Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41016
標題: 顆粒床過濾與負載特性
Filtration and Loading Characteristics of Granular Bed Filters
作者: Mei-Fang Hsiao
蕭美芳
指導教授: 陳志傑
關鍵字: 顆粒床濾材,過濾品質,孔隙度,氣膠量測,微粒負載,針孔,
granular bed,filter quality,porosity,loading,pinholes,
出版年 : 2008
學位: 碩士
摘要: The purpose of this study was to investigate the filtration and loading characteristics of granular bed filters. Stainless steel holders (diameter 71.6 mm, height 70 mm) were fabricated to accommodate 500g of zirconium oxide (ZrO2) beads, as the packed media of granular bed. Monodisperse ZrO2 granules (0.3, 0.8, 2 and 4 mm in diameter) were used to demonstrate the effect of the granule size and packing geometry (uniformity of 0, 30 and 45) on both pressure drop and aerosol penetration. The ZrO2 granular bed filter has a constant porosity of 0.48 and is independent of granule size. The size distributions and number concentrations upstream and downstream of the granular bed filter were measured using a scanning mobility particle sizer and an aerodynamic particle sizer. Face velocities, ranging from 0.58 to 14.8 cm/sec, were varied to study the flow dependency. The experimental data were compared with empirical models developed in previous studies. For aerosol loading, 10 micrometer monodisperse acrylic powders was used. A fibrous filter was used in loading test for comparison purpose.
The penetration test results showed that aerosol penetration increased greatly with increasing granule size of the filter beads. For submicrometer-sized aerosol particles, the aerosol penetration increased with increasing face velocity due to shorter retention time within filter media. For micrometer-sized particles, the aerosol penetration decreased with increasing face velocity, apparently due to higher inertial impaction. From the filter quality perspective, the selection of the ‘best” filter is complicate. Assuming a low face velocity (e.g., 0.58 cm/sec), large granular size is more cost-effective because of the higher filter quality factor. The phenomenon implies that the gain in filtration efficiency due to larger surface area (of small granules in the filter) did not compensate for the increase in air resistance. In the case of high face velocity, the “best” filter is dependent on the size of the particles to be removed. In order to remove large particles, small granules should be used. Large granules are preferred for removing small aerosol particles.
In comparison to the more familiar fibrous filter, the granular bed filter had very different loading characteristics. The pressure drops across both fibrous the granular bed filters increased with increasing mass loaded on the filter. After the cake formation point, the dust cake on glass fiber filter became compressed. This dust cake compaction caused the pressure to drop precipitously and intermittently. In contrast, the rate of increase in pressure drop of the dust cake formed on the granular bed filters decreased with time probably due to the pinhole leaks in the increasing mass loading. The size and density of the pinholes are determined by the granule size, the face velocity and the size of the challenge aerosols.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41016
全文授權: 有償授權
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.19 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved