Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能
dc.contributor.authorYu-Wen Kuoen
dc.contributor.author郭宇文zh_TW
dc.date.accessioned2021-06-14T16:42:23Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citationBazzini, A. A., Mongelli, V. C., Hopp, H. E., del Vas, M., and Asurmendi, S. A. 2007. practical approach to the understanding and teaching of RNA silencing in plants Electronic. Journal of Biotechnology 10:178-190.
Benedito, V.A., Visser, P.B., Angenent, G.C., and Krens, F.A. 2004. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes. Genetics and Molecular Research 3, 323-341.
Bhattarai, K. K., Li, Q., Liu, Y., Dinesh-Kumar, S. P., and Kaloshian, I., 2007. The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiology 144:312-323.
Brigneti, G., Martin-Hernandez, A. M., Jin, H. L., Chen, J., Baulcombe, D. C., Baker, B., and Jones, J. D. G. 2004. Virus-induced gene silencing in Solanum species. Plant Journal 39:264-272.
Burch-Smith, T. M., Anderson, J. C., Martin, G. B., and Dinesh-Kumar, S. P. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal 39:734-746.
Burch-Smith, T. M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. 2006. Efficient Virus-Induced Gene Silencing in Arabidopsis. Plant Physiology 142:21–27.
Cai, X. Z., Wang, C. C., Xu, Y. P., Xu, Q. F., Zheng, Z., and Zhou, X. P. 2006. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research 125:169-175.
Cai, X. Z., Xu, Q. F., Wang, C. C., and Zheng, Z. 2006. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Molecular Biology 62:223-232.
Caplan, J. and Dinesh-Kumar, S. P. 2006. Current Protocols in Microbiology 16I.6.1-16I.6.13.
Chen, J. C., Jiang, C. Z., and Reid, M. S. 2005. Silencing a prohibitin alters plant development and senescence. Plant Journal 44:16-24.
Chen, J. C., Jiang, C. Z., Gookin, T. E., Hunter, D. A., Clark, D. G., and Reid, M. S. 2004. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Molecular Biology 55:521-530.
Chung, E., Seong, E., Kim, Y. C., Chung, E. J., Oh, S. K., Lee, S., Park, J. M., Joung, Y. H., and Choi, D. A. 2004. method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Molecules and Cells 17:377-380.
Corley, S. B., Carpenter, R., Copsey, L., and Coen, E. 2005. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences 102:5068-5073.
Cubas, P., Lauter, N., Doebley, J., and Coen, E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. Plant Journal 18:215
Dinesh-Kumar, S. P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. 2003. Virus-induced gene silencing. Plant Functional Genomics 236:287-293.
Dong, Y., Burch-Smith, T. M., Liu, Y., Mamillapalli, P., and Dinesh-Kumar, S. P. 2007. A Ligation-Independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiology 145:1161-1170.
Fu, D. Q., Zhu, B. Z., Zhu, H. L., Jiang, W. B., and Luo, Y. B. 2005. Virus-induced gene silencing in tomato fruit. Plant Journal 43:299-308.
Fu, D. Q., Zhu, B. Z., Zhu, H. L., Zhang, H. X., Xie, Y. H., Jiang, W. B., Zhao, X. D., and Luo, Y. B., 2006 Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Molecules and Cells 21:153-160.
Ghisleni, P. L., and Martinetti, L. 1995. Saintpaulia: Annual Academy di Agriculture di Torino, 158-266.
Gould, B. and Kramer, E. M. 2007. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant aquilegia (columbine, Fanunculaceae). BMC plant methods 12:6.
Hileman, L. C., Drea, S., de Martino, G., Litt, A., and Irish, V. F. 2005. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant Journal 44:334-341.
Kumagai, M. H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L. K. 1995. Cytoplasmid ingibition of carotenoid biosybtheis with virus-derived RNA. National Academy Scioty 92:1679-1683.
Kushikawa, S., Hoshino, Y., and Mii, M. 2001. Agrobacterium-mediated transformation of Saintpaulia ionantha Wendl. Plant Science 161:953–960.
Liu, Y. L., Schiff, M., and Dinesh-Kumar, S. P. 2002b. Virus-induced gene silencing in tomato. Plant Journal 31:777-786.
Liu, Y. L., Schiff, M., and Dinesh-Kumar, S. P. 2004. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant Journal 38:800-809.
Liu, Y. L., Schiff, M., Marathe, R., and Dinesh-Kumar, S. P. 2002a. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal 30:415-429.
Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, VF., and Dinesh-Kumar, S. P. 2004. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Molecular Biology 54:701-711.
Lu, H. C., Chen, H. H., Tsai, W. C., Chen, W. H. Su, H. J., Chang, D. C. N., and Yeh, H. H. 2007. Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids. Plant Physiology 143:558–569.
Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., and Baulcombe, D. C. 2003. Virus-induced gene silencing in plants. Methods 30:296–303.
Mattews, R. E. F. 1991. Plant Viology, 3rd edn San Diego: Academic Press.
Mercuri, A., Benedetti, L. D., Burchi, G., and Schiva,T. 2000. Agrobacterium-mediated transformation of African violet. Plant Cell, Tissue and Organ Culture 60: 39-46.
Moini, A. A. and Izadpanah, K. 2000. New hosts for Tomato spotted wilt virus in Tehran Iranian. Journal of Plant Pathology 36:104-105.
Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant Cell 2:279-289.
Nethra, P., Nataraja, K. N., Rama, N., and Udayakumar, M. 2006. Standardization of environmental conditions for induction and retention of post-transcriptional gene silencing using tobacco rattle virus vector Current Science 90:431-435.
Ratcliff, F., Martin-Hernandez, A. M., and Baulcombe, D. C. 2001. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant Journal 25:237-245.
Rotenberg, D., Thompson, T. S., German, T. L., and Willis, D. K. 2006. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. Journal of Virological Methods 138:49-59.
Ryu, C. M., Anand, A., Kang, L., and Mysore, K. S., 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant Journal 40:322-331.
Saedler, R. and Baldwin, I. T. 2004. Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata Journal of Experimental Botany 55:151-157.
Senthil-Kumar, M., Hema, R., Anand, A., Kang, L., Udayakumar, M., and Mysore, K. S., 2007. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytologist 176:782-791.
Sonoda, S. 2003. Analysis of the nucleocapsid protein gene from Tomato spotted wilt virus as target and inducer for posttranscriptional gene silencing. Plant Science 164:717-725.
Sulzinski, M. A., Jurkonie, D. D., and Adonizio, C. S. 1994.Tobacco Mosaic-virus Sbbliminal Infection of African violet. Journal of the American Society for Horicultural Science 119:702-705.
Toth, S., Kiss, C., Scott, P., Kovacs, G., Sorvari, S., and Toldi, O. 2006. Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell 25:442–449.
Valentine, T., Shaw, J., Blok, V. C., Phillips, M. S., Oparka, K. J., and Lacomme, C. 2004. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology 136:3999-4009.
Wang, C. C., Cai, X. Z., Wang, X. M., and Zheng, Z. 2006. Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Functional Plant Biology 33:347-355.
Wang, C. N. and Cronk, Q. C. B. 2006. Differential expression of CYCLOIDEA homologs in wild-type and peloric Saintpaulia flowers (Gesneriaceae). Development Genes and Evolution (in revision).
Waterhouse, P. M. and Helliwell, C. A. 2003. Exploring Plant Genomes by RNA-Induced Gene Silencing. Nature Reviews 4:29-38.
Xie, Y. H., Zhu, B. Z., Yang, X. L., Zhang, H. X., Fu, D. Q., Zhu, H. L., Shao, Y. Li, Y. C., Gao, H. Y., and Luo, Y. B. 2006. Delay of postharvest ripening and senescence of tomato fruit through virus-induced LeACS2 gene silencing. Postharvest Biology and Technology 42:8-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40189-
dc.description.abstract非洲堇 (African violet, Saintpaulia ionantha) 為苦苣苔科之多年生草本植物,具有自然突變種 (輻射對稱花) 與野生種 (兩側對稱花) 兩種花型。本實驗室比較兩種非洲堇花型之對稱性基因表現模式,結果發現CYC (CYCLOIDEA) 基因的過量表現,可能是使花朵由兩側對稱呈現輻射對稱的重要原因,但其對於非洲堇表徵變化上扮演的角色無法明確得知。本研究的目的為應用病毒誘導基因靜默 (VIGS, virus induced gene silencing) 技術,建立於非洲堇系統上,以供非洲堇花對稱性基因功能研究。我們使用CymMV (cymbidium mosaic virus) 及TRV (tobacco rattle virus) 所衍生的兩種VIGS系統,利用靜默將造成植物產生白化表徵的SiPDS (Saintpaulia ionantha phytoene desaturase) 基因作為標記,並選擇與花部對稱性相關的SiCYC基因 (Saintpaulia ionantha cycloidea, cycloidea) 作為欲研究之目標基因,構築出pCymMV-SiPDS、pTRV2-SiCYC、pTRV2-SiPDS三種載體,感染非洲堇扦插苗。由於我們所使用的TRV病毒載體須以農桿菌作為感染媒介,因此我們另將pCambia-3130載體轉入GV3101、GV2260及LBA4404三種不同品系的農桿菌中感染植物,利用載體上的GUS序列,來研究不同品系農桿菌對於非洲堇感染之效率。結果三種品系農桿菌感染非洲堇兩天後,經GUS染色,發現無任何GUS蛋白表現,這可能是由於農桿菌對於非洲堇扦插苗的感染率低,且檢測樣本數不足所致;而以CymMV及TRV病毒載體感染一個月後,非洲堇無任何靜默表徵,植物體以RT-PCR檢測,亦無本實驗所感染的病毒RNA存在。然而本實驗所使用之非洲堇品系中,無論有無感染處理的非洲堇,皆可檢測出人為TRV2病毒序列,但卻無病毒RNA移動所必須之TRV1病毒序列存在,這表示人為TRV2序列可能原本即存在於本實驗所使用之非洲堇品系DNA中,造成植物難以再度感染TRV病毒。後續實驗應使用無病毒序列之原生種非洲堇,並以較易感染農桿菌的組培苗作為實驗材料。zh_TW
dc.description.abstractAfrican violet (Saintpaulia ionantha) is perennial Gesneriaceae plants. Its flowers show two different type of symmetry: zygomorphy (wild type) and actinomorphy (perolic type) types. In precious studies on gene expression pattern for flower symmetry, we found CYC(CYCLOIDEA) gene is a candidate in controlling flower development for zygomorphy. However, its function and phenotypic effect have never been investigated. The aim of this study is therefore to establish a VIGS system in African violet. With VIGS system, we can further explore the function of floral symmetry gene such as CYC. To establish the system, we start by using SiPDS (Saintpaulia ionantha phytoene desaturase) as a reporter gene and then flower symmetric SiCYC (Saintpaulia ionantha cycloidea) as our interest gene. We use two virus vectors, CymMV (cymbidium mosaic virus) and TRV (tobacco rattle virus), produce three constructs: pCymMV-SiPDS、pTRV2-SiCYC and pTRV2-SiPDS. TRV vector was transformed into agrobacterium for infection. In order to compare the efficiency of different Agrobacterium strains, we transformed pCambia-3130 into GV3101, GV2260 and LBA4404 three different agrobacterium strains. And use GUS as a reporter gene to detect the efficiency of different agrobacterium strains. The result shows that 2 day post infecttion with three strains of agrobacterium carrying GUSintron-pCambia-3130, there was no GUS activity in leaves. This may due to the low infection rate of agrobacterium to Africa plantlet, and our limited sample size. 1 month after infect with TRV and CymMV virus vector, there was no silencing phenotypes. When using RT-PCR detect CymMV virus RNA, no CymMV virus RNA was detected in the plant. TRV infection also failed to induce VIGS. However, surprisingly we found artificial TRV2 sequence in both infected and non-infected plants. But there was no TRV1 detectable in the plants. Since the detected TRV2 was different from our construct, and TRV2 can not move without TRV1, the TRV2 sequence may have already inserted into plant genome before our experiment, and cause the failure of our infection. In the future works, it should be cautious to confirm non-TRV2 insertion strain for establishing African violet VIGS system. No TRV2 insert primitive Africa violet may be the proper material for investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:23Z (GMT). No. of bitstreams: 1
ntu-97-R94b44002-1.pdf: 2248145 bytes, checksum: be1e9913c663b50de08734caf5458f6f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要.................................................i
英文摘要.................................................ii
第一章 前言
一、背景
(一) 非洲堇的性質........................................1
(二) 非洲堇及苦苣苔科植物農桿菌轉殖系統的前人研究........1
(三) VIGS原理............................................3
二、研究策略
(一) 選擇病毒載體
1. CymMV 載體............................................4
2. TRV 載體..............................................4
(二) 選擇目標基因
1. PDS基因...............................................5
2. CYC基因...............................................5
第二章 材料與方法
一、實驗條件及相關研究
(一) 農桿菌品系..........................................6
(二) 感染方式............................................6
(三) 感染植物栽培條件....................................7
二、農桿菌品系感染非洲堇測試
(一) 質體、農桿菌品系及接種方式..........................8
(二) GUS報導基因檢測.....................................9
三、VIGS方法
(一) 病毒感染非洲堇測試..................................9
(二) 非洲堇SIPDS及SICYC基因片段增殖......................9
(三) VIGS 的質體構築.....................................9
(四) VIGS 感染方法
1. pTRV部分..............................................10
2. pCymMV部分............................................10
(五) 非洲堇繁殖及栽種條件................................11
(六) 病毒感染RT-PCR檢測..................................11
第三章 結果
一、農桿菌品系感染非洲堇.................................11
二、病毒感染非洲堇測試...................................11
三、TRV感染
(一) pTRV-SICYC 部分.....................................12
(二) pTRV-SIPDS 部分.....................................12
四、CymMV感染............................................12
第四章 討論
ㄧ、以農桿菌為VIGS媒介感染非洲堇.........................13
二、TRV 及CymMV VIGS方法應用於非洲堇
(一) 感染後RT-PCR結果....................................13
(二) 病毒載體的選用......................................14
三、總結.................................................15
四、未來工作建議.........................................16
第五章 圖表............................................17
第六章 參考文獻........................................32
附錄一 實驗方法..........................................36
附錄二 一般藥品之配製....................................43
dc.language.isozh-TW
dc.title苦苣苔科植物非洲堇之病毒誘導基因靜默技術zh_TW
dc.titleEstablishing Virus Induced Gene Silence Technique in Africa Violet (Gesneriaceae)en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍,葉信宏,陳仁治
dc.subject.keyword病毒誘導基因靜默,非洲堇,zh_TW
dc.subject.keywordVIGS,virus-induced gene silence,TRV,CymMV,Africa violet,Saintpaulia ionantha,en
dc.relation.page35
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved