請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何其儻(Chi-Tang Ho) | |
| dc.contributor.author | I-Min Huang | en |
| dc.contributor.author | 黃亦敏 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:10:52Z | - |
| dc.date.available | 2009-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | 林木連、蔡右任、張清寬、陳國任、楊盛勳、陳英玲、賴正南、陳玄、張如華。台灣的茶葉。遠足文化。台北縣新店市。2003。
段木干。植物大辭典。人文出版社。台中市。1980。 張志純。茶葉的科學研究。徐氏基金會。台北市。1983。 潘根生。茶葉大全。中國農業出版社。北京市。1995。 Ahmed, M. U.; Frye, E. B.; Degenhardt, T. P.; Thorpe, S. R.; Baynes, J. W., Nε-(Carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 1997, 324, 565-570. Ahmed, N., Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67, (1), 3-21. Ahmed, N.; Thornalley, P. J., Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem. J. 2002, 364, 15-24. Akira, K.; Matsumoto, Y.; Hashimoto, T., Determination of urinary glyoxal and methylglyoxal by high-performance liquid chromatography. Clin. Chem. Lab. Med. 2004, 42, (2), 147-153. Andallu, B.; Varadacharyulu, N. C., Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin. Chim. Acta 2003, 338, (1-2), 3-10. Ann Beltz, L.; Kay Bayer, D.; Lynn Moss, A.; Mitchell Simet, I., Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 2006, 6, 389-406. Arabshahi-Delouee, S.; Urooj, A., Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem. 2007, 102, (4), 1233-1240. Barros, A.; Rodrigues, J. A.; Almeida, P. J.; Oliva-Teles, M. T., Determination of glyoxal, methylglyoxal, and diacetyl in selected beer and wine, by HPLC with UV spectrophotometric detection, after derivatization with o-phenylenediamine. J. Liq. Chrom. Relat. Tech. 1999, 22, (13), 2061-2069. Basu, A.; Lucas, E. A., Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 2007, 65, 361-375. Baynes, J. W.; Thorpe, S. R., Role of oxidative stress in diabetic complications - A new perspective on an old paradigm. Diabetes 1999, 48, (1), 1-9. Bednarski, W.; Jedrychowski, L.; Hammond, E. G.; Nikolov, Z. L., A method for the determination of alpha-dicarbonyl compounds. J. Dairy Sci. 1989, 72, (10), 2474-2477. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, (6865), 813-20. Chandra, A.; Nair, M. G.; Iezzoni, A., Evaluation and characterization of the anthocyanin pigments in tart cherries (Prunus-Cerasus L). J. Agric. Food Chem. 1992, 40, (6), 967-969. Chang, T. J.; Wang, R.; Wu, L. Y., Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radic. Biol. Med. 2005, 38, (2), 286-293. Chen, H. Polyphenolic composition of tea (Camellia Sinensis) and its relationship with antioxidant activity and processing Ph.D. Dissertation, Rutgers, The State University of New Jersey, New Jersey, 2006. Choi, E. H.; Ok, H. E.; Yoon, Y.; Magnuson, B. A.; Kim, M. K.; Chun, H. S., Protective effect of anthocyanin-rich extract from bilberry (Vaccinium myrtillus L.) against myelotoxicity induced by 5-fluorouracil. Biofactors 2007, 29, (1), 55-65. Creighton, D. J.; Migliorini, M.; Pourmotabbed, T.; Guha, M. K., Optimization of efficiency in the glyoxalase pathway. Biochemistry (Mosc.) 1988, 27, (19), 7376-7384. Daglia, M.; Papetti, A.; Aceti, C.; Sordelli, B.; Spin, V.; Gazzani, G., Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J. Agric. Food Chem. 2007, 55, (22), 8877-8882. Espinosa-Mansilla, A.; Duran-Meras, I.; Salinas, F., High-performance liquid chromatographic-fluorometric determination of glyoxal, methylglyoxal, and diacetyl in urine by prederivatization to pteridinic rings. Anal. Biochem. 1998, 255, (2), 263-273. Farrar, J. L.; Hartle, D. K.; Hargrove, J. L.; Greenspan, P., Inhibition of protein glycation by skins and seeds of the muscadine grape. FASEB J. 2006, 20, (5), A1022-A1022. Farsi, D. A.; Harris, C. S.; Reid, L.; Bennett, S. A. L.; Haddad, P. S.; Martineau, L. C.; Arnason, J. T., Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays). Phytother. Res. 2008, 22, (1), 108-112. Finné Nielsen, I. L.; Rasmussen, S. E.; Mortensen, A.; Ravn-Haren, G.; Ma, H. P.; Knuthsen, P., Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Mol. Nutr. Food Res. 2005, 49, (4), 301-308. Francis, F. J., Food colorants - anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, (4), 273-314. Fujioka, K.; Shibamoto, T., Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation. Lipids 2004, 39, (5), 481-486. Giusti, M. M.; Wrolstad, R. E., Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In Current procotols in food analytical chemistry, John Wiley & Sons: New York, 2000; pp F1.2.1-F1.2.13. Giusti, M. M.; Wrolstad, R. E., Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In Current procotols in food analytical chemistry, John Wiley & Sons: New York, 2001; pp F1.2.1-F1.2.13. Gouni-Berthold, I.; Sachinidis, A., Molecular mechanisms explaining the preventive effects of catechins on the development of proliferative diseases. Curr. Pharm. Des. 2004, 10, 1261-1271. Haslam, E., Thoughts on thearubigins. Phytochemistry 2003, 64, (1), 61-73. Hayashi, T.; Shibamoto, T., Analysis of methyl glyoxal in food and beverages. J. Agric. Food Chem. 1985, 33, (6), 1090-1093. Hegde, P. S.; Chandrakasan, G.; Chandra, T. S., Inhibition of collagen glycation and crosslinking in vitro by methanolic extracts of Finger millet (Eleusine coracana) and Kodo millet (Paspalum scrobiculatum). J. Nutr. Biochem. 2002, 13, (9), 517-521. Ichiyanagi, T.; Hatano, Y.; Matsugo, S.; Konishi, T., Structural dependence of HPLC separation pattern of Anthocyanins from bilberry (Vaccinium myrtillus L.). Chem. Pharm. Bull. (Tokyo) 2004, 52, (5), 628-630. Ichiyanagi, T.; Shida, Y.; Rahman, M. M.; Hatano, Y.; Konishi, T., Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J. Agric. Food Chem. 2006, 54, (18), 6578-6587. Jang, Y. P.; Zhou, J. L.; Nakanishi, K.; Sparrow, J. R., Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem. Photobiol. 2005, 81, (3), 529-536. Jia, Z.; Tang, M.; Wu, J., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, (4), 555-559. Julkunen-tiitto, R., Phenolic constituents in the leaves of northern willows - methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, (2), 213-217. Kao, Y. H.; Chang, H. H.; Lee, M. J.; Chen, C. L., Tea, obesity, and diabetes. Mol. Nutr. Food Res. 2006, 50, (2), 188-210. Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M., Induction of Apoptosis in Cancer Cells by Bilberry (Vaccinium myrtillus) and the Anthocyanins. J. Agric. Food Chem. 2003, 51, (1), 68-75. Kaur, M.; Singh, R. P.; Gu, M.; Agarwal, R.; Agarwal, C., Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin. Cancer Res. 2006, 12, (20), 6194-6202. Khuhawar, M. Y.; Kandhro, A. J.; Khand, F. D., Liquid chromatographic determination of glyoxal and methylglyoxal from serum of diabetic patients using meso-stilbenediamine as derivatizing reagent. Anal. Lett. 2006, 39, (10), 2205-2215. Kim, J. M.; Lee, Y. M.; Lee, G. Y.; Jang, D. S.; Bae, K. H.; Kim, J. S., Constituents of the roots of Pueraria lobata inhibit formation of advanced glycation end products (AGEs). Arch. Pharm. Res. 2006, 29, (10), 821-825. Konishi, Y.; Hitomi, Y.; Yoshioka, E., Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J. Agric. Food Chem. 2004, 52, (9), 2527-2532. Koponen, J. M.; Buchert, J.; Poutanen, K. S.; Torronen, A. R., Effect of pectinolytic juice production on the extractability and fate of bilberry and black currant anthocyanins. Eur. Food Res. Tech. 2008, 227, (2), 485-494. Kountouri, A. M.; Mylona, A.; Kaliora, A. C.; Andrikopoulos, N. K., Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): Impact on plasma antioxidant status in humans. Phytomedicine 2007, 14, (10), 659-667. Lapolla, A.; Flamini, R.; Vedova, A. D.; Senesi, A.; Reitano, R.; Fedele, D.; Basso, E.; Seraglia, R.; Traldi, P., Glyoxal and methylglyoxal levels in diabetic patients: Quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med. 2003, 41, (9), 1166-1173. Latti, A. K.; Riihinen, K. R.; Kainulainen, P. S., Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, (1), 190-196. Lederer, M. O.; Klaiber, R. G., Cross-linking of proteins by Maillard processes: Characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal. Bioorg. Med. Chem. 1999, 7, (11), 2499-2507. Lila, M. A., Anthocyanins and human health: An in vitro investigative approach. J. Biomed. Biotechnol. 2004, (5), 306-313. Lo, C. Y.; Li, S. M.; Tan, D.; Pan, M. H.; Sang, S. M.; Ho, C. T., Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol. Nutr. Food Res. 2006, 50, (12), 1118-1128. Lo, C. Y.; Li, S. M.; Wang, Y.; Tan, D.; Pan, M. H.; Sang, S. M.; Ho, C. T., Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem. 2008, 107, (3), 1099-1105. Lyles, G. A.; Chalmers, J., The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem. Pharmacol. 1992, 43, (7), 1409-1414. Maatta-Riihinen, K. R.; Kamal-Eldin, A.; Mattila, P. H.; Gonzalez-Paramas, A. M.; Torronen, A. R., Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J. Agric. Food Chem. 2004, 52, (14), 4477-4486. Markakis, P., Anthocyanins as food colors. Academic Press: New York, 1982; p 263 Matsumoto, H.; Inaba, H.; Kishi, M.; Tominaga, S.; Hirayama, M.; Tsuda, T., Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J. Agric. Food Chem. 2001, 49, (3), 1546-1551. Matsumoto, H.; Nakamura, Y.; Tachibanaki, S.; Kawamura, S.; Hirayama, M., Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 2003, 51, (12), 3560-3563. Milbury, P. E.; Graf, B.; Curran-Celentano, J. M.; Blumberg, J. B., Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 2007, 48, (5), 2343-2349. Miller, A. G.; Meade, S. J.; Gerrard, J. A., New insights into protein crosslinking via the Maillard reaction: structural requirements, the effect on enzyme function, and predicted efficacy of crosslinking inhibitors as anti-ageing therapeutics. Bioorg. Med. Chem. 2003, 11, (6), 843-52. Mostafa, A. A.; Randell, E. W.; Vasdev, S. C.; Han, Y.; Gill, V. D., Plasma protein advanced glycation end products, carboxymethyl cysteine and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Clin. Biochem. 2008, 41, (3), 184-185. Nakaishi, H.; Matsumoto, H.; Tominaga, S.; Hirayama, M., Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 2000, 5, (6), 553-62. Nemet, I.; Varga-Defterdarovic, L.; Turk, Z., Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 2006, 50, (12), 1105-1117. Nichenametla, S. N.; Taruscio, T. G.; Barney, D. L.; Exon, J. H., A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr. 2006, 46, (2), 161-183. Niyati-Shirkhodaee, F.; Shibamoto, T., Gas chromatographic analysis of glyoxal and methylglyoxal formed from lipids and related compounds upon ultraviolet irradiation. J. Agric. Food Chem. 1993, 41, (2), 227-230. Odani, H.; Shinzato, T.; Usami, J.; Matsumoto, Y.; Frye, E. B.; Baynes, J. W.; Maeda, K., Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: evidence for increased oxidative stress in uremia. FEBS Lett. 1998, 427, (3), 381-385. Oku, T.; Yamada, M.; Nakamura, M.; Sadamori, N.; Nakamura, S., Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br. J. Nutr. 2006, 95, (5), 933-938. Peng, X. F.; Cheng, K. W.; Ma, J. Y.; Chen, B.; Ho, C. T.; Lo, C.; Chen, F.; Wang, M. F., Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 2008a, 56, (6), 1907-1911. Peng, X. F.; Zheng, Z. P.; Cheng, K. W.; Shan, F.; Ren, G. X.; Chen, F.; Wang, M. F., Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 2008b, 106, (2), 475-481. Peng, Z. K.; Hayasaka, Y.; Iland, P. G.; Sefton, M.; Hoj, P.; Waters, E. J., Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis vinifera) seeds by reverse phase high performance liquid chromatography. J. Agric. Food Chem. 2001, 49, (1), 26-31. Peterson, J.; Dwyer, J.; Bhagwat, S.; Haytowitz, D.; Holden, J.; Eldridge, A. L.; Beecher, G.; Aladesanmi, J., Major flavonoids in dry tea. J. Food Compos. Anal. 2005, 18, (6), 487-501. Rae, C.; Bernersprice, S. J.; Bulliman, B. T.; Kuchel, P. W., Kinetic-analysis of the human erythrocyte glyoxalase system using H-1-NMR and a computer-model. Eur. J. Biochem. 1990, 193, (1), 83-90. Ravindra, P. V.; Narayan, M. S., Antioxidant activity of the anthocyanin from carrot (Daucus carota) callus culture. Int. J. Food Sci. Nutr. 2003, 54, (5), 349-355. Sang, S.; Shao, X.; Bai, N.; Lo, C. Y.; Yang, C. S.; Ho, C. T., Tea Polyphenol (-)-epigallocatechin-3-gallate: A new trapping agent of reactive dicarbonyl species. Chem. Res. Toxicol. 2007, 20, (12), 1862-1870. Santosh, K. K., Grape seed proanthocyanidines and skin cancer prevention: Inhibition of oxidative stress and protection of immune system. Mol. Nutr. Food Res. 2008, 52, (S1), 71-76. Scholz, S.; Williamson, G., Interactions affecting the bioavailability of dietary polyphenols in vivo. Int. J. Vitam. Nutr. Res. 2007, 77, (3), 224-235. Seeram, N. P.; Bourquin, L. D.; Nair, M. G., Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J. Agric. Food Chem. 2001, 49, (10), 4924-4929. Shahrzad, S.; Aoyagi, K.; Winter, A.; Koyama, A.; Bitsch, I., Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 2001, 131, (4), 1207-1210. Shao, X.; Bai, N.; He, K.; Ho, C.-T.; Yang, C. S.; Sang, S., Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species. Chem. Res. Toxicol. 2008, submitted. Shi, J.; Yu, J.; Pohorly, J. E.; Kakuda, Y., Polyphenolics in grape seeds--biochemistry and functionality. J. Med. Food 2003, 6, (4), 291-299. Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T., Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Nutr. 2002, 37, (6), 703-709. Singh, R.; Barden, A.; Mori, T.; Beilin, L., Advanced glycation end-products: A review. Diabetologia 2001, 44, (2), 129-146. Singh, R. P.; Agarwal, R., Mechanisms of action of novel agents for prostate cancer chemoprevention. Endocr. Relat. Cancer 2006, 13, (3), 751-778. Slimestad, R.; Solheim, H., Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, (11), 3228-3231. Takata, R.; Yanai, T.; Yamamoto, R.; Konno, T., Improvement of the antitumor activity of black currant polysaccharide by an enzymatic treatment. Biosci. Biotechnol. Biochem. 2007, 71, (5), 1342-1344. Tan, D. Trapping of methylglyoxal by dietary compounds in vitro. Ph.D. Dissertation, Rutgers, The State University of New Jersey, New Jersey, 2007. Tanaka, T.; Kouno, I., Oxidation of tea catechins: Chemical structures and reaction mechanism. Food Sci. Tech. Res. 2003, 9, (2), 128-133. The Tea Association of the U.S.A. Inc.; The National Restaurant Association, Recommendations for the preparation of iced and hot tea. In The Tea Association of the U.S.A.: New York, NY, USA, 2000. Thornalley, P. J.; Langborg, A.; Minhas, H. S., Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 344, (1), 109-116. Tressel, T.; Thompson, R.; Zieske, L. R.; Menendez, M. I. T. S.; Davis, L., Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production. J. Biol. Chem. 1986, 261, (35), 6428-6437. Uchida, S.; Edamatsu, R.; Hiramatsu, M.; Mori, A.; Nonaka, G.; Nishioka, I.; Niwa, M.; Ozaki, M., Condensed tannins scavenge active oxygen free-radicals. Med. Sci. Res. Biochem. 1987, 15, (13-14), 831-832. Usui, T.; Yanagisawa, S.; Ohguchi, M.; Yoshino, M.; Kawabata, R.; Kishimoto, J.; Arai, Y.; Aida, K.; Watanabe, H.; Hayase, F., Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars. Biosci. Biotechnol. Biochem. 2007, 71, (10), 2465-2472. Vander Jagt, D. L.; Hassebrook, R. K.; Hunsaker, L. A.; Brown, W. T.; Royer, R. E., Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem. Biol. Interact. 2001, 130, (1-3), 549-562. Voziyan, P. A.; Metz, T. O.; Baynes, J. W.; Hudson, B. G., A post-amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J. Biol. Chem. 2002, 277, (5), 3397-3403. Wang, X. X.; Desai, K.; Chang, T. J.; Wu, L. Y., Vascular methylglyoxal metabolism and the development of hypertension. J. Hypertens. 2005, 23, (8), 1565-1573. Weigel, K. U.; Opitz, T.; Henle, T., Studies on the occurrence and formation of 1,2-dicarbonyls in honey. Eur. Food Res. Tech. 2004, 218, (2), 147-151. Wilska-Jeszka, J., Food colorants In Chemical and functional properties of food components, Sikorski, Z. E., Ed. CRC Press: Boca Raton, Florida, 2002; pp 205-229. Wrolstad, R. E., Current protocols in food analytical chemistry. Wiley: New York ;, 2000. Wu, C. H.; Yen, G. C., Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J. Agric. Food Chem. 2005, 53, (8), 3167-3173. Wu, L. Y., Is methylglyoxal a causative factor for hypertension development? Can. J. Physiol. Pharmacol. 2006, 84, (1), 129-139. Xiong, S. Y.; Melton, L. D.; Easteal, A. J.; Siew, D., Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J. Agric. Food Chem. 2006, 54, (17), 6201-6208. Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J. A.; Bagchi, D., Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, (6), 675-683. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40996 | - |
| dc.description.abstract | 近年來許多研究指出,活性雙羰基物質 (reactive dicarbonyl species) 在體內累積將使細胞損傷,並於長時間存在下使蛋白質糖化,不可逆的形成糖化終產物 (advanced glycation endproduct,AGE),在糖尿病及其併發症上扮演重要角色。Methylglyoxal (MG) 是活性雙羰基物質之一,在糖尿病患者血漿中發現有較高之含量,約為正常人的五倍。因此若將體內 MG 清除,則可降低其對細胞的傷害及抑制 AGE 的生成。本研究主要目的為探討一些含有豐富多酚物質的植物如茶、歐洲藍莓 (bilberry)、黑加侖 (black currant)、桑葉及葡萄籽與多酚化合物 2,4,6-trihydroxybenzoic acid (THBA) 以樣品與 MG 於模擬生理環境下 (37℃,pH 7.4) 對於 MG 之捕捉功效。
實驗第一部份為各種植物萃取物之 MG 捕捉功效探討。紅茶、包種茶、綠茶茶葉以沸水萃取後與 MG 反應,結果顯示以綠茶之 MG 捕捉效果最好,原因可能與其兒茶素之種類與含量有關。Bilberry 及黑加侖萃取物皆含大量花青素,在不同酸鹼度環境下與 MG 進行反應,發現於偏鹼性環境中,兩種萃取物都有很好的 MG 捕捉效果,正控制組 EGCG 使 MG 減少量約 82%,而 bilberry 與黑加侖萃取物分別為 76% 與 73%,且於萃取物之花青素當量濃度為 MG 濃度的 2 或 3 倍時,MG 減少程度甚至超越正控制組 EGCG;另外,bilberry 與黑加侖萃取物所含之花青素種類不同,因此 MG 捕捉能力也有差異。葡萄籽萃取物主要成份為原花青素 (proanthocyanidins),可使 MG 量降低約 58%;而桑葉萃取物在同樣條件下之 MG 捕捉能力不佳,MG 減少量僅 23%,效果低於兒茶素類、花青素類萃取物及原花青素類萃取物。 第二部份的實驗為 THBA 與 MG 之反應情形探討。THBA 為一種簡單的多酚類化合物,其苯環上未鍵結的兩個碳上之電子密度很高。THBA 能有效降低 MG 含量,1.45 mM THBA 與同濃度 MG 反應,使 MG 減少 50% 所需時間 (T1/2) 為28.367 分鐘;以 3 mM 的濃度反應T1/2 為 27.170 分鐘,於反應時間 60 分鐘後,反應接近完成。於同樣條件下,反應 60 分鐘內,使 3 mM MG 減少 50% 所需 THBA 濃度 (EC50) 為 1.033 mM;1.45 mM 之 EC50 為 0.678 mM,且 THBA 與 MG 濃度較接近時,捕捉 MG 的能力較強。另外,THBA 於鹼性越高的環境下與 MG 反應,捕捉效果越強。THBA-MG 之結合產物以質譜儀分析,顯示在MG 量少的情況下產生鍵結一分子 MG 的產物;於 MG 量多的情況下則鍵結一分子或兩分子 MG 的產物皆被發現。 | zh_TW |
| dc.description.abstract | It has been demonstrated that reactive dicarbonyl species (RCS) irreversibly modified proteins over time and yielded the advanced glycation endproducts (AGEs), which are closely associated with several pathophysiological conditions, such as cataracts, diabetes complications, and Alzheimer’s disease. Methylglyoxal (MG) is one of the RCS. Higher levels of MG were observed in diabetic patients’ plasma than those in healthy people’s plasma. Thus decreasing the levels of MG will be a useful approach to prevent the formation of AGEs. The aims of the present study are to evaluate MG trapping ability of some plant extracts which were rich in phenolic compounds such as tea, bilberries, black currants, grape seeds and mulberry leaves, and one of the phenolic compounds, 2,4,6-trihydroxybenzoic acid (THBA) in simulated physiological conditions (pH 7.4 and 37 °C).
The first part of current research was to evaluate the MG trapping abilities of selected plant extracts. Black, paochung and green tea leaves were extracted by boiling water, the MG trapping abilities were determined in the order of green tea, paochung tea and black tea. The result was highly correlated to their total phenolic contents. Bilberry and black currant extracts are rich in anthocyanins. When they reacted with MG at high pH conditions, both of them exhibited good MG trapping abilities. Their abilities were even better than the positive control, EGCG, when the anthocyanin equivalents were 2-3 times than MG concentration. The MG trapping ability difference between the two extracts might come from the different anthocyanin compositions of bilberry and black currant. The major compounds in grape seed extract are proanthocyanidins, the result showed that it also exhibited a good MG trapping ability. Mulberry leaves are rich in flavonoids such as quercetin, but its ability in MG trapping was not as good as those extracts rich in catechins, anthocyanins and proanthocyanidins. The second part of current research is to study the reaction between THBA and MG. THBA is a phenolic acid, which could be hydrolyzed from tannins of seaweeds or degraded from anthocyanins of tart cherries, and the structure is similar to phloretin, an antioxidant compound in apple. Our results showed that THBA is able to trap MG efficiently. The time for 50% MG reduction (t1/2) at 3 mM and 1.45 mM were determined to be 27.170 minutes and 28.367 minutes, respectively. THBA concentrations that can reduce 50% MG (EC50) were 0.835 mM THBA at 3 mM MG and 0.724 mM THBA at 1.45 mM MG.. To determine the structure of reaction adducts, THBA was react with MG in the ratio of 1:3 and 1:20 for 3 hours. The reaction mixtures were separated by HPLC, and reaction adducts collected for ESI mass spectroscopic analysis. At the ratio of 1:3, the molecular weight of adduct was shown to be 242 indicating one MG molecule was added onto one THBA molecule. At the ratio of 1:15, we got two compounds with molecular weight of 242 and 314, indicating that there were two compounds formed in the reaction, which might be one MG molecule added onto one molecule of THBA, and two MG molecules added onto one molecule of THBA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:10:52Z (GMT). No. of bitstreams: 1 ntu-97-R95641013-1.pdf: 7205625 bytes, checksum: 02d564f0795a52f525e9223faf40f2d3 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 壹、 前言 1
貳、 文獻整理 2 一、活性雙羰基化合物 2 (一) 非酵素性糖化反應 2 (二) 活性雙羰基化合物對生物體之影響 5 (三) 抑制 AGE 生成的物質 7 (四) Advanced glycation end-product (AGE) 造成之疾病 7 (五) Methylglyoxal (MG) 9 (六) Methylglyoxal 分析方法 13 二、類黃酮素簡介 16 (一) 兒茶素 (Catechins) 17 (二) 花青素 (Anthocyanidins) 20 (三) 不同種類之類黃酮素抑制 MG 形成 AGE 之能力 24 三、實驗材料簡介 24 (一) 茶葉 (Teas) 24 (二) 歐洲藍苺 (Bilberries) 28 (三) 黑加侖 (Black currants) 29 (四) 葡萄籽 (Grape seeds) 30 (五) 桑葉 (Mulberry leaves) 33 (六) 2,4,6-Trihydroxybenzoic acid 33 參、 研究目的與實驗架構 35 一、研究目的 35 二、實驗架構 36 (一) 各種萃取物之 MG 捕捉能力測定 36 (二) 2,4,6-Trihydroxybenzoic acid (THBA) 與 MG 之反應 37 肆、 實驗材料與方法 38 一、實驗材料 38 (一) 茶 38 (二) Bilberry、黑加侖萃取物 38 (三) 葡萄籽萃取物 38 (四) 桑葉萃取物 38 二、化學藥品與溶劑 38 (一) 試藥 38 (二) 溶劑 39 三、儀器設備 40 (一) 一般儀器設備 40 (二) 化學分析相關儀器設備 40 四、實驗方法 43 (一) MG 捕捉能力測定方法 43 (二) 茶類、Bilberry、黑加侖、桑葉、葡萄籽萃取物之MG捕捉能力測定 44 (三) 2,4,6-Trihydroxybenzoic acid (THBA) 之 MG 捕捉反應 46 (四) 統計分析 48 伍、 結果與討論 49 (一) HPLC 系統中 methylglyoxal (MG) 定量分析方法 49 (二) 茶及數種植物萃取物之 MG 捕捉能力測定 53 1. 茶 53 2. 歐洲藍莓 (bilberry) 及黑加侖 (black currant) 萃取物 57 3. 葡萄籽萃取物及桑葉水萃物 70 (三) 2,4,6-Trihydroxybenzoic acid (THBA) 之 MG 捕捉反應 73 1. 反應時間對 THBA 之 MG 捕捉能力的影響 75 2. 反應物比例對 THBA 之 MG 捕捉能力的影響 78 3. 環境 pH 值對 THBA 之 MG 捕捉能力的影響 82 4. THBA與 MG 結合產物之結構鑑定 85 陸、 結論與後續研究建議 93 (一) 結論 93 (二) 後續研究建議 94 柒、 參考文獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 茶 | zh_TW |
| dc.subject | 活性雙羰基物質 | zh_TW |
| dc.subject | 兒茶素 | zh_TW |
| dc.subject | 黑加侖 | zh_TW |
| dc.subject | 花青素 | zh_TW |
| dc.subject | tea | en |
| dc.subject | reactive carbonyl species | en |
| dc.subject | advanced glycation end-product | en |
| dc.subject | anthocyanidin | en |
| dc.subject | bilberry | en |
| dc.subject | black currant | en |
| dc.subject | 6-trihydroxybenzoic acid | en |
| dc.title | 數種植物萃取物及 2,4,6-Trihydroxybenzoic acid 對活性雙羰基化合物之捕捉作用 | zh_TW |
| dc.title | Trapping of Reactive Dicarbonyl Compounds by Selected Plant Extracts and 2,4,6-Trihydroxybenzoic acid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 孫璐西(Lucy Sun Hwang) | |
| dc.contributor.oralexamcommittee | 陳怡宏(Yi-hong Chen),羅至佑(Chi-Yu Lo),呂廷璋(Ting-Jang Lu) | |
| dc.subject.keyword | 活性雙羰基物質,花青素,茶,黑加侖,兒茶素, | zh_TW |
| dc.subject.keyword | reactive carbonyl species,advanced glycation end-product,anthocyanidin,bilberry,black currant,2,4,6-trihydroxybenzoic acid,tea, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
