請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40997完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞 | |
| dc.contributor.author | Hsin-Ya Lin | en |
| dc.contributor.author | 林欣雅 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:10:56Z | - |
| dc.date.available | 2016-09-20 | |
| dc.date.copyright | 2011-09-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-22 | |
| dc.identifier.citation | 行政院衛生署。2010。中華民國98年國人死因統計結果分析。
沈宜蓁。2005。龍眼花萃取物抗氧化性之探討。國立臺灣大學食品科技研究所。碩士論文。 黃潔妤。2009。龍眼花水萃物(LFWE)之乙酸乙酯區分層對高果糖誘發大鼠代謝症候群之改善功效。國立臺灣大學食品科技研究所。碩士論文。 Adeli, K., & Rutledge, A. C. (2007). Fructose and the metabolic syndrome: Pathophysiology and molecular mechanisms. Nutrition Reviews, 65(6), S13-S23. Arnaudeau, S., Frieden, M., Nakamura, K., Castelbou, C., Michalak, M., & Demaurex, N. (2002). Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. Journal of Biological Chemistry, 277(48), 46696-46705. Bastianutto, C., Clementi, E., Codazzi, F., Podini, P., Degiorgi, F., Rizzuto, R., et al. (1995). Overexpression of Calreticulin Increases the Ca2+ Capacity of Rapidly Exchanging Ca2+ Stores and Reveals Aspects of Their Lumenal Microenvironment and Function. Journal of Cell Biology, 130(4), 847-855. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. New York: W.H. Freeman. Bergner, A., Kellner, J., Tufman, A., & Huber, R. M. (2009). Endoplasmic reticulum Ca2+-homeostasis is altered in small and non-small cell lung cancer cell lines. Journal of Experimental & Clinical Cancer Research, 28, -. Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. [Review]. Cell, 103(2), 311-320. Carrillo, J. J., Ibares, B., Esteban-Gamboa, A., & Feliu, J. E. (2001). Involvement of both phosphatidylinositol 3-kinase and p44/p42 mitogen-activated protein kinase pathways in the short-term regulation of pyruvate kinase L by insulin. Endocrinology, 142(3), 1057-1064. Chakravarthi, S., Jessop, C. E., & Bulleid, N. J. (2006). The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. [10.1038/sj.embor.7400645]. EMBO Rep, 7(3), 271-275. Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M. E., Pratipanawatr, T., et al. (2000). Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. The Journal of Clinical Investigation, 105(3), 311-320. Danforth, E. (2000). Failure of adipocyte differentiation causes type II diabetes mellitus? Nature Genetics, 26(1), 13-13. Decaux, J. F., Antoine, B., & Kahn, A. (1989). Regulation of the Expression of the L-Type Pyruvate-Kinase Gene in Adult-Rat Hepatocytes in Primary Culture. Journal of Biological Chemistry, 264(20), 11584-11590. DeGracia, D. J., Kumar, R., Owen, C. R., Krause, G. S., & White, B. C. (2002). Molecular Pathways of Protein Synthesis Inhibition During Brain Reperfusion[colon] Implications for Neuronal Survival or Death. J Cereb Blood Flow Metab, 22(2), 127-141. Distelhorst, C. W., & Shore, G. C. (2004). Bcl-2 and calcium: controversy beneath the surface. Oncogene, 23(16), 2875-2880. Dong, H. H., Kamagate, A., Kim, D. H., Zhang, T., Slusher, S., Gramignoli, R., et al. (2010). FoxO1 Links Hepatic Insulin Action to Endoplasmic Reticulum Stress. Endocrinology, 151(8), 3521-3535. Egan, B. M., Greene, E. L., & Goodfriend, T. L. (2001). Insulin resistance and cardiovascular disease. Am J Hypertens, 14(6 Pt 2), 116S-125S. Eizirik, D. L., Cardozo, A. K., & Cnop, M. (2008). The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocrine Reviews, 29(1), 42-61. Flanagan, J. L., Simmons, P. A., Vehige, J., Willcox, M. D. P., & Garrett, Q. (2010). Role of carnitine in disease. Nutrition & Metabolism, 7. Ford, E. S. (2003). The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis, 168(2), 351-358. Fukaya, Y., & Yamaguchi, M. (2004). Regucalcin increases superoxide dismutase activity in rat liver cytosol. Biological & Pharmaceutical Bulletin, 27(9), 1444-1446. Funakoshi, A., Tateishi, K., Shinozaki, H., Matsumoto, M., & Wakasugi, H. (1990). Elevated plasma levels of pancreastatin (PST) in patients with non-insulin-dependent diabetes mellitus (NIDDM). Regulatory Peptides, 30(2), 159-164. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., et al. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation, 114(12), 1752-1761. Ginsberg, H. N. (2000). Insulin resistance and cardiovascular disease. The Journal of Clinical Investigation, 106(4), 453-458. Grattagliano, I., Palmieri, V. O., Portincasa, P., Moschetta, A., & Palasciano, G. (2008). Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. Journal of Nutritional Biochemistry, 19(8), 491-504. Gu, W., Banks, A. S., Kon, N., Knight, C., Matsumoto, M., Gutierrez-Juarez, R., et al. (2008). SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metabolism, 8(4), 333-341. Gullo, C., Hwang, W., Poh, C., Au, M., Cow, G., & Teoh, G. (2008). Use of ultraviolet light irradiated multiple myeloma cells as immunogens to generate tumor-specific cytolytic T lymphocytes. Journal of Immune Based Therapies and Vaccines, 6, 2. Guo, L., Lynch, J., Nakamura, K., Fliegel, L., Kasahara, H., Izumo, S., et al. (2001). COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. Journal of Biological Chemistry, 276(4), 2797-2801. Guyton, J. R., Miranda, P. J., DeFronzo, R. A., & Califf, R. M. (2005). Metabolic syndrome: Definition, pathophysiology, and mechanisms. American Heart Journal, 149(1), 33-45. Haffner, S. M., Han, T. S., Sattar, N., Williams, K., Gonzalez-Villalpando, C., & Lean, M. E. J. (2002). Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care, 25(11), 2016-2021. Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol, 5, 253-295. Hallfrisch, J. (1990). Metabolic Effects of Dietary Fructose. Faseb Journal, 4(9), 2652-2660. Hallows, W. C., Smith, B. C., Lee, S., & Denu, J. M. (2009). Ure(k)a! Sirtuins Regulate Mitochondria. Cell, 137(3), 404-406. Hanash, S. (2003). Disease proteomics. Nature, 422(6928), 226-232. Hong, S. H., Misek, D. E., Wang, H., Puravs, E., Giordano, T. J., Greenson, J. K., et al. (2004). An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Research, 64(15), 5504-5510. Hoorn, E. J., Hoffert, J. D., & Knepper, M. A. (2006). The application of DIGE-based proteomics to renal physiology. Nephron Physiol, 104(1), p61-72. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., & Spiegelman, B. M. (1995). Increased Adipose-Tissue Expression of Tumor-Necrosis-Factor-Alpha in Human Obesity and Insulin-Resistance. Journal of Clinical Investigation, 95(5), 2409-2415. Hotamisligil, G. S., Hirosumi, J., Tuncman, G., Chang, L. F., Gorgun, C. Z., Uysal, K. T., et al. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420(6913), 333-336. Hsieh, M.-C., Shen, Y.-J., Kuo, Y.-H., & Hwang, L. S. (2008). Antioxidative Activity and Active Components of Longan (Dimocarpus longan Lour.) Flower Extracts. Journal of Agricultural and Food Chemistry, 56(16), 7010-7016. Kahn, C. R., Flier, J. S., Bar, R. S., Archer, J. A., Gorden, P., Martin, M. M., et al. (1976). The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med, 294(14), 739-745. Kemper, J. K., Ponugoti, B., Kim, D. H., Xiao, Z., Smith, Z., Miao, J., et al. (2010). SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism. Journal of Biological Chemistry, 285(44), 33959-33970. Kim, J. B., Park, J., Rho, H. K., Kim, K. H., Choe, S. S., & Lee, Y. S. (2005). Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Molecular and Cellular Biology, 25(12), 5146-5157. Kolli, S., Zito, C. I., Mossink, M. H., Wiemer, E. A. C., & Bennett, A. M. (2004). The Major Vault Protein Is a Novel Substrate for the Tyrosine Phosphatase SHP-2 and Scaffold Protein in Epidermal Growth Factor Signaling. Journal of Biological Chemistry, 279(28), 29374-29385. Kousteni, S. (2011). FoxO1, the transcriptional chief of staff of energy metabolism. Bone. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1[alpha]. Cell, 127(6), 1109-1122. Lai, P., Yip, N. C., & Michelangeli, F. (2011). Regucalcin (RGN/SMP30) alters agonist- and thapsigargin-induced cytosolic [Ca2+] transients in cells by increasing SERCA Ca2+ATPase levels. FEBS Letters, 585(14), 2291-2294. Latasa, M.-J., Griffin, M. J., Moon, Y. S., Kang, C., & Sul, H. S. (2003). Occupancy and Function of the -150 Sterol Regulatory Element and -65 E-Box in Nutritional Regulation of the Fatty Acid Synthase Gene in Living Animals. Mol. Cell. Biol., 23(16), 5896-5907. Le, K. A., & Tappy, L. (2006). Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 469-475. Lee, H., Lee, Y. J., Choi, H., Ko, E. H., & Kim, J. W. (2009). Reactive Oxygen Species Facilitate Adipocyte Differentiation by Accelerating Mitotic Clonal Expansion. Journal of Biological Chemistry, 284(16), 10601-10609. Li, C., Allen, A., Kwagh, J., Doliba, N. M., Qin, W., Najafi, H., et al. (2006). Green Tea Polyphenols Modulate Insulin Secretion by Inhibiting Glutamate Dehydrogenase. Journal of Biological Chemistry, 281(15), 10214-10221. Li, X., & Kazgan, N. (2011). Mammalian sirtuins and energy metabolism. Int J Biol Sci, 7(5), 575-587. Li, X. L., & Kazgan, N. (2011). Mammalian Sirtuins and Energy Metabolism. International Journal of Biological Sciences, 7(5), 575-587. Li, X. L., Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., & Guo, X. M. (2009). Hepatocyte-Specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation. Cell Metabolism, 9(4), 327-338. Li, Y., & Camacho, P. (2004). Ca2+-dependent redox modulation of SERCA 2b by ERp57. Journal of Cell Biology, 164(1), 35-46. Mahata, S. K., Gayen, J. R., Saberi, M., Schenk, S., Biswas, N., Vaingankar, S. M., et al. (2009). A Novel Pathway of Insulin Sensitivity in Chromogranin A Null Mice A CRUCIAL ROLE FOR PANCREASTATIN IN GLUCOSE HOMEOSTASIS. Journal of Biological Chemistry, 284(42), 28498-28509. Malhotra Jyoti, D., & Kaufman Randal, J. (2007). Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxidants & redox signaling, 9(12), 2277-2293. Marko-Varga, G. (2004). Proteomics principles and challenges. Pure and Applied Chemistry, 76(4), 829-837. Martini, G., & Ursini, M. V. (1996). A new lease of life for an old enzyme. Bioessays, 18(8), 631-637. Matsuda, T., Noguchi, T., Yamada, K., Takenaka, M., & Tanaka, T. (1990). Regulation of the Gene Expression of Glucokinase and L-Type Pyruvate Kinase in Primary Cultures of Rat Hepatocytes by Hormones and Carbohydrates. Journal of Biochemistry, 108(5), 778-784. McDaniel, M. L., Xu, G., Kwon, G., Cruz, W. S., & Marshall, C. A. (2001). Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes, 50(2), 353-360. Mery, L., Mesaeli, N., Michalak, M., Opas, M., Lew, D. P., & Krause, K. H. (1996). Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. Journal of Biological Chemistry, 271(16), 9332-9339. Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K. H., et al. (1999). Calreticulin is essential for cardiac development. Journal of Cell Biology, 144(5), 857-868. Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal, 417(3), 651-666. Miyazaki, Y., Mahankali, A., Matsuda, M., Mahankali, S., Hardies, J., Cusi, K., et al. (2002). Effect of Pioglitazone on Abdominal Fat Distribution and Insulin Sensitivity in Type 2 Diabetic Patients. Journal of Clinical Endocrinology & Metabolism, 87(6), 2784-2791. Monga, S. P., Nejak-Bowen, K. N., Zeng, G., Tan, X. P., & Cieply, B. (2009). beta-Catenin Regulates Vitamin C Biosynthesis and Cell Survival in Murine Liver. Journal of Biological Chemistry, 284(41), 28115-28127. Morini, S., Carotti, S., Carpino, G., Franchitto, A., Corradini, S. G., Merli, M., et al. (2005). GFAP expression in the liver as an early marker of stellate cells activation. Ital J Anat Embryol, 110(4), 193-207. Muoio, D. M., & Newgard, C. B. (2004). Insulin resistance takes a trip through the ER. Science, 306(5695), 425-426. Myers Jr, M. G. (2006). Role reversal: Brain insulin and liver STAT3. Cell Metabolism, 3(4), 231-232. Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., et al. (2001). Functional specialization of calreticulin domains. Journal of Cell Biology, 154(5), 961-972. Neumann, C. A., Cao, J., & Manevich, Y. (2009). Peroxiredoxin 1 and its role in cell signaling. Cell Cycle, 8(24), 4072-4078. O’Connor, D. T., Cadman, P. E., Smiley, C., Salem, R. M., Rao, F., Smith, J., et al. (2005). Pancreastatin: Multiple Actions on Human Intermediary Metabolism in Vivo, Variation in Disease, and Naturally Occurring Functional Genetic Polymorphism. Journal of Clinical Endocrinology & Metabolism, 90(9), 5414-5425. Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11(4), 381-389. Pérez-Chacón, G., Astudillo, A. M., Balgoma, D., Balboa, M. A., & Balsinde, J. (2009). Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1791(12), 1103-1113. Pandol, S. J., Gorelick, F. S., & Lugea, A. (2011). Environmental and genetic stressors and the unfolded protein response in exocrine pancreatic function - a hypothesis. Front Physiol, 2, 8. Pickup, J. C., Mattock, M. B., Chusney, G. D., & Burt, D. (1997). NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia, 40(11), 1286-1292. Pressinotti, N. C., Klocker, H., Schafer, G., Luu, V. D., Ruschhaupt, M., Kuner, R., et al. (2009). Differential expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between low- and high-risk prostate cancer. Mol Cancer, 8, 130. Qu, C. K. (2000). The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions. Cell Res, 10(4), 279-288. Ricardo-Gonzalez, R. R., Red Eagle, A., Odegaard, J. I., Jouihan, H., Morel, C. R., Heredia, J. E., et al. (2010). IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A, 107(52), 22617-22622. Rubartelli, A., & Sitia, R. (2009). Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid Redox Signal, 11(10), 2621-2629. Sánchez-Margalet, V., & Goberna, R. (1994). Pancreastatin inhibits insulin-stimulated glycogen synthesis but not glycolysis in rat hepatocytes. Regulatory Peptides, 51(3), 215-220. Sánchez-Margalet, V., González-Yanes, C., Najib, S., & Santos-Álvarez, J. (2010). Reprint of: Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regulatory Peptides, 165(1), 71-77. Salati, L. M., & Amir-Ahmady, B. (2001). DIETARY REGULATION OF EXPRESSION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE. Annual Review of Nutrition, 21(1), 121-140. Samali, A., Fitzgerald, U., Deegan, S., & Gupta, S. (2010). Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol, 2010, 830307. Sanchez, J. C., Schmid, G. M., Meda, P., Caille, D., Wargent, E., O'Dowd, J., et al. (2007). Inhibition of insulin secretion by betagranin, an N-terminal chromogranin A fragment. Journal of Biological Chemistry, 282(17), 12717-12724. Schroder, M., & Sutcliffe, L. (2010). Consequences of stress in the secretory pathway: The ER stress response and its role in the metabolic syndrome. Methods Mol Biol, 648, 43-62. Semplicini, A., Ceolotto, G., Massimino, M., Valle, R., Serena, L., Detoni, R., et al. (1994). Interactions between Insulin and Sodium Homeostasis in Essential-Hypertension. American Journal of the Medical Sciences, 307, S43-S46. Silvennoinen, O., Yang, J., Aittomaki, S., Pesu, M., Carter, K., Saarinen, J., et al. (2002). Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. Embo Journal, 21(18), 4950-4958. Soleimani, M. (2011). Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf), 201(1), 55-62. Soupene, E., & Kuypers, F. A. (2008). Mammalian Long-Chain Acyl-CoA Synthetases. Exp. Biol. Med., 233(5), 507-521. St-Onge, M.-P. (2005). Dietary fats, teas, dairy, and nuts: potential functional foods for weight control? The American Journal of Clinical Nutrition, 81(1), 7-15. Stanley, C. A. (2009). Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. The American Journal of Clinical Nutrition, 90(3), 862S-866S. Stanley, C. A., Lieu, Y. K., Hsu, B. Y. L., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., et al. (1998). Hyperinsulinism and Hyperammonemia in Infants with Regulatory Mutations of the Glutamate Dehydrogenase Gene. New England Journal of Medicine, 338(19), 1352-1357. Steiner, E., Holzmann, K., Pirker, C., Elbling, L., Micksche, M., Sutterlüty, H., et al. (2006). The major vault protein is responsive to and interferes with interferon-γ-mediated STAT1 signals. Journal of Cell Science, 119(3), 459-469. Sugden, M. C., Caton, P. W., & Holness, M. J. (2010). PPAR control: it's SIRTainly as easy as PGC. Journal of Endocrinology, 204(2), 93-104. Suprenant, K. A. (2002). Vault ribonucleoprotein particles: sarcophagi, gondolas, or safety deposit boxes? Biochemistry, 41(49), 14447-14454. Sutherland, J. P., McKinley, B., & Eckel, R. H. (2004). The metabolic syndrome and inflammation. Metab Syndr Relat Disord, 2(2), 82-104. Tai, C.-J., Chin-Sheng, H., Kuo, L.-J., Wei, P.-L., Lu, H.-H., Chen, H.-A., et al. (2011). Survivin-Mediated Cancer Cell Migration Through GRP78 and Epithelial-Mesenchymal Transition (EMT) Marker Expression in Mahlavu Cells. Annals of Surgical Oncology, 1-8. Tappy, L., & Lê, K.-A. (2010). Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiological Reviews, 90(1), 23-46. Tian, H., Lin, D. C. H., Bullock, C. M., Ehlert, F. J., Chen, J. L., & Zhou, Q. Y. (2002). Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. Journal of Biological Chemistry, 277(22), 19276-19280. Tsai, H.-Y., Wu, L.-Y., & Hwang, L. S. (2008). Effect of a Proanthocyanidin-Rich Extract from Longan Flower on Markers of Metabolic Syndrome in Fructose-Fed Rats. Journal of Agricultural and Food Chemistry, 56(22), 11018-11024. van Poelje, P. D., Dang, Q., & Erion, M. D. (2007). Fructose-1,6-bisphosphatase as a therapeutic target for type 2 diabetes. Drug Discovery Today: Therapeutic Strategies, 4(2), 103-109. Vaz, F. M., & Wanders, R. J. (2002). Carnitine biosynthesis in mammals. Biochem J, 361(Pt 3), 417-429. Wahba, I. M., & Mak, R. H. (2007). Obesity and Obesity-Initiated Metabolic Syndrome: Mechanistic Links to Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology, 2(3), 550-562. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 112(12), 1796-1808. Westphal, C. H., Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 450(7170), 712-716. Xu, J., Ji, S., Venable, D. Y., Franklin, J. L., & Messina, J. L. (2005). Prolonged insulin treatment inhibits GH signaling via STAT3 and STAT1. Journal of Endocrinology, 184(3), 481-492. Xu, Y. Z., Osborne, B. W., & Stanton, R. C. (2005). Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. American Journal of Physiology-Renal Physiology, 289(5), F1040-F1047. Yamada, K., & Noguchi, T. (1999). Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochemical Journal, 337, 1-11. Yamaguchi, M. (2011). The transcriptional regulation of regucalcin gene expression. Molecular and Cellular Biochemistry, 346(1), 147-171. Yamaguchi, M., & Nakashima, C. (2006). Overexpression of regucalcin enhances glucose utilization and lipid production in cloned rat hepatoma H4-II-E cells: Involvement of insulin resistance. Journal of Cellular Biochemistry, 99(6), 1582-1592. Yen, G.-C., Chen, Y.-C., Chang, W.-T., & Hsu, C.-L. (2011). Effects of Polyphenolic Compounds on Tumor Necrosis Factor-alpha (TNF-alpha)-Induced Changes of Adipokines and Oxidative Stress in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry, 59(2), 546-551. Zang, M. W., Li, Y., Xu, S. Q., Giles, A., Nakamura, K., Lee, J. W., et al. (2011). Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. Faseb Journal, 25(5), 1664-1679. Zhang, H. R., & Zhang, C. H. (2009). Interferon-gamma Induced Adipose Inflammation Linked to the Impairment of Vascular Function in Type 2 Diabetic Mice. Circulation, 120(18), S1038-S1039. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J. Y., et al. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. Journal of Cell Biology, 162(1), 59-69. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40997 | - |
| dc.description.abstract | 代謝症候群(metabolic syndrome)盛行於已開發國家中,為數種代謝異常症狀的綜合臨床徵兆。根據前人研究,龍眼花水萃物於高果糖餵食誘導模式中可減緩大鼠之代謝症候群症狀,然而,其分子機制路徑尚未得知。因此,本實驗室取基礎飲食組(A)、高果糖飲食組(B)、龍眼花水萃物灌食組(C)之大鼠肝臟進行蛋白質體學方法分析,利用差異性螢光標記二維電泳膠體(2-dimensional differential gel electrophoresis, 2D-DIGE)及電噴霧串聯質譜法(electrospray ionization-tandem mass spectrometry, ESI-MS-MS)鑑定出在三種實驗條件下表現量具有差異的蛋白質,透過文獻探討與實驗確認,試圖建立各蛋白質間所依循的分子路徑,提出龍眼花水萃物對於代謝症候群改善作用之假說。本實驗室在分析蛋白質體學資料後,發現數種具有結合細胞內鈣離子能力且受內質網壓力所調控之蛋白質,分別為78 kDa glucose-regulated protein (GRP78)、94 kDa glucose-regulated protein (GRP94)、calreticulin (CRT)、 protein disulfide-isomerase A3 (PDIA3),其中GRP78蛋白被眾多文獻用於作為偵測內質網壓力之指標;數據已透過即時定量聚合酶連鎖反應作進一步確認,因此我們推斷龍眼花水萃物可能透過抑制內質網壓力來減緩代謝症候群。以HepG2細胞模式進行驗證,結果顯示龍眼花水萃物可抑制tunicamycin所誘發的內質網壓力,使上述四種蛋白質表現量降低,證明龍眼花水萃物具有抑制內質網壓力之效果,而可佐證龍眼花水萃物改善代謝症候群之分子機制可能部分來自抑制內質網壓力。 | zh_TW |
| dc.description.abstract | Metabolic syndrome (MetS) is prevalent in the developed countries, consisting of several metabolic abnormal symptoms. According to the previous study, the water extract of Longan (Dimocarpus longan Lour.) flower (LFWE) could attenuate the symptoms of MetS in fructose-fed rat model. Nevertheless, the molecular mechanism remains unknown. In this study, we employed proteomic analysis by 2-dimensional differential gel electrophoresis (2D-DIGE) and electrospray ionization-tandem mass spectrometry (ESI-MS-MS) to investigate the possible molecular pathway. Through the differential protein patterns displayed in the livers among control, high fructose, and high fructose plus LFWE treated rats, the mechanism underlying the preventive function of LFWE and the pathogenic signaling pathways MetS might be explored. Through proteomic results, we have identified the differential expression of several endoplasmic reticulum (ER) stress related proteins, including 78 kDa glucose-regulated protein (GRP78), 94 kDa glucose-regulated protein (GRP94), calreticulin (CRT), protein disulfide-isomerase A3 (PDIA3). The real time PCR results further confirmed the involvement of the above proteins after LFWE treatment. We thus hypothesize that endoplasmic reticulum(ER) stress may be the target for LFWE mediated prevention of MetS. Utilizing HepG2 cell as cell model, we observed that LFWE inhibited ER stress and the mRNA expression of those ER stress marker proteins identified from our proteomics results. The result indicates LFWE might attenuate MetS at least partially through inhibiting ER stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:10:56Z (GMT). No. of bitstreams: 1 ntu-100-R98641036-1.pdf: 24670292 bytes, checksum: eaf904219a824c8d85fdd650096ff53c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 ii
Abstract iii 目錄 viii 壹、前言 1 貳、文獻回顧 3 一、代謝症候群(metabolic syndrome)於臺灣盛行之現況 3 二、代謝症候群(metabolic syndrome)之成因 5 (一) 研究歷史 5 (二) 症狀定義 5 (三) 病理成因 5 三、高果糖飲食誘導代謝症候群(metabolic syndrome)之動物模式 13 (一) 果糖之消化吸收作用 13 (二) 果糖於肝臟之代謝路徑 13 (三) 攝取過量果糖導致體內代謝異常之效應 15 四、龍眼花水萃物(LFWE)之先期研究成果 20 (一) 龍眼花 20 (二) 龍眼花萃取物功效成分研究 20 五、蛋白質體學分析技術之應用 21 (一) 蛋白質體 21 (二) 蛋白質體學研究方法 22 參、研究目的與實驗架構 25 一、研究目的 25 二、實驗架構 25 肆、材料與方法 27 一、實驗材料來源 27 (一) 大鼠肝臟 27 (二) HepG2細胞 27 (三) 試劑與藥品 28 二、實驗方法 29 (一) 蛋白質體學分析技術 29 (二) 即時定量聚合酶連鎖反應(real-time PCR) 32 (三) 細胞試驗 37 伍、結果 39 一、蛋白質體學差異性螢光標記二維膠體電泳(2D-DIGE) 39 (一) 基礎飲食組(A)與高果糖飲食組 (B)比較結果(spot 1~115) 41 (二) 高果糖飲食組(B)與龍眼花水萃物灌食組(C)比較結果(spot 116~199) 47 二、電噴霧串聯質譜法(ESI-MS-MS)鑑定結果 53 (一) 於高果糖飲食組(B)表現量上升之蛋白質(相較於基礎飲食組(A)) 53 (二) 於高果糖飲食組(B)表現量下降之蛋白質(相較於基礎飲食組(A)) 58 (三) 於龍眼花水萃物灌食組(C)表現量上升之蛋白質(相較於高果糖飲食組(B)) 62 (四) 於龍眼花水萃物灌食組(C)表現量下降之蛋白質(相較於高果糖飲食組(B)) 66 三、資料探勘──建立蛋白質連結(correlation mapping) 71 (一) 龍眼花水萃物(LFWE)於醣類代謝之影響 71 (二) 龍眼花水萃物(LFWE)於脂肪代謝、合成之影響 75 (三) 龍眼花水萃物(LFWE)於胰島素訊息傳導、分泌之可能影響 78 (四) 龍眼花水萃物(LFWE)對於蛋白質代謝之影響──氨甲醯磷酸合成酶(CPS1) 83 (五) 龍眼花水萃物(LFWE)對於氧化還原恆定之影響──過氧化物酶-1 (PRDX1)、蛋白質雙硫鍵異構酶(PDI) 84 (六) 龍眼花水萃物(LFWE)對於鈣離子結合及蛋白質摺疊作用之影響──GRP78、GRP94、CRT、PDIA3、RGN 86 四、參與未摺疊蛋白質反應(UPR)相關蛋白(GRP78、GRP94、CRT、PDIA3)之real-time PCR結果 93 (一) 大鼠肝臟組織中GRP78、GRP94、CRT、PDIA3 mRNA表現量比較結果 93 (二) 誘發HepG2細胞產生內質網壓力(ER stress)模式下龍眼花水萃物(LFWE)對於GRP78、GRP94、CRT、PDIA3 mRNA表現量之影響 98 陸、討論 111 一、大鼠肝臟組織real-time PCR結果 111 二、龍眼花水萃物(LFWE)之抗氧化能力可能透過調控內質網壓力(ER stress)展現 113 三、Sirtuins可能是龍眼花水萃物(LFWE)影響相關蛋白其表現量之上游因子 114 (一) Sirt1透過SREBP調控脂肪合成酶(FAS) 114 (二) Sirt1可能透過forkhead box O1 (FoxO1)調控GRP78表現,並與內質網壓力(ER stress)存在關聯性 115 (三) Sirt1可能透過調控β-catenin而影響RGN表現 116 (四) Sirt4與Sirt5各調控穀胺酸脫氫酶(GDH1)及氨甲醯磷酸合成酶(CPS1) 117 四、胰島素作用於中樞神經系統與肝臟之連結 119 柒、結論 121 捌、參考文獻 123 玖、附錄 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 未摺疊蛋白質反應 | zh_TW |
| dc.subject | 代謝症候群 | zh_TW |
| dc.subject | 高果糖飲食 | zh_TW |
| dc.subject | 龍眼花水萃物 | zh_TW |
| dc.subject | 蛋白質體學 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | high-fructose diet | en |
| dc.subject | unfolded protein response | en |
| dc.subject | ER stress | en |
| dc.subject | 2D-DIGE | en |
| dc.subject | metabolic syndrome | en |
| dc.subject | longan flower water extract | en |
| dc.title | 於高果糖餵食誘導模式下以蛋白質體學方法探討龍眼花水萃物改善大鼠代謝症候群之機制 | zh_TW |
| dc.title | The Proteomic Based Mechanism Study Governing the Longan (Dimocarpus longans Lour.)Flower Water Extract-mediated Prevention of Metabolic Syndrome in A High Fructose-fed Rat | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖辰中,吳亮宜,羅翊禎,高承福 | |
| dc.subject.keyword | 代謝症候群,高果糖飲食,龍眼花水萃物,蛋白質體學,內質網壓力,未摺疊蛋白質反應, | zh_TW |
| dc.subject.keyword | metabolic syndrome,high-fructose diet,longan flower water extract,2D-DIGE,ER stress,unfolded protein response, | en |
| dc.relation.page | 162 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 24.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
