Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40532
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭博成
dc.contributor.authorYen-Hsiang Fangen
dc.contributor.author方彥翔zh_TW
dc.date.accessioned2021-06-14T16:50:26Z-
dc.date.available2013-08-06
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation參考文獻
[1]. A. Moesr, et al., J. Phys. D: Appl. Phys. 35, R157 (2002).
[2]. S. I. Iwasaki, and Y. H. Nakamura, IEEE Trans. Magn., 13, 1272 (1977).
[3]. A. Takeo, Y. Takahashi, Y. Tanaka, K. Miura, H. Muraoka, and Y. Nakamura, J. Appl. Phys., 87, 4987 (2000).
[4]. http://www.hitachigst.com
[5]. C. C. Lin, C. H. Lai, B. M. Chen, and H. D. Shieh, IEEE Trans. Magn., 37, 1399 (2001).
[6]. B. D. Cullity, “ Introduction to Magnetic Materials ”, Massachusetts: Addison-Wesley, (1972).
[7]. H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998).
[8]. S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997)
[9]. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).
[10]. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
[11]. M. S. Patwari, and R. H. Vistoria, IEEE Trans. Magn. 40, 247 (2004).
[12]. S. Batra, J. D. Hannay H. Zhou, and J. S. Goldberg, 40, 319 (2004).
[13]. J. Li, M. Mirzamaani, X. Bian, M. Doerner, S. Duan, K. Tang, M. Toney, T. Arnoldussen, and M. Madison, J. Appl. Phys, 86, 4286 (1999).
[14]. 楊志信,台灣資訊儲存技術協會會刊,第94期,第1頁(2005).
[15]. H. J. Richter, J. Magn. Magn. Mater. 287, 41 (2005).
[16]. 曾厚朗及盧志權,磁性技術協會會訊,第25期,第9頁 (2000).
[17]. S. Khizrroev and D. Litvinov, J. Appl. Phys. 95, 4521 (2004).
[18]. S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977)
[19]. J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003)
[20]. M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005)
[21]. D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
[22]. D. Weller and M. F. Doerner, Annu. Rev. Mater. Res. 30, 611 (2000).
[23]. T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004).
[24]. J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett. 90, 042508 (2007).
[25]. C. C. Chiang, Chih-Huang Lai, and Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006).
[26]. K. Watanabe, Mater. Trans. JIM. 32, 292 (1991).
[27]. C.S. Barred, “Crystal Structure”, p. 238 (1985).
[28]. P. Villas, L. D. Calvert, “Peason’s Handbook of Crystallographic Data for Intermetallic Phase”, 4, ASM Information, (1991).
[29]. Y. N. Hsu, S. Jeong,D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. 89, 7068 (2001).
[30]. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, second edition, (1992).
[31]. A. C. Sun, P. C. Kuo, S. C. Chen, C. Y. Chou, H. L. Huang, and J. H. Hsu, J. Appl. Phys., 95, 7264 (2004).
[32]. Y. N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. 89, 7068 ( 2001).
[33]. JCPDS powder diffraction file cards, (1997).
[34]. K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004).
[35]. C. Kittel, Phys. Rev. 70, 965 (1946).
[36]. S. Tsunashima, J. Phys. D, R87–R102, (2001).
[37]. M. Mansuripur, “The Physical Principles of Magneto-optical Recording ”, p.46 (1995).
[38]. C. Prados, E. Marinero, and A. Hernando, J. Magn. Magn. Mater., 165, 414 (1997).
[39]. Tadashi Kobayashi, Hisao Tsuji, Shigeru Tsunashima and Susumu Uchiyama, Jpn. J. Appl. Phys., (1981).
[40]. C. Prados, E. Marinero, and A. Hernando, J. Magn. Magn. Mater., 165, 414 (1997).
[41]. Tadashi Kobayashi, Hisao Tsuji, Shigeru Tsunashima and Susumu Uchiyama, Jpn. J. Appl. Phys., (1981).
[42]. K.H.J. Buschow, and P. Hansen , “Handbook of magnetic materials” 6, Chapter 4. , Pilips Lab, (1991).
[43]. H. Nemoto, H. Saga, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys., 38, 1839 (1999).
[44]. T. R. McGuire, and M. Hartmann, IEEE Trans. Magn., 22, 1382 (1986).
[45]. S.Hashimoto, and Y. Ochiai, K. Aso , IEEE Trans. Magn., 23, 233 (1987).
[46]. D. Rugar, C. J. Lin, and R. Geiss, IEEE Tran. Magn., 23, 2263, (1987).
[47]. 郭志明,國立台灣大學博士論文,p17,(1999).
[48]. R. J. Gambino, J. Ziegler, and J. J. Cuomo, Appl. Phys. Lett. 24, 99 (1974).
[49]. R. B. van Dover et al., J. Appl. Phys., 57, 3897 (1985).
[50]. H. Taagi et al., J. Appl. Phys., 50, 1642 (1979).
[51]. T. Egami et al., IEEE Trans. Magn., 23, 2269 (1978).
[52]. S-C. N. Cheng and M. H. Kryder, Paper HQ-03, Intermag Conf., Washington, DC, IEEE Trans. Magn., 25 (1989).
[53]. Patent Number : JP2000067425, (2000).
[54]. 鄭乃文,國立台灣大學碩士論文, p17,(2003).
[55]. M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., 84, 4403 (1998).
[56]. T. Suzuki, N. Honda, and K. Ouchi, IEEE Trans. Magn., 35, 2748 (1999).
[57]. Y. N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. 89, 7068 ( 2001).
[58]. C. P. Luo, S. H. Liou, D. J. Sellmyer, J. Appl. Phys., 87, 6941 (2000).
[59]. M. L. Yan, H. Zeng, N. Powers, and D. J. Sellmyer, J. Appl. Phys. 91, 8471 (2002).
[60]. C. P. Luo and D. J. Sellmyer, U.S. Patent No. US2001/0036562 A1, Nov.1, (2001).
[61]. Y. Huang, H. Okumura, G. C. Hadjipanayis, and D. Weller, J. Magn. Magn. Mater. 242-245, 317 (2002).
[62]. Zhengang Zhang, Kyongha Kang, and Takao Suzuki, J. Appl. Phys. 93, 7163 (2003).
[63]. Hyun Seok Ko, A. Perumal, and Sung-Chul Shin, Appl. Phys. Lett, 82, 2311 (2003).
[64]. K. Kang, Z. G. Zhang, T. Suzuki, and C. Papusoi, J. Appl. Phys. 95, 7273 (2004).
[65]. Takao Suzuki, Zhengang Zhang, Amarendra K. Singh, Jinhua Yin, Alagarsamy Perumal, and Hiroshi Osawa, IEEE Trans. Magn. 41, 555 (2005).
[66]. C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, Appl. Phys. Lett., 76, 3218 (2000).
[67]. V. Karanasos, I. Panagiotopoulos, and D. Niarchos, J. Magn. Magn. Mater., 249, 471 (2002).
[68]. S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, Y. D. Yao, J. Appl. Phys., 85, 4334 (1999).
[69]. K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004).
[70]. K. Kang, T. Suzuki, Z. G. Zhang, and C. Papusoi, J. Appl. Phys. 95, 7273 (2004).
[71]. Zhengang Zhang, Kyongha Kang, and Takao Suzuki, Fellow, IEEE, IEEE Trans. Magn., 40, 2455 (2004).
[72]. Jinhua Yin, Amarendra K. Singh, Takao Suzuki, Fellow, IEEE, and Zhengang Zhang, IEEE Trans. Magn., 41, 3208 (2005).
[73]. Takao Suzuki, Zhengang Zhang, Amarendra K. Singh, Jinhua Yin, A. Perumal, and Hiroshi Osawa, J. Magn. Magn. Matter., 286, 306 (2005).
[74]. Y. C. Wu, L. W. Wang, and C. H. Lai, Appl. Phys. Lett., 91, 072502 (2007).
[75]. H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, K. Kojima, IEEE Trans. Magn., vol. 36, no. 1, pp.195-199, (2000)﹒
[76]. J. Kim, T. Shima, N. Atoda, J. Tominaga, J. Vac. Sci. Technol., 20, 437 (2002).
[77]. M. Mochida, T. Suzuki, J. Appl. Phys. 91, 8644 (2002).
[78]. H. Nakagawa, H. Nemoto, Y. Hosoe, J. Appl. Phys., 91, 8016 (2002).
[79]. Z. Q. Zou, H. Wang, C. Yu, J. Appl. Phys., 93, 5268 (2003).
[80]. H. Nemoto, and H. SAGA, Jpn. J. Appl. Phys., 38, 1841 (1999).
[81]. H. Nemoto, and K. Ito, IEEE Trans. Magn., 4, 432 (2000).
[82]. Hiroaki Nemoto and Hideki SAGA, Jpn. J. Appl. Phys., (2001).
[83]. Hirofumi Sukeda , Hideki Saga, IEEE Trans. Magn., 37, 4 (2001).
[84]. K. Kojima, M. Hamamoto, J. Sato, K. Watanabe, and H. Katayama, IEEE Trans. Magn., 37, 1406 (2001).
[85]. Han-Ping D. Shieh, Chao-cheng Lin, Chih-Huang Lai, IEEE Trans. Magn., 37, 1399 (2001).
[86]. T. Kobayashi, H. Tsuji, S. Tsunashima and S. Uchiyama, Jpn. J. Appl. Phys., (1981).
[87]. C. C. Lin, C. H. Lai, and R. F. Jiang, J. Appl. Phys,. 93, 15 (2003).
[88]. S. Miyanishi, K. Kojima, J. Sato, K. Takayama, H. Fuji, A. Takahashi, and K. Ohta, J. Appl. Phys., 93 (2003).
[89]. C. T. Lie, P. C. Kuo, C. L. Shen, J. Appl. Phys., 94, 2538 (2003).
[90]. Y. H. Fang, P. C. Kuo, etc. Nanotechnology, 17, 2411, (2006).
[91]. http://nems.ntu.edu.tw/web_nems/document/general/NMC-W-8009_WEB.pdf.
[92]. 國立台灣大學奈米科技研究中心網站, http://nanost.ntu.edu.tw/.
[93]. 國立清華大學貴重儀器中心網站, http://www.nscric.nthu.edu.tw/.
[94]. 國立台灣大學材料科學與工程學系網站, http://www.mse.ntu.edu.tw/.
[95]. S Tsunashima, J. Phys. D : Appl. Phys., 34, R87 (2001).
[96]. H. Wan, A. Tsoukatos, and G. C. Hadjipanayis, J. Magn. Magn. Matter., 125, 157 (1993).
[97]. Gratz, E. E. Bauer and H. Novotny, J. Magn. Magn. Mater., 70, 354 (1987).
[98]. P. Chaudhari, J. J. Cuomo and R. J.Gambino, IBM J. Res. Develop. 17, 66 (1973).
[99]. D. A. Gignoux, Nait-Saada and R. Rerrier de thie, J. Phys.(Paris) 40, c5-188 (1979).
[100]. Y. Yuan, F. Chevrier, H. Le Gall, M. Rommeluere, and Y. Dumond, IEEE Trans. on Magn., 29, 3778 (1993).
[101]. Tadashi KOBAYASHI, Hisao TSUJI, Shigeru TSUNASHIMA, and SUSUMU UCHIYAMA, Jpn. J. Appl. Phys., 20, 2089 (1981).
[102]. T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett. 80, 288 (2002).
[103]. T. Yang, E. Ahmad, and T. Suzuki, J. Appl. Phys. 91, 6860 (2002).
[104]. T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, and K. Hono, Appl. Phys. Lett. 82, 2461 (2003).
[105]. A. C. Sun, S. C. Chen, P. C. Kuo, C. Y. Chou, Y. H. Fang, Jen-Hwa Hsu, H. L. Huang, and H. W. Chang, IEEE Trans. on Mag., 41, 3772 (2005).
[106]. Michael F. Toney, Wen-Yaung Lee, Jonathan A. Hedstrom, and Andrew Kellock, J. Appl. Phys. 93, 9902 (2003).
[107]. S. -E. Park, P. -Y. Jung, and K. -B. Kim, J. Appl. Phys. 77, 2641 (1995).
[108]. 孫安正,國立台灣大學材料所博士論文, p151,(2005).
[109]. 林宥朋,私立逢甲大學材料所碩士論文,銅添加對鈷鉑薄膜序化與磁特性之影響, (2002).
[110]. J. A. Christodoulides, P. Farber, M. Daniil, H. Okumura, G. C. Hadjipanayis, V. Simopoulos, and D. Weller, IEEE Trans. Magn., 37, 1292 (2001).
[111]. S. W. Yung, Y. H. Chang, . J. Lin, M. H. Hung, J. Magn. Magn. Mater., 116, 411 (1992).
[112]. K. Watanabe, Mater. Trans. JIM, 29, 80 (1998).
[113]. Chi-Ming Kuo, P. C. Kuo, and Huan-Chao Wu, 1999, J. Appl. Phys., 85, 2264 (1999).
[114]. Y. K. Takahashi, K. Hono, T. Shima, and K. Takanash., J. Magn. Magn. Mater., 267, 248 (2003).
[115]. O. A. Ovanov, L. V. Solina, and V. A. Demshima, Phys. Met. Metallogr., 35, 81 (1973).
[116]. C. P. Luo, S. H. Liou, D. J. Sellmyer, J. Appl. Phys., 87, 6941 (2000).
[117]. J. Bai, Z. Yang, F. Wei, M. Matsumoto, A. Morisako, J. Magn. Magn. Mater., 257, 132 (2003).
[118]. Chih-Ming, Kuo, P. C. Kuo, J. Appl. Phys., 87, 419 (2000).
[119]. B. D. Cullity, Elements of X-ray Diffraction (Addision Wesley, Reading, MA,), 102 (1978).
[120]. Y. C. Wu, L. W. Wang, C. H. Lai, Appl. Phys. Lett., 91, 072502 (2007).
[121]. J.-S. Kim, Y. –M. Koo, and B.-J Lee, J. Appl. Phys., 99, 053906 (2006).
[122]. S. S. Kang, D. E. Nikles, and J. W. Harrell, J. Appl. Phys., 93, 7178 (2003).
[123]. H. Zeng, M. L. Yan, N. Powers, D. J. Sellmyer, Appl. Phys. Lett., 80, 2350 (2002).
[124]. T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J.-I. Akiyama, Appl. Phys. Lett., 80, 2147 (2002).
[125]. Q. Yan, T. Kim, A. Purkayastha, P. G. Ganesan, M. Shima, and G. Ramanath, Adv. (Weinheim, Ger.) 17,2233 (2005).
[126]. C. H. Lai, Y. C. Wu, and C. C. Chiang, J. Appl. Phys., 97, 10H305 (2005)
[127]. P. E. Kelly, K. O’Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn., 25, 3881 (1989).
[128]. G. Gubbiotti, G. Carlotti, J. A. Barnard, J. L. Wwston, and G. Zangari, J. Magn. Magn. Mater., 240, 226 (2002).
[129]. J. L. Weston, S. S. Yan, G. Zangari, and J. A. Barnard, J. Appl. Phys., 89, 6831 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40532-
dc.description.abstract在TM-rich TbCo/RE-rich TbCo雙層薄膜方面,是以磁控濺鍍的方式,於康寧基板上鍍製Tb17.5Co82.5 / Tb29.5Co70.5雙層薄膜。首先,固定TM-rich之Tb17.5Co82.5薄膜之厚度,分別為20 - 90 nm,並針對每個固定厚度的Tb17.5Co82.5薄膜而改變Tb29.5Co70.5薄膜的厚度(20 - 90 nm)。反之,固定RE-rich之Tb29.5Co70.5薄膜之厚度,分別為20 - 90 nm,並針對每個固定厚度的Tb29.5Co70.5薄膜改變Tb17.5Co82.5薄膜的厚度(20 - 90 nm)。藉由改變Tb17.5Co82.5 及Tb29.5Co70.5磁性層厚度來探討此疊合後的雙層薄膜之磁性質變化。
藉由TM-rich TbCo/RE-rich TbCo雙層薄膜間的交換耦合效應,將使得讀出層(TM-rich)的矯頑磁力大幅提昇。當讀出層厚度固定且記錄層(RE-rich)厚度大於50 nm時,各雙層結構才會有明顯的exchange coupling現象產生。當讀出層固定在70 nm之Tb17.5Co82.5 (90 nm)/ Tb29.5Co70.5 (90 nm)雙層薄膜,其讀出層的矯頑磁力由單層Tb17.5Co82.5的325 Oe上升到12 kOe,此時可得到最大的interface wall energy約5 erg/cm2。反之,當記錄層厚度固定在50 nm以上時,各雙層結構才會有明顯的exchange coupling現象產生。當記錄層厚度固定在90 nm時之Tb17.5Co82.5 (20 - 90 nm)/ Tb29.5Co70.5 (90 nm)雙層薄膜,其interface energy皆維持在約6 erg/cm2。此外,當Tb29.5Co70.5薄膜厚度固定為90 nm時並改變Tb17.5Co82.5薄膜厚度(50 - 90 nm)時,其雙層膜之Hc⊥值會隨著溫度的上升由25 ℃的約7 kOe下降到350 ℃的低於500 Oe,此矯頑磁力適合於磁頭的寫入。此外,Tb17.5Co82.5 (20 - 90 nm)/ Tb29.5Co70.5 (20 - 90 nm)雙層膜之飽和磁化量皆大於200 emu/cm3,此值有利於巨磁阻 (GMR)磁頭讀取。
在FePt薄膜方面,是以磁控濺鍍的方式,於康寧基板上鍍製FePt薄膜。藉由改變不同FePt厚度、退火溫度及時間,來獲得FePt垂直膜面異向性。
當FePt薄膜濺鍍速率為0.33 nm/min並於700 oC退火30分鐘後,可得到較強的fct-FePt (001)及fct-FePt (002)序化相繞射峰。當FePt薄膜為10 nm時並於700 oC退火30分鐘後,可得到最佳之垂直膜面角型比約為1,且在此條件下之FePt薄膜,有最大之垂直膜面矯頑磁力約為20 kOe 。所以我們將以10 nm 之FePt薄膜作為後續添加SiNx之FePt- SiNx granular 薄膜為基礎。
在(FePt)1-y(SiNx)y顆粒狀薄膜方面,是以磁控濺鍍的方式於康寧玻璃基板上將Fe、Pt及SiNx靶分別至於同心圓上進行共鍍,其中Fe與Pt元素是以直流控制器(dc)鍍製,SiNx元素是以交流控制器(rf)鍍製。藉由改變不同SiNx含量及退火時間,來獲得分佈均勻的FePt-SiNx顆粒狀薄膜。
(FePt)1-y(SiNx)y薄膜經700 oC退火30分鐘後,當SiNx含量由0 vol.%增加到63 vol.%時,(FePt)1-y(SiNx)y薄膜的行為可分成三個階段。首先,當SiNx含量小於15 %時,薄膜在真空中退火時進入薄膜內的熱能比較不容易在冷卻時以傳導方式由薄膜內部快速散出,使得所形成的fct-FePt相比較完美而造成矯頑磁力的下降。在此階段微結構型態的改變皆是由island growth轉變成continuous growth的趨勢,磁化反轉機制將由domain rotation轉變成domain wall motion,使得矯頑磁力降低。第二階段:當SiNx含量大於15 vol.%時,由於基底的SiNx含量已大幅增加造成domain wall移動的阻礙增加(pinning sites),且在此階段pinning sites效應大於完美fct-FePt相的形成而造成矯頑磁力大幅度的上升。另一方面,在此階段FePt晶粒已經開始被SiNx較均勻的分離,這也造成FePt晶粒開始縮小而有較多的單磁區粒子產生,使得(FePt)1-y(SiNx)y薄膜隨著SiNx含量增加而有較高的矯頑磁力。第三階段矯頑磁力的下降:當SiNx含量大於39 vol.%時,完美fct-FePt相將較SiNx含量為15 vol.%時大幅度增加,使得矯頑磁力開始下降。另一方面,此時部份的FePt晶粒已小於超順磁粒子尺寸,因此當SiNx含量為46 vol.%時其矯頑磁力會大幅度降低。
zh_TW
dc.description.abstractIn TM-rich TbCo / RE-rich TbCo bi-layer films, Tb17.5Co82.5 / Tb29.5Co70.5 bi-layer films were deposited on the Corning glass substrate. For type I bi-layer films, the thickness of Tb17.5Co82.5 layer was fixed at 20-90 nm and the thickness of Tb29.5Co70.5 layer was changed from 20 to 90 nm for every Tb17.5Co82.5 thickness. For type II bi-layer films, the thickness of Tb29.5Co70.5 layer was fixed at 20-90 nm and the thickness of Tb17.5Co82.5 layer was changed from 20 to 90 nm for every Tb29.5Co70.5 thickness. Effects of the films thickness on the magnetic properties of Tb17.5Co82.5 (20-90 nm) / Tb29.5Co70.5 (20-90 nm) bi-layer films were investigated.
The coercivity of readout layer Tb17.5Co82.5 was largely increased by the exchange coupling effect in the interface of Tb17.5Co82.5 / Tb29.5Co70.5 bi-layer films. In type I bi-layer films, the exchange coupling effects were observed in the M-H loops when the thickness of Tb29.5Co70.5 film was larger than 50 nm. The largest interface energy (5 erg/cm2) and readout layer coercivity (12 kOe) could be obtained when the thickness of Tb29.5Co70.5 film was 90 nm and the thickness of Tb17.5Co82.5 was 70 nm. In type II bi-layer films, the exchange coupling effects were observed in the M-H loops when the thickness of Tb29.5Co70.5 layer was larger than 50 nm. The large interface energy (~ 6 erg/cm2) could be obtained when the Tb29.5Co70.5 film was fixed at 90 nm for Tb17.5Co82.5 (50 - 90 nm)/ Tb29.5Co70.5 (90 nm) bi-layer films. For the Tb17.5Co82.5 (50 - 90 nm)/ Tb29.5Co70.5 (90 nm) bi-layer films, the out of plane coercivities (Hc⊥) of these films decreased form about 7 kOe to about 500 Oe as the temperature increased from 25 ℃ to 350 ℃. Moreover, the saturation magnetization (Ms) of type I and type II bi-layer films are all larger than 200 emu/cm3. These films have potential to be applied on Heat Assisted Magnetic Recording media.
In FePt films, different thicknesses of FePt films were deposited on the Corning glass substrates. In order to obtain the perpendicular magnetic anisotropy of FePt films, the thickness, annealing temperature and annealing time of the FePt films were varied.
It is found that the stronger diffraction peaks of fct-FePt (001) and fct-FePt (002) in X-ray diffraction patterns could be obtained when the sputtering rate of FePt films is 0.33 nm/min and the FePt films are annealed at 700 oC for 30 minutes. The largest out-of-plane squareness (S┴) (about 1) and out-of-plane coercivity (Hc⊥) value (about 20 kOe) could be obtained as the 10 nm FePt film annealed at 700 oC for 30 minutes. This 10 nm FePt film will be added SiNx to form the FePt- SiNx granular films in the further.
In (FePt)1-y(SiNx)y films, (FePt)1-y(SiNx)y (y=0 ~ 63 vol.%) nanocomposite thin films were fabricated by dc and rf magnetron co-sputtering of Fe, Pt and SiNx targets, then annealed at different temperatures and times.
As the SiNx content increases from 0 vol.% to 63 vol.%, the behavior of the (FePt)1-y-(SiNx)y films could be separated into three sections. First, as the SiNx content is smaller than about 15 vol.%, the FePt particles are surrounded by the insulator SiNx, which is a poor heat conductor. Therefore, the partial of fcc-FePt phase of as-deposited film will transform to perfect fct-FePt phase after annealing and leads to the decrease of the coercivity. From a field emission gun high resolution transmission electron microscope (FEG-TEM) images show that the growth mode of the film tends to change from isolate to continuous films, then the magnetization mechanism may transfer from domain rotation to domain wall motion, hence the coercivity decrease as SiNx content is increased. Second, as the SiNx content increases from 15 vol.% to about 39 vol., the SiNx will impede the reverse of the spin moments of FePt. Therefore, the high Hc┴ and in-plane coercivity (Hc//) values are obtained due to pinning sites effect of SiNx. As the SiNx content increases from 39 vol.% to 46 vol.%, the Hc┴ value decreases from 21.2 to 16.3 kOe. The fcc-FePt phase of as-deposited film will transform to more perfect fct-FePt phase than that of 15 vol.% SiNx after annealing and leads to the decrease of the coercivity. As the SiNx content is higher than 46 vol.%, the Hc┴ and Hc// of (FePt)1-y-(SiNx)y films decrease rapidly as the SiNx content is increased. From the FEG-TEM image of (FePt)45-(SiNx)55 and (FePt)37-(SiNx)63 films, it is found that some particles are smaller than 5 nm which are smaller than Dp (minimal stable particle diameter). Therefore, the thermal agitation effect will cause the Hc┴ and Hc// of (FePt)1-y-(SiNx)y films decrease rapidly.
The Hc┴, Hc//, S┴, and in-plane squareness (S//) values of the (FePt)37-(SiNx)63 film are 6.5 kOe, 6.3 kOe, 0.75, and 0.45 respectively. And a uniform particle size distribution granular (FePt)37-(SiNx)63 film with an average particle size about 5 nm was obtained. This (FePt)37- (SiNx)63 film is a good candidate for application on high density perpendicular magnetic recording media.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:50:26Z (GMT). No. of bitstreams: 1
ntu-97-D93527014-1.pdf: 13307310 bytes, checksum: da7a04b0be89fe10fa649c2996fc40fb (MD5)
Previous issue date: 2008
en
dc.language.isozh-TW
dc.subject(FePt)1-y(SiNx)yzh_TW
dc.subjectTM-rich TbCo/RE-rich TbCozh_TW
dc.subject顆粒狀薄膜zh_TW
dc.subject(FePt)1-y(SiNx)yen
dc.subjectgranular filmsen
dc.subjectTM-rich TbCo/RE-rich TbCoen
dc.titleTM-TbCo/RE-TbCo/Glass雙層熱寫磁讀薄膜與FePt-SiNx/Glass顆粒狀薄膜的磁性質及微結構研究zh_TW
dc.titleStudy of magnetic properties and microstructures of TM-TbCo/RE-TbCo/Glass bi-layer films and FePt-SiNx/Glass granular filmsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃暉理,張慶瑞,姚永德,林昭吟,陳政維
dc.subject.keywordTM-rich TbCo/RE-rich TbCo,(FePt)1-y(SiNx)y,顆粒狀薄膜,zh_TW
dc.subject.keywordTM-rich TbCo/RE-rich TbCo,(FePt)1-y(SiNx)y,granular films,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved