請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40515完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宗霖 | |
| dc.contributor.author | You-Chen Lin | en |
| dc.contributor.author | 林佑宸 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:49:53Z | - |
| dc.date.available | 2010-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 1. Morgan Matroc Limited Co., Catalog: Piezoelectric ceramics, England.
2. Kamiya, T., Suzuki, T., Tsurumi, T. and Daimon M., “Effects of Manganese Addition on Piezoelectric Properties of Pb(Zr0.5Ti0.5)O3,” Jpn. J. Appl. Phys., 31, 3058-3060 (1992). 3. Szwagierczak, D. and Kulawik, J., “Influence of MnO2 and Co3O4 dopants on dielectric properties of Pb(Fe2/3Wi1/3)O3 ceramics,” J. Euro. Ceram. Sco., 25, 1657-1662 (2005). 4. Haertling, G.H., “Ferroelectric ceramics: history and technology,” J. Am. Ceram. Soc., 82, 797-818 (1999). 5. Xu, Y., Ferroelectric Materials and Their Application, North-Holland, New York, (1991). 6. Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., Introduction to ceramics, John Wiley and Sons, New York (1976). 7. Jona, F. and Shirane, G., Ferroelectric Crystals, Pergamon, New York, (1993). 8. Kittel, C., “Theory of Antiferroelectric Crystals,” Phy. Rev., 82, 729-732 (1951). 9. Takenaka, T., Maruyama, K., and Sakata, K., “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., 30, 2236-2239 (1991). 10. Moulson, A.J. and Herbert, J.M., Electroceramics, John Wiley, England, (2003). 11. Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I. and Krainik, N.N., “New Ferroelectrics of Complex composition,” Sov. Phys.-Solid State, 2, 2651-2654 (1961). 12. Lin, Y., “Effects of Eu2O3 on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics,” J. Mater. Sci., B, 99, 449-452 (2003). 13. Suchanicz, J., “Time evolution of the phase transformation in Na0.5Bi0.5TiO3,” Ferroelectrics, 200, 319-325 (1997). 14. 吳朗,電子陶瓷-介電,全欣資訊圖書,pp. 224-227 1994。 15. Dai, X., DiGiovanni, A. and Viehland, D., “Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics,” J. Appl. Phys., 74, 3399-3405 (1993). 16. Kittel, C., “Theory of Antiferroelectric Crystals,” Phy. Rev., 82, 313-313 (1951) 17. Wang, X.X., Kwok, K.W., Tang, X.G., Chan, H.L.W. and Choy C.L., “Electromechanical properties and dielectric behavior of (Bi1/2Na1/2)(1-1.5x)BixTiO3 lead-free piezoelectric ceramics,” Solid State Commu., 129, 319–323 (2004). 18. Nagata, H. and Takenaka, T., “Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics,” J. Euro. Ceram. Sco., 21, 1299-1302 (2001). 19. Chu, B.J., Chen D.R., Li, G.R. and Yin, Q.R., “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics” J. Euro. Ceram. Sco., 22, 2115–2121 (2002). 20. Qu, Y., Shan, D. and Song, J., “Effect of A-site substitution on crystal component and dielectric properties in (Bi0.5Na0.5)TiO3 ceramics,” Mater. Sci. Eng. B, 121, 148-151 (2005). 21. Li, H.D., Feng, C.D. and Yao, W.L., “Some effects of different additives on dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-BaTiO3 morphotropic phase boundary composition,” Mater. Lett., 58, 1194-1198 (2004). 22. Li, H.D., Feng, C.D. and Xiang, P.H., “Electrical properties of La3+-doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics,” Jpn. J. Appl. Phys., 42, 7387-7391 (2003). 23. Wang, X.X., Chan, H.L.W. and Choy, C.L., “(Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics with simultaneous addition of CeO2 and La2O3,” Appl. Phys. A, 80, 333-336 (2005). 24. Zhou, X.Y., Gu, H.S., Wang, Y., Li, W.Y. and Zhou, T,S., “Piezoelectric properties of Mn-doped (Bi0.5Na0.5)0.92Ba0.08TiO3 ceramics,” Mater. Lett., 59, 1649-1652 (2005). 25. Sasaki, A., Chiba, T., Mamiya, Y. and Otsuki, E., “Dielectric and Piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems,” Jpn. J. Appl. Phys., 38, 5564-5567 (1999). 26. Yoshii, K., Hiruma, Y., Nagata, H. and Takenaka, T., “Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 45, 4493-4496 (2006). 27. Jiang, X.P., Li, L.Z., Zeng, M. and Chan H.L.W., “Dielectric Properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 Ceramics,” Mater. Letters, 60, 1786–1790 (2006) 28. Li, Y.M., Chen, W., Xu, Q., Zhou, J., Sun, H.J. and Liao, M.S., “Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 lead-free ceramics,” J. Electroceram., 14, 53-58 (2005). 29. Nagata, H., Yoshida, M., Makiuchi, Y. and Takenaka, T., “Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary,” Jpn. J. Appl. Phys., 42, 7401-7403 (2003). 30. Hiruma, Y., Nagata H. and Takenaka T. , “Phase Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 Lead-Free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 45, 7409-7412 (2006). 31. Wang, X.X., Choy, S.H., Tang, X.G. and Chan, H.L.W., “Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics,” J. Appl. Phys., 97, 104101 (2005). 32. Shieh, J., Wu, K.C. and Chen, C.S., “Switching characteristics of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics,” Acta Mater., 55, 3081-3087 (2007). 33. Choy, S. H., Wang, X. X., Chan, H. L. and Choy C.L., “0.75(Bi1/2Na1/2)TiO3-0.20(Bi1/2K1/2)TiO3-0.05BaTiO3 lead-free ceramics with addition of CeO2,” Ferroelectrics, 336, 69-79 (2006). 34. Chen, J., Qu, S., Gao, K., Pei, Z. and Zhu, L., “Effect of Mn Doping on Dielectric and Piezoelectric Properties of (Na0.5Bi0.5)TiO3-0.1BaTiO3-0.1(K0.5Bi0.5)TiO3 Ceramics,” Rare Metal Materials and Engineering, 35, 1002-185X11-1704-04 (2006). 35. Xu, Q., Chen, X., Chen, W., Chen, S., Kim, B. and and Lee, J., “Synthesis, ferroelectric and piezoelectric properties of some (Na0.5Bi0.5)TiO3 system compositions,” Mater. Letters, 59, 2437-2441(2005). 36. Jing, X., Li, Y. and Yin, Q., “Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders,” Mater. Sci. Eng. B, 99, 506-510 (2003). 37. Cullity, B.D. and Stock, S.R., Elements of X-RAY Diffraction, Prentice Hall, New Jersey, pp. 170, 177, 400 (2001). 38. Chen, M., Xu. Q., Kim, B.H., Ahn, B.K., Ko, J.H., Kang, W.J. and Nam, O.J., “Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics,” J. Eur. Ceram. Soc., 28, 843-849 (2008). 39. Takenaka, T., Maruyama, K. and Sakata K., “(Bi1/2Na1/2)TiO3–BaTiO3 System for Lead-free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 30, 2236-2239 (1991). 40. Hiruma, Y., Yoshii K., Nagata H. and Takenaka T., “Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3–(Bi1/2A1/2)TiO3 (A=Li and K) lead-free ferroelectric ceramics,” J. Appl. Phys., 103, 084121 (2008). 41. Bauerle, J.E., “Study of Solid Electrolyte Polarization by a Complex Admittance Method,” J. Phys. Chem., 30, 2657-2670 (1969). 42. Lee, J.H., Mori, T., Li, J.G., Ikegami, T. and Takenouchi, S., “Impedance spectroscopic estimation of inter-granular phase distribution in 15 mol% calcia-stabilized zirconia/alumina composites,” J. Euro. Ceram. Sco., 21, 13-17 (2001). 43. James, S.R., Principls of ceramics processing, John Wiley and Sons, New York (1995). 44. Razak, K.A., Asadov, A., Yoo, J., Haemmerle, E. and Gao, W., “Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method,” J. Alloys and Compounds, 449, 19-23 (2008). 45. Fan, G., Lu, W.Z. and Wang X.H., “Effects of manganese additive on piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 ferroelectric ceramics,” J. Mater. Sci., 42, 472-476 (2007). 46. Wada, T., Fukui, A. and Matsuo, Y., “Preparation of (K0.5Bi0.5)TiO3 ceramics by polymerized complex method and their properties,” Jpn. J. Appl. Phys., 41, 7025-7028 (2002). 47. Vakhrushev, S.B., Isupov, V.A., Kvyatkovsky B.E., Okuneva N.M., Pronin I.P., Smolensky, G.A. and Syrnikov, P.P., “Phase transitions and soft modes in sodium bismuth titanate,” Ferroelectrics, 63, 153-160 (1985). 48. Suchanicz, J., “Investigations of the phase transitions in Na0.5Bi0.5TiO3,” Ferroelectrics, 172, 455-459 (1995). 49. Kuo, D.H. and Kao, Y.W., “The Mn effect on the ferroelectric performance of the donor-substituted ABi4Ti4O15-based thin films,” Appl. Phys. Lett., 92, 202907 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40515 | - |
| dc.description.abstract | 針對無鉛鐵電陶瓷 0.854(Bi0.5Na0.5)TiO3 – 0.026BaTiO3 – 0.12(Bi0.5K0.5)TiO3,本論文以摻雜不同比例的 MnO2 與 Co3O4 二系統,來探討隨添加量的增加,BNBK 85.4/2.6/12 的鐵電性質與顯微組織的變化,選擇的摻雜劑量為 0 wt%、0.1 wt%、0.25 wt%、0.5 wt%、0.75 wt% 及 1.0 wt%。
顯微組織上,顯示隨 MnO2 與 Co3O4 的添加量增加,晶粒變大,且在0.1 wt% 添加量下可增加燒結體密度。然而,當摻雜高劑量的 MnO2 與 Co3O4 ,必須降低燒結溫度以避免針狀第二相的生成,此針狀第二相的出現會提升試片的導電率並增加高壓電實驗的失敗率。XRD 分析顯示所有組成皆為單一鈣鈦礦結構,且因菱體對稱、正方對稱兩相的共存使得 XRD peaks 高度重疊,利用 XRD 擬合軟體可定性的得知兩相的比例變化。鐵電性的表現上,摻雜 MnO2 與 Co3O4 皆使得殘留極化量及矯頑電場同時增加。電致應變方面,隨 MnO2 添加量增加,電致應變值不規則變動。當摻雜 Co3O4 之後,電致應變值小幅下降但幾乎無明顯差異,添加量造成壓電性的變化與菱體對稱、正方對稱兩相的比例有關。 去極化溫度方面,摻雜 MnO2 與 Co3O4 皆能提升去極化溫度,兩者差異點為摻雜 MnO2 可由電滯曲線觀察到明顯的中間過渡相轉換﹔然而摻雜 Co3O4 則因高溫下的離子導電行為而無法明確得知相變化。此外藉由阻抗頻譜分析可幫助吾人釐清在實驗過程中所發現之電性異常的原因。例如在相同的組成中,含針狀第二相之試片其導電率明顯高於含單一鈣鈦礦相之試片。若比較添加 0.1 wt%、0.75 wt%、1.0 wt% 之 Co3O4 其 30℃ 與 150℃ 之導電率大小,發現隨 Co3O4 添加量增加,離子在高溫的傳導變得容易且主宰此系統之傳導機制。 BNBK 85.4/2.6/12 添加 MnO2 與 Co3O4 兩系統中,最全面的性質為添加0.75 wt% MnO2,其殘留極化量為 29.74 μC/cm2,矯頑電場為 3.40 MV/m,去極化溫度約 170℃,電致應變值為 0.11 %,壓電電荷係數為 195 pC/N﹔添加0.25 wt% Co3O4,其殘留極化量為 37.44 μC/cm2,矯頑電場為3.33 MV/m,去極化溫度約 175℃,電致應變值為 0.14 %,壓電電荷係數為 224 pC/N。此兩成份具有相當的潛力來應用在無鉛的致動器。 | zh_TW |
| dc.description.abstract | The microstructure and ferroelectric properties of lead-free 0.854(Bi0.5Na0.5)TiO3– 0.026BaTiO3–0.12(Bi0.5K0.5)TiO3 (BNBK 85.4/2.6/12) ferroelectric ceramics doped with manganese (Mn) or cobalt (Co) are investigated in this study. The chosen doping amounts are: 0 wt%, 0.1 wt%, 0.25 wt%, 0.5 wt%, 0.75 wt% and 1.0 wt%.
The observed SEM images indicate that both the Mn and Co dopants can increase the average grain size, and small contents of the additives are beneficial to the sintering density. However, with high Mn or Co doping levels, it’s necessary to decrease the sintering temperature to prevent the formation of needle-like second phases. The appearance of the needle-like second phases promotes the conductivity of the ceramic specimens, hindering the subsequent ferroelectric characterizations under high voltage. The XRD analysis shows that all Mn or Co doped BNBK 85.42.6/12 compositions have a single perovskit structure, and display the coexistence of rhombohedral and tetragonal phases. Using a XRD peak fitting software, the contribution of different phases are seperated. On the aspect of ferroelectric properties, both Mn and Co dopings increase the value of remanent polarization and coercive field simultaneously. With increasing Mn doping level, the induced electrostrain changes randomly.In contrast, with increasing the Co doping level, the induced electrostrain stays approximately the same. Variations of the ferroelectric proterties are believed to be closely related to the ratio between the mole contents of rhombohedral and tetragonal phases. On the aspect of temperature properties, both Mn and Co dopings are able to increase the depolarization temperature. The difference is that with Mn dopants the intermediate transiton phase between the depolarization and Curie temperatures can be defined; while with Co dopants, it is more difficult. On the aspect of impedance properties, doped BNBK 85.4/2.6/12 specimens with needle-like second phases have higher conductivities. The increase in ionic conductivity for the Co-doped specimens at high temperatures is also observed. In the present study, the composition of 0.75 wt% Mn-doped BNBK 85.4/2.6/12 has a remanent polarization of 29.74 μC/cm2, a coercive field of 3.40 MV/m, depolarization temperature of about 170℃, an electrostrain of 0.11 %, and an apparent piezoelectric charge coefficient of 195 pC/N. The composition of 0.25 wt% Co-doped BNBK 85.4/2.6/12 has a remanent polarization of 37.44 μC/cm2, a coercive field of 3.33 MV/m, a depolarization temperature of about 175℃, an electrostrain of 0.14 %, and an apparent piezoelectric charge coefficient of 224 pC/N. These two compositions are candidate materials for lead-free actuator applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:49:53Z (GMT). No. of bitstreams: 1 ntu-97-R95527040-1.pdf: 7363383 bytes, checksum: 862005fc2a97dabc88da43c8b71942c5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 1.1 前言 1 1.2 研究方向及目的 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 鐵電材料(Ferroelectric materials) 3 2.1.1 極化機構(Polarized mechanism) 4 2.1.2 電滯曲線(Hysteresis loop) 7 2.1.3 蝴蝶曲線(Butterfly loop) 7 2.2 鉛基鐵電陶瓷(Lead–base ferroelectric ceramics) 9 2.2.1 鋯鈦酸鉛(PZT) 9 2.2.2 摻雜物對鋯鈦酸鉛(PZT)之特性影響 9 2.2.2.1 軟性摻雜劑 10 2.2.2.2 硬性摻雜劑 10 2.3 無鉛鐵電陶瓷 11 2.3.1 BaTiO3 11 2.3.2 (Bi0.5Na0.5)TiO3 13 2.3.2.1 Ferroelectric relaxor 14 2.3.2.2 BNT 添加不同摻雜物 17 2.3.2.3 (Bi0.5Na0.5)TiO3 – BaTiO3(BNBT) 17 2.3.2.3.1 BNBT 添加不同摻雜物 18 2.3.2.4 (Bi0.5K0.5)TiO3 - (Bi0.5Na0.5)TiO3(BNKT) 19 2.3.2.4.1 BNKT添加不同摻雜物 20 2.3.2.5 (Bi0.5Na0.5)TiO3 – BaTiO3 – (Bi0.5K0.5)TiO3(BNBK) 20 2.3.2.5.1 BNBK 添加不同摻雜物 21 2.3.2.6 BNT系統的材料製備 21 第三章 實驗方法 23 3.1 材料製備 23 3.1.1 初始原料 23 3.1.2 粉末製備 23 3.1.3 燒結體製備 24 3.2 燒結體密度量測 28 3.3 X-ray 繞射分析 28 3.3.1 兩相比例模擬 28 3.4 掃描式電子顯微鏡 30 3.5 電滯曲線及蝴蝶曲線量測 31 3.6 介電常數量測 31 3.7 去極化溫度量測 32 3.8 導電率量測 32 第四章 實驗結果與討論 36 4.1 BNBK 85.4/2.6/12 摻雜 MnO2 36 4.1.1 Density 36 4.1.2 SEM 36 4.1.3 XRD 41 4.1.3.1 XRD fitting 41 4.1.4 Hysteresis loops 49 4.1.5 Butterfly loops 53 4.1.6 Permittivity 55 4.1.7 Depolarization Temperature 56 4.1.8 Conductivity 64 4.2 BNBK 85.4/2.6/12 摻雜 Co3O4 70 4.2.1 Density 70 4.2.2 SEM 71 4.2.3 XRD 74 4.2.3.1 XRD fitting 77 4.2.4 Hysteresis loops 83 4.2.5 Butterfly loops 88 4.2.6 Permittivity 90 4.2.7 Depolarization Temperature 91 4.2.8 Conductivity 98 4.3 Comparison 106 第五章 結論 107 5.1 研究成果 107 5.2 未來研究方向 108 參考文獻 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阻抗頻譜分析 | zh_TW |
| dc.subject | 無鉛陶瓷 | zh_TW |
| dc.subject | 錳摻雜 | zh_TW |
| dc.subject | 鈷摻雜 | zh_TW |
| dc.subject | 鐵電性 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | Lead-free ferroelectrics | en |
| dc.subject | Microstructure | en |
| dc.subject | Cobalt doping | en |
| dc.subject | Manganese doping | en |
| dc.subject | Impedence spectrum | en |
| dc.title | 錳與鈷摻雜物對無鉛鐵電陶瓷 (Bi0.5Na0.5)TiO3- BaTiO3-(Bi0.5K0.5)TiO3 鐵電性與顯微組織之影響 | zh_TW |
| dc.title | Effects of manganese and cobalt additives on the ferroelectric properties and microstructure of (Bi0.5Na0.5)TiO3- BaTiO3-(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韋文誠,段維新,郭錦龍 | |
| dc.subject.keyword | 無鉛陶瓷,錳摻雜,鈷摻雜,鐵電性,微結構,阻抗頻譜分析, | zh_TW |
| dc.subject.keyword | Lead-free ferroelectrics,Manganese doping,Cobalt doping,Microstructure,Impedence spectrum, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
