請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王文雄 | |
| dc.contributor.author | Chiang Hao Li | en |
| dc.contributor.author | 李江浩 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:43:35Z | - |
| dc.date.available | 2009-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-01 | |
| dc.identifier.citation | 參考文獻
1.L. Delaet, R.V. krishnan, H. Tas and H. Warlimont, J. Mater. Sci, 9 (1974) 1521. 2.A. P. Jardine, K.H.G. Ashbee and M. J. Bassett, J. Mater. Sci., 23 (1988) 4273. 3.L. C. Chang and T. A. Read, Trans. Met. Sci. AIME, 189(1951) 47. 4.C. M. Wayman, J. Metal. 32(1980) 129. 5.K. Otsuka and K. Shimizu, Int. met. Rev., 31(1986) 93. 6.L. Mc. D. Scketky, Scientific American, 241(1979) 74. 7.W. J. Buehler, J. W. Glifrick and R. C. Wiley, J. Appl. Phys. , 304(1963) 1475. 8.D. Berlincourt , H. H. A. Krueger and B. Jaffe : J. Phys. & Chem. Solids, 25(1964) 659. 9.S. Takei, In Development and Applications of Shape Memory Polymers (in Japanese), ( 1989) 11. 10.Z. S. Basinski and J. W. Christian, Acta Metall., Vol. 2,(1954) 101 11.T. Saburi, S. Nenno and C. M. Wayman, ICOMAT-79(1979)619. 12.T. Saburi and S. Nenno, in: Proc. Int. Conf. On Solid to Solid Phase Transformation, ASM, Metals Park, Ohio, (1982) 1455. 13.A. Nagasawa, K. Enami, Y. Ishino, Y.Abe and S. Nenno, Scripta Metall., (1974) 1055 14.M. Nishida and T. Homa, Scripta Metall., (1984) 1293 15.T. Maki, Ferrous Shape Memory Alloys, (1999) 120. 16.T. Maki, K. Kobayashi, M. Minato and I. Tamura, Scripta Metall, 18(1984) 1105. 17.D. P. Dunne and C. M. Wayman, Metall. Trans, 4(1973) 137. 18.R. Oshima, Scripta Metall, 15(1981) 829. 19.K. Otsuka and C. M. Wayman, Mechanism of Shape Memory Effect And Superelasticity , (1999) 42. 20.K. N. Melton, J. Simpson and T. W. Duerig, Proc. ICOMAT, (1986) 1053. 21.K. N. Melton and T. W. Duerig, Metallurgia, 52(1985) 318. 22.T. W. Duerig and K. N. Melton, Materials Research Society International Symposium Proceedings, (1989) 581. 23.C. M. Wayman: Proc. Int. Conf. on Solid to Solid Phase Transformations, TMS-AIME, Pittsburgh, Pa. (USA) (1981) 1119. 24. H. Kessler and W. Pitsch, Acta Met. , 15(1967) 401. 25. Wayman C.M., Mater. Sci. Forum, (1990) 56. 26. Y. F. Zheng , W. Cai , J. X. Zhang , L. C. Zhao and H. Q. Ye, Acta Mater.,48(2000) 1409. 27. H. Kato, N. Hirata and S. Miura, Acta Metall, 43(1995) 361. 28. Takao Ohta, Materials Science and Engineering, A312 (2001) 57. 29.J. Rejzner, C. Lexcellent, B. Raniecki, International Journal of Mechanical Sciences, 44(2002) 665. 30. C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, P. Blanc, Journal of the Mechanics and Physics of Solids, 50(2002) 2717. 31. F. Trochu and Yuan-Yao Qian, Computers & Structures, Vol.62 No.5, 799. 32. K. Otsuka and X. Ren, Materials Science and Engineering, A273–275(1999)89. 33. T. Saburi, S. Nenno and C.M. Wayman, ICOMAT-79, (1979) 619. 34. T. Saburi and S. Nenno, Proc. Int. Conf. On Solid to Solid Phase Transformations, ASM, Metals Park, Ohio, 1982, 1455. 35. T.A. Schroder and C.M. Wayman, Scripta Metall., 11(1977) 225. 36. J. Perkins and R.O. Sponholz, Met. Trans., 15A (1984) 313. 37. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Metall., 8(1974) 1055. 38. T. Saburi and S. Nenno, Scripta Metall., 8(1974) 1363. 39. K. Enami, A. Negasawa and S. Nenno, Scripta Metall., 9(1975) 941. 40. L. Delaey and J. Thienel, Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, (1975) 341. 41. M. Nishida and T. Honma, Scripta Metall., 18(1984)1293. 42. M. Nishida and T. Honma, Scripta Metall., 18(1984)1299. 43. M. Nishida and C.M. Wayman, Scripta Metall., 18(1984) 1389. 44. M. Nishida and T. Honma, ICOMAT-82, 43(1982) C4-225. 45. M. Otsuka and K. Shimizu, Int. Met. Rev., 31(1986) 93. 46. T. Honma, Proc, Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin, China, (1986) 709. 47. T. Honma, ICOMAT-86 (1986) 709. 48. K. Otsuka and X. Ren, Materials Science and Engineering, A273–275(1999) 89. 49. TB Massalski , H. Okamoto, PR. Subramanian, L. Kacprzak, Binary alloy phase diagram, 2nd ed , vol. 3. Ohio:ASM International, (1990) 2875. 50. O. Matsumoto, S. Miyaaki, K. Ostuka and H. Tamura, Acta Mater, 35(1987) 2137. 51. K.M. Knowls and K.A. Smith, Acta Mater, 29(1981) 101. 52. T.Tadaki, C.M. Wayman, Scripta Metall 14 (1980) 911. 53. H.C Lin, S.K. Wu, T.S. Chou, H.P. Kao, Acta Metall. Mater. 29 (1991) 2069. 54. K. Madangopal, B. Rajarshi, Scripta Metall. Mater. 27 (1992) 1627. 55. J. Koike, D.M. Parkin, M. Nastasi, J. Mater. Res. 5 (1990) 1414. 56. D.P. Dautovich and G.R. Purdy, Can. Metal. Quart, 4(1965) 129. 57. F.E. Wang, B.F. Desavage and W.I. Buehler, J. Appl. Phys., 39(1968) 2166. 58. G.D. Sandrock, A.J. Perkin and R.F. Hechemann, Met. Trans., 2(1971) 2769. 59. O. Mercier and K.N. Melten, Acta Met., 27(1979) 1467. 60. H.C. Lin and R. Kaplow, Met. Trans., 12A (1981) 2101. 61. E. Goo and R. Siinclair, Acta Met., 33(1985) 1717. 62. H.C. Ling and R. Kaplow, Met. Trans., 11A(1980) 77 63. S.K. Wu and H.C. Lin, Scripta Met., 25(1991) 1529. 64. C.M. Hwang, M. Meichle, M.B. Salamon and C.M. Wayman, Phys. Mag., A, 47(1983) 31. 65. S. Miyazaki and C. M. Wayman , Acta Met , 36(1988) 181. 66. S. K. Wu and C. M. Wayman , Acta Met , (1989) 67. K. Otsuka and C. M. Wayman, Shape memory materials, (1981) 51. 68. V.I. Kolomytsev, V.A. Lobodyuk and L.G. Khandros, Phys. Stat. Sol. (a), 65(1981) 87. 69. M. Nishida and T. Honma, Scripta Metall, 19(1985) 983. 70. J. Beyer, R. A. V. D. Brakel , J. R. T. Lloyd , Proc. ICOMAT , Japan Institute of Metals , Japan , (1986) 703. 71. T. Saburi, S. Nenno , T. Fukuda, J. Less-Common Met , 125(1986)157. 72. T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka , Trans. Japan Inst. Metals, 27(1986) 731. 73. Y. Kawaguchi, K. Katsube, M. Murahash, Y. Yamada; Wire Journal International, 121(1991) 53. 74. Sakae Saito, Takashi Wachi and Shuij Hanada; Materials Science and Engineering A, 161(1993) 91. 75. Ikuta Koj; Proceeding-IEEE MICRO Electro Mechanical System, (1994)355. 76. Zhang Yunshi; Acta. Metallurgica Sinica, v6B, n4 (1993) 263. 77. Katsutoshi, Y. Masaaki; Proceeding-IEEE MICRO Electro Mechanical System (1990) 217. 78. J.C. Hey, A. P. Jardine; Materials Science and Engineering A, 188(1994) 291. 79. H.C. Lin, S.K. Wu; Acta Metal. Vol. 42, No.5 (1994) 1623. 80. M.T. Yeh, H.P. Kao and S.E. Hsu; unpublished research, M R & D C, CSIST. 81. H.C. Lin, S.K. Wu; Metallurgical Trans. Vol.24A (1993) 293. 82. K.M. Knowles, Phil. Mag. A45 (1982) 357. 83. T. Onda, Y. Bando, T. Ohba, K. Otsuka, Mater. Trans. JIM 33 (1992) 354. 84. M. Nishida, K. Yamauchi, I. Itai, H. Ohgi, A. Chiba, Acta Metall. Mater.43 (1995) 1229. 85. Geraldine Tan, Yinong Liu, Petr Sittner , Martin Saunders. Scripta Materialia 50 (2004) 193. 86. A.Arab and M. Ahlers, ICOMAT-82 (19820 709. 87. J. Janseen, J. Van Humbeeck, M. Chandrasekaran, N. Mwamba and L. Delaey, ICOMAT-82 (1982) 639. 88. Raychem Corporation, French Patent No.2301604. 89. H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, Acta Metall. Mater. 39 (1991) 2069. 90. Y. Liu, S.P. Galvin, Acta Materialia 45 (1997) 4431. 91. Y. Liu, Mater. Sci. Eng. A 273–275 (1999) 668. 92. Y. Liu, D. Favier, Acta Materialia. 48 (2000) 3489. 93. H.C. Lin, S.K. Wu, Metall. Trans. 24A (1993) 293. 94. M. Piao, K. Otsuka, S. Miyazaki, H. Horikawa, Mater. Trans. 34 (1993) 919. 95. G. Tan, Y. Liu, Intermetallics. 67-75 (2000) 8. 96. Y. Liu, J. Van Humbeeck, Acta Materialia. 199 (1998)47. 97. Y.F. Zheng, B.M. Huang, J.X. Zhang, L.C. Zhao, Mater. Sci. Eng. A 279 (1999) 25. 98. Zhenhua Li, Guoquan Xiang, Xianhua Cheng, Materials and Design 27 (2006) 324. 99. Zhenhua Li, Xianhua Cheng, Qianqian Shang Guan, Materials Letters 59 (2005) 705. 100. B. Kockar, I. Karaman, A. Kulkarni, Y. Chumlyakov , I.V. Kireeva , Journal of Nuclear Materials 361 (2007) 298. 101. Xianhua Cheng, Zhenhua Li, Guoquan Xiang, Materials and Design 28 (2007) 2218. 102. R.Z. Valiev, Nat. Mater. 3 (2004) 511. 103. T. Waitz, Acta Mater. 53 (2005) 2273. 104. C. Rentenberger, T. Waitz, H.P. Karnthaler, Materials Science and Engineering A 462 (2007) 283. 105. Hiroyuki Nakayama, Minoru Taya, Ronald W. Smith, Travis Nelson, Michael Yu, Edwin Rosenzweig, Materials Science and Engineering A 459 (2007) 52. 106. P. Filip, J. Lausmaa, J. Musialek, K. Mazanec, Biomaterials 22 (2001) 2131. 107. S. Domingo, S. Puértolas, L. Gracia-Villa, M. Mainar, J. Usón and J.A. Puértolas, Bio-Medical Materials and Engineering 15 (2005) 357. 108. Hong-Sheng Ding, Jung-Moo Lee, Bup-Ro Lee, Suk-Bong Kang, Tae-Hyun Nam, Materials Science and Engineering A 408 (2005) 182. 109. Hong-Sheng Ding, Jung-Moo Lee, Bup-Ro Lee, Suk-Bong Kang, Tae-Hyun Nam, Materials Science and Engineering A 444 (2007) 265. 110. Yong Liu, Z.L.Xie. Acta Materialia 51 (2003) 5529. 111. J.I. Kim, Y. Liu, S. Miyazaki, Acta Mater. 52 (2004) 487. 112. H. Nakayama, K. Tsuchiya, Z.-G. Liu, M. Umemoto, K. Morii, K. Shimizu, Mater. Trans. 42 (2001) 1987. 113. J. X. ZHANG, M. SATO and A. ISHIDA, Acta mater. 49 (2001) 3001. 114. J.X. Zhang, M. Sato, A. Ishida, Acta Materialia 51 (2003)3121. 115. F. Khelfaoui, G. Guenin, Mater. Sci. Eng. A 292-298 (2003) 355. 116. H. Morawiec, D. Stroz, D. Chrobak, J Phys 4 C2 (1995) 205. 117. H. Morawiec, D. Stroz, T. Goryczka, D. Chrobak, Scripta Mater 35 (1996) 485. 118. D. Chrobak, D. Stroz, H. Morawiec, Scripta Mater 48 (2003) 571. 119. S.H. Chang, S.K. Wu, G.H. Change; Scripta Mater 52 (2005) 1341. 120. made by Medtronic AVE.inc. 121. Y. Liu, Z.L. Xie, J. V. Humbeeck, L. Delaey, Materials Science and Engineering A273-275 (1999) 679. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40261 | - |
| dc.description.abstract | 本實驗使用VAR熔配Ti-50.3at. %Ni與Ti-50.7at.%Ni兩種不同成分之形狀記憶合金,鑄錠試片經均質化以及熱滾軋後,在1123K進行固溶處理,之後淬至冰水中,再進行不同縮減量的冷滾軋,利用DSC和XRD量測以及穿透式電子顯微鏡觀察其不同縮減量之顯微組織的變化。Ti-50.3at. %Ni成分在DSC量測裡發現多階段的相轉變行為,因而更進一步利用partial cycle來鑑定每個吸放熱峰的相轉變。而Ti-50.7at.%Ni成分之試片再進行in-situ TEM觀察相轉變的變化,比較塊材與薄片TEM試片之間相轉變行為的差異。
實驗結果得知TiNi 形狀記憶合金之變形調適機制會隨著合金成分之差異而有顯著的不同。以Ti-50.3at. %Ni 合金觀察其冷加工之調適機制主要是麻田散體兄弟晶以雙晶型式作變形調適。隨著不同的冷軋延量,其雙晶調適機制也隨之改變。在較低的冷軋延量(5%)時,主要以 <011> typeⅡ twinning 做調適。 當冷軋延量增加時(15%),麻田散體次組織帶內之調適雙晶型式逐漸改變,不再以 <011> typeⅡ twinning 為主,出現一些交插之針狀雙晶平板,以及大量的差排和缺陷。當冷軋延量達30%時,局部區域出現非晶質化,且可能有應力誘發母相SIP(stress-induced parent phase)的機制發生。在DSC 的觀察裡發現四階段的相轉變,而在降溫過程四階段相轉變發生的位置首先是在晶界上的B2→B19’,第二個相轉變行為發生在第一個相轉變麻田散體板條之間,也是B2→B19’。第三個相轉變是發生晶粒內部,在缺陷聚集位置上先產生B2→B19’相變態,生成的麻田散體板條以夾特定的角度排列。最後一個相轉變是發生在其他未轉變的母相基地裡,為B2→B19’連續性的相變態。 以Ti-50.7at.%Ni 7 合金觀察其冷加工之調適機制主要是應力誘發缺陷及麻田散體為主要的變形調適。應力誘發麻田散體的數量並非與冷軋延量呈線性成長。在10%之冷軋延量下,麻田散體與缺陷在母相基地內部做應變調適。當冷軋延量達15%時,差排沿著麻田散體界面排列,此排列有利於內部應力之調適,應力誘發麻田散體被大量缺陷抑制住。隨著冷軋延量達22%時,因缺陷在基地內達到最大值,所以在缺陷聚集的界面中,以微雙晶的區域(domain)做更 進一步的調適。當冷軋延量達到最大值35%時,基地內部達到一個奈米晶(nanocrystalline)與非晶質(amorphization)混合組織,仍具有織構(texture),且似乎有應力誘發母相的行為發生。在in-situ TEM 之觀察與DSC 量測發現,相變化的順序會因為試片之厚薄而有些許的差異。當冷軋延量低於10%,在加熱與冷卻過程均發生相同的相轉變B19’→B2 和B2→R→B19’。當冷軋延量達15~22 %時,在冷卻過程發現不同的相轉變,TEM 觀察裡相轉變只發生B2→R,而R→B19’的相轉變被完全抑制。冷軋延量達最大值35%時,原本微雙晶區域變成具有織構的奈米晶粒,且相轉變行為完全被抑制了。 | zh_TW |
| dc.description.abstract | Ti-50.3at. %Ni and Ti-50.7at.%Ni shape memory alloy were prepared by vacuum arc remelter (VAR) in this study. Bulk specimens were first homogenized in vacuum (24 h, 1323 K), quenched in ice water (276 K) and then hot rolled at 1123 K. After annealing at 1123 K for 1 h, some specimens were cold rolled by 5 ~ 35%. The microstructure and crystal structure of cold-rolled specimens were analyzed by Differential Scanning Calorimeter (DSC), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The main object of this study is to perform a four-stage transformation of Ti-50.3at.%Ni caused only by cold-rolling without other thermomechanical treatments and provide a small-scale heterogeneity of local stress field explanation. And to observe the microstructure evolution of Ti-50.7at.%Ni alloy with various degrees of thickness reduction of particular interest is the accommodation mechanism by generation of lattice defects. Subsequently, the cold-rolling NiTi sample is further studied by in situ TEM observation to investigate the phase transformation during the heating and cooling processes and comparison with the results of DSC measurements of bulk materials.
The results show that the deformation mechanism of Ti49.7Ni50.3 SMA is dominant by twinning accommodation in the martensite variants. The twinning mode is changed with degree of cold-working. At slight cold reduction (5%) , the <011> typeⅡ twinning mode is dominant .However at heavy cold reduction (15%), the twinning modes inside the martensite substructural bands are different. Some cross-hatched twinning plates, heavy dislocation and defects are observed. When the cold-reduction finally reaches 30% , mechanical amorphisation happens in local regions. At the same time, the stress-induced parent phase also happens. The cold rolled deformation of Ti-50.3at. %Ni causes defect generation, resulted in a four-stage transformation was discovered to occur in TiNi alloy deformed 5% at RT. The transformation sequence on cooling was identified to be all the same B-M transformation. The first two transformations on cooling were suggested to occur in the regions close to grain boundary. The third transformation was suggested to occur in the grain interior. And the last one was suggested that it is retain B2 transformed B19’in the whole matrix. The heterogeneous defects cause the formation of small-scale heterogeneities which induced localized stress fields and affect the phase transformation sequence. The effects of cold rolling on deformation mechanism, martensite transformation and grain refinement were studied on Ti-50.7at.%Ni SMA. The cold rolled deformation of TiNi causes SIM, defect generation, micro twinning domains and finally amorphisation. Increasing strain results in a decrease of the size of micro twinning domains inside fractured plates. These nano-crystallites embedded in the amorphous matrix after in situ cycle possessed the preferred orientation. In the lower deformation, all of the SIM to B2, B2 to R and R to B19’ can occur during heating and cooling. After severe plastic deformation, the formation of nano-crystallite will suppress all phase transformations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:43:35Z (GMT). No. of bitstreams: 1 ntu-97-D93527005-1.pdf: 15229217 bytes, checksum: 19afb2d8d5e7fa747c1c8d61905d0a02 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書…………………………………………………… i 致謝………………………………………………………………… ii 中文摘要………………………………………………………… iii 英文摘要…………………………………………………………… v 第一章 前言……………………………………………………… 1 第二章 文獻探討………………………………………………… 7 2-1 形狀記憶合金簡介………………………………………… 7 2-2 熱彈性麻田散體相變態…………………………………… 7 2-3 擬彈性效應………………………………………… 9 2-3-1 應力誘發麻田散體………………………………… 10 2-3-2 超彈性………………………………………………… 10 2-3-3 似橡膠性……………………………………………… 11 2-4 形狀記憶效應…………………………………………… 11 2-5 鈦鎳合金相結構與相變態………………………… 13 2-5-1 R相結構與相變態 ………………………………… 14 2-5-2 TiNi合金的時效析出物…………………………… 15 2-5-3 TiNi合金相的變態……………………………… 16 2-5-4 麻田散體穩定化………………………………… 17 2-5-5 塑性加工變形……………………………………… 18 2-6 TiNi形狀記憶合金之滾軋製程…………………………… 19 2-7 TiNi 形狀記憶合金之相變態…………………………… 22 第三章 實驗方法……………………………………………… 35 3-1 合金熔配…………………………………………………… 35 3-2 試片準備…………………………………………… 36 3-3 軋延方法與設備…………………………………… 36 3-4 微硬度測試……………………………………… 37 3-5 DSC變態溫度測試………………………………… 37 3-6 X光繞射分析…………………………………… 38 3-7穿透式電子顯微鏡(TEM)觀察………………………… 38 第四章 實驗結果與討論……………………………………… 42 4-1-1 合金成分選擇………………………………………… 42 4-1-2 熱處理方法…………………………………………… 42 4-2 DSC變態溫度量測………………………………………… 43 4-2-1 Ti49.7Ni50.3合金DSC變態溫度量測………………… 43 4-2-2 Ti49.3Ni50.7合金DSC變態溫度量測…………… 45 4-3 Hv微硬度測試…….……………………………………… 48 4-3-1 Ti49.7Ni50.3 之Hv微硬度試驗……………………… 48 4-3-2 Ti49.3Ni50.7 之Hv微硬度試驗……………………… 49 4-4 XRD分析………………………………………………… 50 4-4-1 Ti49.7Ni50.3 之XRD分析……………………………… 50 4-4-2 Ti49.3Ni50.7 之XRD分析……………………………… 52 4-5 TEM顯微組織觀察………………………………… 53 4-5-1 Ti49.7Ni50.3顯微組織觀察…………………………… 54 4-5-2 Ti49.3Ni50.7顯微組織觀察…………………………… 59 4-5-3 麻田散體安定化現象………………………………… 64 第五章 多階段相轉變之研究……………………………… 93 5-1 Ti49.7Ni50.3合金partial DSC cycle………………… 93 5-2 金相組織觀察與微硬度試驗………………………… 93 5-3 SEM顯微組織觀察………………………………… 94 5-4 TEM顯微組織觀察………………………………… 95 5-4-1晶界顯微組織觀察………………………………… 95 5-4-2晶粒內部顯微組織觀察………………………………… 95 第六章 In situ TEM 對Ti49.3Ni50.7相變態之研究……… 101 第七章 結論…………………………………………………… 110 參考文獻……………………………………………………… 112 表目錄 [表1.1] 鐵系形狀記憶合金特性比較……………………… 4 [表1.2] 非鐵系形狀記憶合金特性比較…………………… 5 [表1.3] 常見之三類SMA比較………………………………… 5 圖目錄 [圖 1.1] 316L系列不銹鋼支架……………………………… 6 [圖2.1] 熱彈性麻田散體兄弟晶的四種自我調適變形方式… 24 [圖2.2] 典型形狀記憶合金之超彈性行為…………………… 25 [圖2.3] 形狀記憶效應與超彈性關係圖……………………… 25 [圖2.4] TiNi形狀記憶合金之似橡膠性行為………………… 26 [圖 2.5] 形狀記憶合金Ms、Mf、As、Af的定義及形狀記憶效應 示意圖……………………………………………………… 26 [圖2.6] 形狀記憶效應示意圖 ……………………………… 27 [圖2.7] Ti3Ni4有序排列促成全方位記憶效應示意圖……… 27 [圖2.8] TiNi合金之平衡相圖………………………………… 28 [圖2.9] (a)B2之單位晶格 (b)B19’之單位晶格由B2形變而成28 [圖2.10] R-phase單位晶格與層狀結構……………………… 29 [圖2.11] 單一R相兄弟晶之反結晶格子……………………… 29 [圖2.12] Ti48Ni52—TTT曲線圖……………………………… 30 [圖2.13] Ti3Ni4層狀結構示意圖…………………………… 30 [圖2.14] Ti3Ni4在B2基地所造成的晶格扭曲示意圖……… 31 [圖2.15] TiNi合金(a)B19’之單位晶格 (b)[100]俯視 (c)[010]俯視………………………………………………………………… 31 [圖2.16] TiNi合金<011> typeⅡtwin 晶體方位關係……… 32 [圖2.17] TiNi合金<011> typeⅡtwin 之原子結構………… 33 [圖 2.18] 差排結構所造成的3階段變態示意圖…………… 34 [圖3.1] 實驗流程圖…………………………………………… 39 [圖3.2] 真空電弧熔煉爐(VAR)結構圖……………………… 40 [圖3.3] 典型的DSC曲線圖…………………………………… 41 [圖4.1] Ti49.7Ni50.3冷軋延後DSC熱循環曲線圖………… 67 [圖4.2] Ti49.3Ni50.7冷軋延後第一次DSC熱循環曲線圖…… 68 [圖4.3] 冷軋延量與硬度之關係……………………………… 69 [圖4.4] Ti49.7Ni50.3 冷軋延處理後之XRD 分析圖……… 70 [圖4.5] 圖4.4局部放大之XRD分析圖……………………… 71 [圖4.6] Ti49.3Ni50.7冷軋延處理後之XRD 分析圖………… 72 [圖 4.7] Ti49.7Ni50.3合金固溶處理試片之顯微組織:(a)板條狀麻田散體與母相共存之明視野像, (b) 為(a)板條狀麻田散體之暗視野相, (c)為(a)之SADP, (d) 為(c)之分析.…………… 73 [圖4.8] Ti49.7Ni50.3合金5%冷軋延量之麻田散體組織:(a) 麻田散體調適階梯狀之明視野像, (b)、(c)是(a)之暗視野像,(d)為(a)之SADP……………………………………………………… 74 [圖4.9] Ti49.7Ni50.3合金5%冷軋延量之顯微組織變化:(a) 母相基地中麻田散體透鏡狀板片, (b) 母相的暗視野像, (c) 為(a)之SADP, (d) 透鏡狀麻田散體之暗視野像…………………… 75 [圖4.10] Ti49.7Ni50.3合金5%∼10%軋延量下之顯微組織變化:(a) 格子狀調適麻田散體之明視野像,(b)調適之細小板片麻田散體穿插之明視野像…………………………………………… 76 [圖4.11] Ti49.7Ni50.3合金10﹪冷軋延量之顯微組織:(a)羽毛狀麻田散體板片之明視野像, (b)羽毛狀麻田散體之暗視野像, (c)為(a)之SADP……………………………………………………… 77 [圖4.12] 氧化物周圍破碎麻田散體的形貌.………………… 78 [圖4.13] Ti49.7Ni50.3合金15%冷軋延量之顯微結構組織:(a)被合併的麻田散體明視野像, (b)為(a)之放大, (c) <011> type П twin …………………………………………………………… 79 [圖4.14] Ti49.7Ni50.3合金20%冷軋延量之調適形貌……… 80 [圖4.15] Ti49.7Ni50.3合金20%冷軋延量之顯微組織:(a)大麻田散體板條穿插於基地, (b)為(a)之SADP ,(c) SADP之分析………………………………………………………………… 80 [圖4.16] 冷軋延過程麻田散體兄弟晶調適示意圖………… 81 [圖4.17] Ti49.7Ni50.3合金25%冷軋延量之顯微組織…… 82 [圖4.18] Ti49.7Ni50.3合金30﹪冷軋延量之顯微組織:(a).(b)基地中母相之明視野像, (c)母相之SADP .…………………… 83 [圖4.19] Ti49.3Ni50.7合金固溶試片之TEM顯微組織:(a) 明視野像, (b)圖(a)之SADP, B // [111]B2.……………………… 84 [圖4.20] 初期滾軋在母相基地內大量差排之形貌…………… 84 [圖4.21] Ti49.3Ni50.7合金10%冷軋延量之TEM顯微組織:(a) 明視野像, (b) 圖(a) 圈選區之SADP, B // [112]R…………… 85 [圖4.22] Ti49.3Ni50.7 合金10%冷軋延量的顯微組織. (a) 明視野像, (b) 暗視野像, (c)圖(a)中A區域之SADP, B//[311]B2, (d)圖(a)中B區域之SADP, B//[ ]M,T Ti49.7Ni50.3合金15﹪軋延量之顯微結構………………………………………………………… 85 [圖4.23] Ti49.3Ni50.7合金10%冷軋延量之高倍率明視野顯微組織………………………………………………………………… 86 [圖4.24] Ti49.3Ni50.7合金15%冷軋延量的顯微組織:(a) 明視野像, (b) 暗視野像, (c) 圖(a)中A區域之高倍率放大, (d)圖(a)之SADP, B//[110]M………………………………………………… 87 [圖4.25] Ti49.3Ni50.7合金15%冷軋延量的顯微組織. (a) 明視野像, (b) 暗視野像(R1), (c) 暗視野像(R2), (d) 圖(a)之SADP, [3 3]//[011]M. (e) SADP之分析.…………………………… 88 [圖4.26] Ti49.3Ni50.7合金18%冷軋延量的顯微組織…… 89 [圖4.27]Ti49.3Ni50.7合金22%冷軋延量的顯微組織:(a) 明視野像, (b) 暗視野像, (c) 圖(b)中圈選區域之高倍率放大, (d) 圖(a)之SADP, B//[110]M,T…………………………………… 90 [圖4.28] Ti49.3Ni50.7合金35%冷軋延量之顯微組織…… 91 [圖4.29] 冷軋延量對變態特徵溫度曲線圖(a) Ti49.7Ni50.3, (b) Ti49.3Ni50.7………………………………………………… 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 麻田散體轉變 | zh_TW |
| dc.subject | 非晶質 | zh_TW |
| dc.subject | Amorphisation | en |
| dc.subject | Microstructure | en |
| dc.subject | Martensitic transformation | en |
| dc.title | 冷軋延對鈦鎳合金相變態之研究 | zh_TW |
| dc.title | Effect of Cold Rolling on the Phase Transformation Behavior in TiNi Shape Memory Alloy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳錫侃,楊智富,陳煌,童山 | |
| dc.subject.keyword | 麻田散體轉變,非晶質,顯微結構, | zh_TW |
| dc.subject.keyword | Martensitic transformation,Amorphisation,Microstructure, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 14.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
