Jang, Y.; Richardson, A.; Van Remmen, H. Trends in oxidative aging theories. Free Radic Biol Med 2007, 43, 477-503.
Murphy, C. T.; McCarroll, S. A.; Bargmann, C. I.; Fraser, A.; Kamath, R. S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003, 424, 277-284.
Naguib, Y. M. A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal Biochem 2000, 284, 93-8.
Nishizawa, M.; Kohno, M.; Nishimura, M.; Kitagawa, A.; Niwano, Y. Non-reductive scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: a useful method for quantitative analysis of peroxyradical. Chem Pharm Bull (Tokyo) 2005, 53, 714-6.
Nohl, H.; Hegner, D. Do Mitochondria Produce Oxygen Radicals Invivo. Eur J Biochem 1978, 82, 563-567.
Okonogi, S.; Duangrat, C.; Anuchpreeda, S.; Tachakittirungrod, S.; Chowwanapoonpohn, S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem 2007, 103, 839-846.
Orr, W. C.; Sohal, R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994, 263, 1128-30.
Patel, A. K.; Rogers, J. T.; Huang, X. Flavanols, mild cognitive impairment, and Alzheimer's dementia. Int J Clin Exp Med 2008, 1, 181-91.
Petrascheck, M.; Ye, X.; Buck, L. B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007, 450, 553-6.
Prior, R. L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agric Food Chem 2003, 51, 3273-9.
Rangkadilok, N.; Worasuttayangkurn, L.; Bennett, R. N.; Satayavivad, J. Identification and quantification of polyphenolic compounds in Longan (Euphoria longana Lam.) fruit. J Agric Food Chem 2005, 53, 1387-92.
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999, 26, 1231-7.
Remsberg, C. M.; Yanez, J. A.; Ohgami, Y.; Vega-Villa, K. R.; Rimando, A. M.; Davies, N. M. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 2008, 22, 169-79.
Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem 2002, 50, 3453-7.
Sampayo, J. N.; Gill, M. S.; Lithgow, G. J. Oxidative stress and aging - the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem Soc T 2003a, 31, 1305-1307.
Sampayo, J. N.; Olsen, A.; Lithgow, G. J. Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2003b, 2, 319-26.
Schreiber, T. D.; Kohle, C.; Buckler, F.; Schmohl, S.; Braeuning, A.; Schmiechen, A.; Schwarz, M.; Munzel, P. A. Regulation of CYP1A1 gene expression by the antioxidant tert-butylhydroquinone. Drug Metab Dispos 2006, 34, 1096-101.
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. Journal of Agricultural and Food Chemistry 1992, 40, 945-948.
Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 1999, 299, 152-178.
Sohal, R. S.; Ku, H. H.; Agarwal, S.; Forster, M. J.; Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994, 74, 121-33.
Srivastava, D.; Arya, U.; Soundararajan, T.; Dwivedi, H.; Kumar, S.; Subramaniam, J. R. Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 2008.
Stalinska, K.; Guzdek, A.; Rokicki, M.; Koj, A. Transcription factors as targets of the anti-inflammatory treatment. A cell culture study with extracts from some Mediterranean diet plants. J Physiol Pharmacol 2005, 56 Suppl 1, 157-69.
Stiernagle, T. C. elegans: A practical approach. In: Maintenance of C. elegans, Hope, I. A. H., B. D., eds. Oxford University Press, New York 1999, 51-67.
Stivala, L. A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U. M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 2001, 276, 22586-94.
Strayer, A.; Wu, Z.; Christen, Y.; Link, C. D.; Luo, Y. Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J 2003, 17, 2305-7.
Sun, T.; Powers, J. R. Antioxidant measurement and applications. In: Antioxidants and antioxidant activities of vegetables, Shahidi, F.; Ho, C. T., eds. American chemical society, Washington DC 2007, 160-83.
Tan, K. P.; Yang, M.; Ito, S. Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress. Mol Pharmacol 2007, 72, 1380-90.
Tseng, T. H.; Kao, E. S.; Chu, C. Y.; Chou, F. P.; Lin Wu, H. W.; Wang, C. J. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food Chem Toxicol 1997, 35, 1159-64.
Um, M. Y.; Choi, W. H.; Aan, J. Y.; Kim, S. R.; Ha, T. Y. Protective effect of Polygonum multiflorum Thunb on amyloid beta-peptide 25-35 induced cognitive deficits in mice. J Ethnopharmacol 2006, 104, 144-8.
Vanfleteren, J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993, 292 ( Pt 2), 605-8.
Viswanathan, M.; Kim, S. K.; Berdichevsky, A.; Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 2005, 9, 605-15.
Weinert, B. T.; Timiras, P. S. Invited review: Theories of aging. J Appl Physiol 2003, 95, 1706-16.
Willcox, J. K.; Ash, S. L.; Catignani, G. L. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 2004, 44, 275-95.
Wilson, M. A.; Shukitt-Hale, B.; Kalt, W.; Ingram, D. K.; Joseph, J. A.; Wolkow, C. A. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 2006, 5, 59-68.
Wolfe, K. L.; Liu, R. H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 2007, 55, 8896-907.
Wolfe, K. L.; Liu, R. H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem 2008, 56, 8404-11.
Wood, J. G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S. L.; Tatar, M.; Sinclair, D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430, 686-9.
Wormatlas: (www.wormatlas.org)
Wu, H. H.; Sang, W. G.; Yu, Q. D.; Zhang, J.; Luo, H. Y. Recent advances on antioxidation property evaluation of oxygen radical absorbance capacity (ORAC). Sciencepaper Online (http://www.paper.edu.cn) 2007.
Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M. P.; Klein, W. L.; Link, C. D.; Luo, Y. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006, 26, 13102-13.
Wu, Z.; Smith, J. V.; Paramasivam, V.; Butko, P.; Khan, I.; Cypser, J. R.; Luo, Y. Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol (Noisy-le-grand) 2002, 48, 725-31.
Yen, G. C.; Chung, D. Y. Antioxidant effects of extracts from Cassia tora L. prepared under different degrees of roasting on the oxidative damage to biomolecules. J Agric Food Chem 1999, 47, 1326-32.
Youn, M. J.; Kim, J. K.; Park, S. Y.; Kim, Y.; Kim, S. J.; Lee, J. S.; Chai, K. Y.; Kim, H. J.; Cui, M. X.; So, H. S.; Kim, K. Y.; Park, R. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol 2008, 14, 511-7.
Yu, B. P. Aging and oxidative stress: Modulation by dietary restriction. Free Radical Bio Med 1996, 21, 651-668.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41507-
dc.description.abstract老化是一種生物體漸進式喪失生理功能、活動能力與認知能力的現象。過去的許多研究曾指出,氧化壓力是造成老化發生的重要因素,因此本研究選取了一些在先前研究中被證實具有良好抗氧化能力的樣品,包括龍眼花水萃物 (L-W)、桑椹水萃物 (M-W)、洛神葵水萃物 (R-W)、蓮子心乙醇萃物的水區分層 (N-E-W)、何首烏 stilbene glycoside (stilbene glycoside from Polygonum multiflorum Thunb., PM-SG) 及 pterostilbene,於秀麗隱桿線蟲 (Caenorhabditis elegans) 模式下進行抗老化活性的探討,並於化學模式與細胞模式中探討其抗氧化活性。
論文工作的第一部份為化學性的體外抗氧化實驗,選取四種抗氧化活性評估方法包括 DPPH 自由基清除能力試驗、總抗氧化能力 (TEAC) 試驗、氧自由基吸收能力 (ORAC) 試驗及還原能力測定,另外也進行總酚含量的分析。實驗結果顯示,L-W、PM-SG 與 pterostilbene 有較優異的體外抗氧化活性,而 N-E-W、M-W 與 R-W 則依序為抗氧化能力最差的三者,而總酚含量的分析結果也顯示 L-W 的總酚含量最高,依序為 N-E-W、M-W 與 R-W,與抗氧化能力一致。
論文工作的第二部份為細胞模式的抗氧化實驗,根據各樣品對 Hep G2 細胞存活率的影響結果,決定各樣品之最高實驗濃度。實驗結果顯示 L-W 具有最好的細胞抗氧化活性,其 EC50 值為 25.51 ± 2.17 μg/mL,其次依序為 PM-SG (EC50 = 211.35 ± 34.11 μg/mL)、N-E-W (EC50 = 457.83 ± 34.33 μg/mL) 與 M-W (EC50 = 776.66 ± 28.20 μg/mL);而 R-W 達 500 μg/mL 尚未展現顯著之活性,pterostilbene 則是受限於細胞毒性作用而無法展現其抗氧化活性。與化學性抗氧化實驗結果相比,PM-SG 與 pterostilbene 的活性表現有較大差異,推測為兩者化學結構之差異影響在細胞模式中表現的抗氧化能力。
論文工作的第三部份為線蟲模式的抗老化實驗,首先於壽命期實驗中進行各樣品的延緩老化能力測定,結果發現只有 PM-SG、L-W 與 N-E-W 有顯著的活性表現,其延長線蟲壽命之最大程度分別為 15.8%、17.1% 與 15.5%,與體外抗氧化實驗的結果相比對,發現只有在細胞模式中有表現出抗氧化活性的樣品,才能在線蟲模式中表現出延緩老化的活性。進一步測定 PM-SG、L-W 與 N-E-W 對線蟲老化過程中生理表徵變化的影響,發現三者皆不影響線蟲的自體受孕生殖期,但皆能延緩咽喉收縮率的降低,顯示樣品延緩老化的效果應該不是經由影響其生殖能力所致。咽喉收縮率是線蟲模式的老化研究中已被證實的一項老化指標,因此可藉此佐證樣品延緩老化的活性。此外也測定 PM-SG、L-W 與 N-E-W 對改善線蟲的環境壓力抗性是否有幫助,發現三者皆可有效提高線蟲在高溫環境下的存活率,且最大程度分別達 46.8%、53.6% 與 32.3%,但僅 PM-SG 與 L-W 可有效提高線蟲在高氧化壓力環境下的存活率,其最大程度分別達 81.7% 與 113.7%,推測此實驗系統之氧化壓力過高,以致抗氧化能力較低的 N-E-W 無法與之抗衡而表現出其抗氧化活性。
本研究結果顯示,在化學性抗氧化實驗與細胞抗氧化實驗中皆表現出抗氧化能力的前三者,即 L-W、PM-SG 與 N-E-W,也同時是線蟲模式抗老化實驗結果中具有活性者,顯示抗氧化能力與延緩老化之功效具有相關性。
zh_TW
dc.description.abstractAging is a progressive phenomenon of losing physiological function, behavior and cognitive ability over time. Previous studies have pointed out that oxidative stress is an important factor that causes aging. Therefore, some previously shown antioxidative materials were chosen, including water extract of Longan flower (Dimocarpus longan Lour.) (L-W), water extract of mulberry (Morus alba Linn.) (M-W), water extract of roselle (Hibiscus sabdariffa Linn.) (R-W), water fraction from ethanol extract of embryo of Nelumbo nucufera Gaertn.(N-E-W), stilbene glycoside from Polygonum multiflorum Thunb.(PM-SG) and pterostilbene. The objective is to investigate the anti-aging ability of these materials in the Caenorhabditis elegans model.
The first part of this study was the chemical in vitro antioxidative experiments, including DPPH free radicals scavenging assay, trolox equivalent antioxidant capacity assay, oxygen radical absorbance capacity assay, reducing power assay and total polyphenols analysis. Results showed that L-W, PM-SG and pterostilbene had excellent activities followed by N-E-W, M-W and R-W.
The second part of this study was the cellular antioxidant activity assay. The concentrations of each sample used in the assay were determined according to the cytotoxicity of each sample on Hep G2 cell. Results showed that L-W had the best cellular antioxidant activity with EC50 value 25.51 ± 2.17 μg/mL, followed by PM-SG (EC50 = 211.35 ± 34.11 μg/mL), N-E-W (EC50 = 457.83 ± 34.33 μg/mL) and M-W (EC50 = 776.66 ± 28.20 μg/mL). At 500 μg/mL R-W still did not have apparent activity while the cytotoxicity of pterostilbene was too high to express its antioxidant activity. Compared with the results of chemical antioxidant experiments, there were large differences in the activities of PM-SG and pterostilbene, indicating that the cellular antioxidant activity of these two compounds were influencesd by the structure.
The third part of this study was the anti-aging tests in C. elegans model. We first investigated the lifespan prolonging effects of different samples. Results showed that only PM-SG、L-W and N-E-W had apparent anti-aging activities, with greatest degree of lifespan extention of 15.8%, 17.1% and 15.5%, respectively. Compared with the results of chemical antioxidant experiments, only samples exhibiting cellular antioxidant activities demonstrated anti-aging effects. Further examination of the effects of PM-SG、L-W and N-E-W on age-related changes of physiological processes, the results showed that PM-SG, L-W and N-E-W did not influence the self-fertile reproductive span, but did delay the decrease of pharyngeal pumping rate. This finding indicated that the lifespan prolonging effects of the three samples were not via influencing reproduction ability. On the other hand, since pharyngeal pumping rate had already been proved as one of the aging index, the finding of pharyngeal pumping rate test can be another evidence of the anti-aging ability of these samples. In addition, experiments to test if PM-SG, L-W and N-E-W are helpful to worms to resist the environmental pressure were also conducted, and the results showed that PM-SG, L-W and N-E-W can improve the survival rate of worms under thermal-stress, with greatest degree of lifespan extention of 46.8%, 53.6% and 32.3%, respectively. Only PM-SG and L-W, however, are helpful to worms to resist the oxidative-stress from H2O2, with greatest degree of lifespan extention of 81.7% and 113.7%, respectively. We speculated that the oxidative-stress was too high in this system, so that N-E-W with less antioxidant activity, can not express its antioxidant ability.
In summery, samples, which showed better in vitro antioxidant activity, seemed to be the more effective ones in anti-aging tests in C. elegans model as well. This indicated that antioxidant activities correlate closely to anti-aging effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:21:08Z (GMT). No. of bitstreams: 1
ntu-98-R95641016-1.pdf: 2369475 bytes, checksum: 6c4023fb174d433bd99c77a677a2ae22 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents謝誌I
摘要III
目錄VII
表次XI
圖次XIII
壹、前言1
貳、文獻回顧2
第一節、老化2
第二節、老化的自由基理論4
一、自由基5
二、氧化壓力與老化5
第三節、線蟲與老化研究9
一、秀麗隱桿線蟲 (Caenorhabditis elegans)9
二、生命週期11
三、老化研究之應用14
四、老化研究中常見之測定參數20
第四節、材料介紹31
一、龍眼花31
二、桑椹36
三、洛神葵37
四、蓮子心38
五、 2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glucopyranoside40
六、 Pterostilbene41
參、研究目的與實驗架構42
一、研究目的42
二、實驗架構43
肆、材料與方法44
第一節、實驗材料與儀器設備44
一、實驗材料44
二、實驗線蟲與菌種45
三、實驗細胞株46
四、化學藥品與試劑46
(一)、化學藥品46
(二)、溶劑48
五、細胞實驗各種溶液配方 49
(一)、毒性實驗49
(二)、抗氧化實驗50
六、線蟲實驗各種溶液及培養基配方51
七、儀器設備53
(一)、化學抗氧化能力分析相關儀器設備53
(二)、細胞抗氧化能力分析與線蟲培養相關儀器設備53
第二節、實驗方法54
A. 抗氧化活性測定54
實驗 І、化學模式54
一、抗氧化能力測定54
(一)、DPPH 自由基清除能力之測定54
(二)、總抗氧化能力 (TEAC) 之測定55
(三)、氧自由基吸收能力 (ORAC) 之測定55
(四)、還原能力之測定56
二、總酚含量測定56
實驗 ІІ、細胞模式56
一、人類肝癌細胞 Hep G2 培養條件與繼代培養56
二、細胞保存57
三、細胞解凍57
四、細胞存活率分析-MTT assay57
五、細胞抗氧化能力 (Cellular Antioxidant Activity (CAA) Assay)58
B. 抗老化活性測定59
實驗 ІІІ、線蟲模式59
一、線蟲之單一寄生物培養 (monoxenic culture)59
二、線蟲蟲卵分離59
三、線蟲保存與解凍59
四、線蟲培養與壽命期測定60
五、線蟲自體受孕生殖期測定60
六、線蟲咽喉收縮率測定61
七、線蟲耐高溫試驗61
八、線蟲耐高氧化壓力試驗61
第三節、統計分析61
伍、結果與討論62
A、抗氧化活性測定62
實驗 І、化學模式62
一、抗氧化能力測定結果62
(一)、DPPH 自由基清除能力62
(二)、總抗氧化能力 (Trolox equivalent antioxidant capacity, TEAC)66
(三)、氧自由基吸收能力 (Oxygen radical absorbance capacity, ORAC)71
(四)、還原能力75
二、總酚含量測定77
實驗 ІІ、細胞模式79
一、細胞存活率分析-MTT assay81
二、細胞抗氧化能力測定 (Cellular Antioxidant Activity (CAA) Assay)84
B. 抗老化活性測定91
實驗 ІІІ、線蟲模式91
一、壽命期測定91
二、生理表徵之觀察104
(一)、自體受孕生殖期測定 (Self-fertile reproductive span)104
(二)、咽喉收縮率測定 (Pharyngeal pumping rate)106
三、環境壓力抗性測定108
(一)、高溫環境之線蟲存活率測定108
(二)、高氧化壓力環境之線蟲存活率測定112
C、討論114
實驗 І、化學模式114
實驗 ІІ、細胞模式115
實驗 ІІІ、線蟲模式116
一、壽命期測定116
二、生理表徵之觀察119
(一)、自體受孕生殖期測定 (Self-fertile reproductive span)119
(二)、咽喉收縮率測定 (Pharyngeal pumping rate)120
三、環境壓力抗性測 120
(一)、高溫環境之線蟲存活率測定120
(二)、高氧化壓力環境之線蟲存活率測定121
陸、結論123
柒、參考文獻124
dc.language.isozh-TW
dc.subject蓮子心zh_TW
dc.subject線蟲zh_TW
dc.subject抗氧化zh_TW
dc.subjectstilbenoidszh_TW
dc.subject龍眼花zh_TW
dc.subjectanit-oxidative activityen
dc.subjectembryo of Nelumbo nucufera Gaertn.en
dc.subjectLongan floweren
dc.subjectstilbenoidsen
dc.subjectCaenorhabditis elegansen
dc.title數種花果萃出物及 stilbenoids 化合物之抗氧化活性與線蟲模式下之抗老化功效zh_TW
dc.titleAnti-oxidative and anti-aging effects of several extracts of flowers and fruits as well as stilbenoids in Caenorhabditis elegans modelen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee何其儻,周成功,蕭明熙,羅時成
dc.subject.keyword線蟲,抗氧化,stilbenoids,龍眼花,蓮子心,zh_TW
dc.subject.keywordCaenorhabditis elegans,anit-oxidative activity,stilbenoids,Longan flower,embryo of Nelumbo nucufera Gaertn.,en
dc.relation.page138
dc.rights.note有償授權
dc.date.accepted2009-02-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved