Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
  • Help
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41440
Title: 提高樣本使用效率之逐段二次迴歸樹
Sample-Efficient Piecewise Quadratic Regression Tree
Authors: Chien-Ming Chen
陳建名
Advisor: 陳正剛
Keyword: 二次效力,迴歸樹,多重迴歸,共線性,Gram-Schmidt,
quadratic effects,regression tree,multiple regression,Gram-Schmidt Process,collinearity,
Publication Year : 2009
Degree: 碩士
Abstract: 分類迴歸樹 (classification and regression tree, CART) 在資料採擷(data mining)裡是很常被使用的方法,透過對樣本資料的切割,將觀察值以二元的方式進行分類。但CART會隨著資料的分割,使樣本數快速的減少,減低預測的可靠性,因此提高樣本使用效率的迴歸樹 (Sample Efficient Regression Tree, SERT) 便提出來,利用連動效力檢定 (Interaction Effect Test) 來避免不必要的分割,但是,對於樣本裡存在著二次效力 (Quadratic Effect) 時,CART和SERT都無法檢測出來,因此我們提出了提高樣本使用效力的逐段二次迴歸樹(Sample-Efficient Piecewise Quadratic Regression Tree)來解決這個問題。
首先,我們發展了一種逐段二次迴歸模型(Piecewise Quadratic Regression Model)來對樣本中存在的二次效力作檢測,接著還利用Gram-Schmidt Process的手法發展出選擇變數的一次項和二次項的方法,以避免因為兩者間的高度共線性而造成變數選取的錯誤。
最後,我們列舉了十七個不同類型的模擬方案以及實際的例子來驗證我們提出的方法。
The classification and regression tree (CART) is a popular method in data mining. It classifies the responses by sequentially splitting the sample into two branches. In CART, the sample size will deplete quickly and the reliability of prediction will diminish with splitting sample. Therefore, the sample efficient regression tree (SERT) is proposed. It uses interaction effect test to avoid unnecessary splits. However, CART and SERT can not detect the quadratic effect. For this reason, we propose the sample-efficient piecewise quadratic regression tree to solve the problem.
First we develop the piecewise quadratic regression model to detect the quadratic effect. Then, we use the Gram-Schmidt to resolve the possible multicollinearity issue between the linear effect and the quadratic effect. With this process, we can avoid wrong attribute selection resulted from statistical insignificance due to collinearity between the linear effect and the quadratic effect.
Finally, we use seventeen simulated cases and a real case to verify our proposed method.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41440
Fulltext Rights: 有償授權
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
4.53 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved