Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑
dc.contributor.authorMei-Fang Hsiaoen
dc.contributor.author蕭美芳zh_TW
dc.date.accessioned2021-06-14T17:12:02Z-
dc.date.available2009-12-25
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citationBrown, R. C. (1993). Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters. Pergamon press, Oxford, 201-206.
Chen, C. C., Chen, W. Y., Huang, S. H., Lin, W. Y., Kuo, Y. M. and Jeng, F. T. (2001). Experimental Study on the Loading Characteristics of Needlefelt Filters with Micrometer-Sized Monodisperse Aerosols. Aerosol Science and Technology 34:262-273.
Dickenson, C. (1992). Filters and Filtration Handbook Elsevier Advanced Technology, Oxford, U.K, 66-89.
D'Ottavio, T. and Goren, L. S. (1983). Aerosol capture in granular beds in the impaction dominated regime. Aerosol Science and Technology:91-108.
Endo, Y., Chen, D.-R. and Pui, D. Y. H. (1998). Effects of particle polydispersity and shape factor during dust cake loading on air filters. Powder Technology:241-249.
Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress 48:89-94.
Gal, E., Tardos, G. I. and Pfeffer, R. (1985). A study of inertial effects in granular bed filtration. American Institute of Chemical Engineers Journal 31:1093-1104.
Gutfinger, C. and Tardos, G. I. (1979). Theoretical and experimental investigation on granular bed dust filters. Atmospheric Environment 13:853-867.
Hinds, W. C. (1999). Aerosol Technology. Wiley, New York, 182-205.
Höflinger, W. (1998). Fundamentals of the compression behavior of dust filter cakes., in Advances in Aerosol Filtration, K. R. Spurny, ed., Lewis Publishers, Boca Raton, FL 349-360.
Höflinger, W., Stöcklmayer, C. and A., H. (1994). Model Calculation of the compression behavior of dust filters cakes. Filtration and Separation:807-811.
Langmuir, I. (1942). Aerosols and the development of filter materials, in Office of scientific research and development (OSRD) report, No. 865..
Lee, K. W. (2001). Filter collection, in Aerosol Measurement: Principles, Techniques and Applications., P. A. Baron and K. Willeke, eds., Wiley, New York, 197-228.
Macdonald, I. F., EI-Sayed, M. S., Mow, K. and Dullien, F. A. (1979). Flow through porous media-the Ergun equation revisited. American Chemical Society 18:199-207.
Pfeffer, R., Tardos, G. I. and Pismen, L. (1981). Capture of aerosols on a sphere in the presence of weak electrostatic forces. Industrial & Engineering Chemistry Fundamentals 20.
Schmidt, E. (1995). Experimental investigations into the compression of dust cakes deposited on filter media. Filtration and Separation:789-793.
Schmidt, E. (1997). Theoretical investigations into the compression of dust cakes deposited on filter media. Filtration and Separation:365-368.
Schmidt, E. W., Gieseke, J. A., Gelfand, P., Lugar, T. W. and Frulong, D. A. (1978). Filtration theory for granular beds. Journal of the Air Pollution Control Association 28:143-146.
Spurny, K. R. (1998). The history of dust and aerosol filtration., in Advances in Aerosol Filtration, K. R. Spurny, ed., Lewis Publishers, Boca Raton, FL 3-12.
Tardos, G. I. (1998). Separation of airbone dust in deep-bed filtration., in Advances in Aerosol Filtration, K. R. Spurny, ed., Lewis Publishers, Boca Raton, FL 241-257.
Tardos, G. I., Gutfinger, C. and Abuaf, N. (1976). High peclet number mass transfer to a sphere in a fixed or fluidized bed. American Institute of Chemical Engineers Journal 22:1146.
Tardos, G. I. and Pfeffer, R. (1980). Interceptional and gravitational deposition of inertilaess particles on a single sphere in a granular bed. American Institute of Chemical Engineers Journal 26:698-701.
Tardos., G. I. (2002). Granular bed filters., in Handbook of filter media, B. Derek and K. Sutherland, eds., Elsevier Advanced Technology, Oxford ; New York 771-780.
Thomas, D., Contal, P., Renaudin, V., Penicot, P., Leclerc, D. and Vendel, J. (1999). Modeling pressure drop in HEPA filters during dynamic filteration. Aerosol Science 30:12.
Thomas, D., Penicot, P., Contal, P., Leclerc, D. and Vendel, J. (2001). Clogging of fibrous filters by solid aerosol particles Experiemntal and modelling study. Chmeical Engineering Science 56:3549-3561.
Tien, C. (1989). Granular Filtration of Aerosol and Hydrosols, Butterworth Publishers, Boston, 1-8.
林志威與陳志傑 (2005). 影響活性碳濾毒罐效能因子評估研究 國立台灣大學職業醫學與工業衛生研究所, 52
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41016-
dc.description.abstractThe purpose of this study was to investigate the filtration and loading characteristics of granular bed filters. Stainless steel holders (diameter 71.6 mm, height 70 mm) were fabricated to accommodate 500g of zirconium oxide (ZrO2) beads, as the packed media of granular bed. Monodisperse ZrO2 granules (0.3, 0.8, 2 and 4 mm in diameter) were used to demonstrate the effect of the granule size and packing geometry (uniformity of 0, 30 and 45) on both pressure drop and aerosol penetration. The ZrO2 granular bed filter has a constant porosity of 0.48 and is independent of granule size. The size distributions and number concentrations upstream and downstream of the granular bed filter were measured using a scanning mobility particle sizer and an aerodynamic particle sizer. Face velocities, ranging from 0.58 to 14.8 cm/sec, were varied to study the flow dependency. The experimental data were compared with empirical models developed in previous studies. For aerosol loading, 10 micrometer monodisperse acrylic powders was used. A fibrous filter was used in loading test for comparison purpose.
The penetration test results showed that aerosol penetration increased greatly with increasing granule size of the filter beads. For submicrometer-sized aerosol particles, the aerosol penetration increased with increasing face velocity due to shorter retention time within filter media. For micrometer-sized particles, the aerosol penetration decreased with increasing face velocity, apparently due to higher inertial impaction. From the filter quality perspective, the selection of the ‘best” filter is complicate. Assuming a low face velocity (e.g., 0.58 cm/sec), large granular size is more cost-effective because of the higher filter quality factor. The phenomenon implies that the gain in filtration efficiency due to larger surface area (of small granules in the filter) did not compensate for the increase in air resistance. In the case of high face velocity, the “best” filter is dependent on the size of the particles to be removed. In order to remove large particles, small granules should be used. Large granules are preferred for removing small aerosol particles.
In comparison to the more familiar fibrous filter, the granular bed filter had very different loading characteristics. The pressure drops across both fibrous the granular bed filters increased with increasing mass loaded on the filter. After the cake formation point, the dust cake on glass fiber filter became compressed. This dust cake compaction caused the pressure to drop precipitously and intermittently. In contrast, the rate of increase in pressure drop of the dust cake formed on the granular bed filters decreased with time probably due to the pinhole leaks in the increasing mass loading. The size and density of the pinholes are determined by the granule size, the face velocity and the size of the challenge aerosols.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:12:02Z (GMT). No. of bitstreams: 1
ntu-97-R94841011-1.pdf: 1215870 bytes, checksum: cdb60f8f1e841898a09e242a3d45cbe0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAbstract 1
摘要 3
一. 研究背景與目的 5
1-1濾材使用的目的 5
1-2濾材的種類及特性 5
1-2-1編織性濾材 5
1-2-2纖維性濾材 5
1-2-3薄膜濾材 6
1-2-4顆粒狀濾材 6
1-3顆粒床與一般濾材的差別 7
1-3-1顆粒床與填充床 7
1-3-2顆粒床與一般纖維性濾材 7
1-4顆粒床的應用 8
1-5主要目的 8
二. 文獻探討 10
2-1顆粒床的過濾理論 10
2-2顆粒床壓降模式 13
2-3濾材負載特性 14
2-4濾材阻塞 15
2-5粉餅的孔隙度 16
2-6粉餅的壓縮特性 17
三. 研究方法 19
3-1顆粒床的過濾特性 19
3-1-1實驗設計 19
3-1-2實驗裝置 19
3-1-3實驗步驟 22
3-2顆粒床的負載特性 23
3-2-1實驗設計 23
3-2-2實驗裝置 23
3-2-3實驗步驟 24
四. 結果與討論 25
4-1顆粒床壓降 25
4-2不同顆粒床的填充粒徑之過濾情形 25
4-3不同流量對相同填充粒徑之過濾情形 26
4-4顆粒床過濾模式與實驗值比較 26
4-5顆粒床過濾品質 26
4-6不同表面傾斜度顆粒床之壓降變化 27
4-7不同表面傾斜度顆粒床之穿透率及過濾品質 27
4-8顆粒床的微粒負載 28
4-9顆粒床之粉餅結構 29
五. 結論與建議 31
六. 參考文獻 33
dc.language.isozh-TW
dc.subject孔隙度zh_TW
dc.subject微粒負載zh_TW
dc.subject顆粒床濾材zh_TW
dc.subject針孔zh_TW
dc.subject氣膠量測zh_TW
dc.subject過濾品質zh_TW
dc.subjectporosityen
dc.subjectpinholesen
dc.subjectloadingen
dc.subjectfilter qualityen
dc.subjectgranular beden
dc.title顆粒床過濾與負載特性zh_TW
dc.titleFiltration and Loading Characteristics of Granular Bed Filtersen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭福田,陳友剛,林文印
dc.subject.keyword顆粒床濾材,過濾品質,孔隙度,氣膠量測,微粒負載,針孔,zh_TW
dc.subject.keywordgranular bed,filter quality,porosity,loading,pinholes,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2008-07-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved