Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorMeng-Jung Tsaien
dc.contributor.author蔡孟蓉zh_TW
dc.date.accessioned2021-05-13T08:39:21Z-
dc.date.available2016-03-08
dc.date.available2021-05-13T08:39:21Z-
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-16
dc.identifier.citationAbrahart, R. J., Heppenstall, A. J., & See, L. M., 2007, Timing error correction procedure applied to neural network rainfall-runoff modelling. Hydrological Science Journal, 52(3):414-431.
Akhtar, M. K., Corzo, G. A., Andel, S. J. V., & Jonoski, A., 2009, River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrology and Earth System Sciences, 13:1607-1618.
Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., Salamon, P., 2014, Evalution of ensemble streamflow predictions in Europe, Journal of Hydrology, 517:913-922.
Araghinejad, S., Azmi, M., Kholghi, M., 2011, Application of artificial neural network ensembles in probabilistic hydrological forecasting, Journal of Hydrology, 407:94-104.
Borga, M., 2002, Accuracy of radar rainfall estimates for streamflow simulation. Journal of Hydrology, 267:26-39.
Boucher, M.A., Anctil F., Perreault, L., Tremblay, D., 2011, A comparison between ensemble and deterministic hydrological forecasts in an operational context, Advances in Geosciences, 29:85-94.
Boucher, M.A., Tremblay, D., Delormn, L., Perreault, L., Anctil, F., 2012, Hydro-economic assessment of hydrological forecasting systesms, Journal of Hydrology, 416-417:133-144.
Campolo, M., Andreussi, P. a., & Soldati, A., 1999, River flood forecasting with a neural network model. Water Resources Research, 35(4):1191-1197.
Chang, F.-J., Chang, L.-C., & Wang, Y.-S., 2007, Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes, 21: 741-749.
Chang, F.-J., Chang, L.-C., Kao, H.-S., Wu, G.-R., 2010, Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network, Journal of Hydrology, 384:118-129.
Chang, F.-J., Chen, P.-A., Liu, C.-W., Liao, V.H.-C., Liao, C.-M., 2013, Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling, Journal of Hydrology, 499:265-274.
Chang, F.-J., Chen, P.-A., Lu, Y.-R., Huang, E., Chang, K.-Y., 2014, Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control, Journal of Hydrology, 517:836-846.
Chang, L.-C., Chang, F.-J., Hsu, H.-C., 2010, Real-time reservoir operation for flood control using artificial intelligent techniques, International Journal of Nonlinear Sciences and Numerical Simulation, 11(11):887-902.
Chen, S.-T. and Yu, P.-S., 2007, Real-time probabilistic forecasting of flood stages, Journal of Hydrology, 340:63-77.
Chen, C.-Y., Lin, L.-Y., Yu, F.-C., Lee, C.-S., Tseng, C.-C.,Wang, A.-H., and Cheung, K.-W., 2007, Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS, Natural Hazaeds, 40:447-461.
Chen, P.-A., Chang, L.-C., and Chang, F.-J., 2013, Reinforced recurrent neural networks for multi-step-ahead flood forecasts, Journal of Hydrology, 497:71-79.
Chiang Y.-M., and Chang F.-J., 2009, Integrating hydrometeorological information for rainfall-runoff modeling by artificial neural networks. Hydrological Processes, 23(11):1650–1659.
Chiang Y.-M., Chang F.-J., Jou B.J.-D., & Lin P.-F., 2007, Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology, 334:250-261.
Dale, M., Davies, P., Harrsion, T., 2012, Review of recent advances in UK operational hydrometeorology, Proceeding of the Institution of Civil Engineers – Water Management, 156(2): 55-64.
Dawson, C. W., See, L. M., Abrahart, R. J., & Heppenstall, A. J., 2006, Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks, 19(2):236-247.
Dietrich, J., Schumann, A.H., Redetzky, M., Walther, J., Denhard, M., Wang, Y., Pfutzner, B., Buttner, U., 2009, Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions, Natural Hazards and Earth System Sciences, 9:1529-1540.
Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X., 2004, Precipitation Estimation from Remote Sensing Imagery Using an Artifical Neural Network Cloud Classification System. Journal of Applied Meteorology, 43:1834-1852.
Hong, Y., Gochis, D., Cheng, J.T., Hsu, K.L., Sorooshian, S., 2007, Evaluation of PERSIANN-CCS rainfall measurement using the NAME rain gauge network, Journal of hydrometeorology, 8(3):469-482.
Hsu, K.L., Gao, X., Sorooshian, S., and Gupta, H.V., 1997, Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36:1176-1190.
http://www.chrs.web.uci.edu/
http://qpesums.cwb.gov.tw/taiwan-html/
Holland, J.H., Adaptation and Artificial Systems, University of Michigan Press: Ann Arbor, 1975.
Jang, R. J.-S., 1993, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man, and Cybernetics, 23(3): 665-685.
Jones, A. J., Evans, D., and Kemp, S.E., 2007, A note on the Gamma test analysis of noisy input/output data and noisy time series, Physica D., 229:1-8.
Kang, H. M., and Yusof, F., 2012, Application of self-organizing map (SOM) in missing daily rainfall data in Malaysia. International Journal of Computer Applications, 48(5):23-28.
Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K., and Zadeh, D. F., 2012, Investigating chaos in river stage and discharge time series. Journal of Hydrology, 414:108-117.
Kim, S.B., Lee, J.W., Kim, S.Y., Lee, D.W., 2013, Dental informatics to characterize patients with dentofacial deformities, PLOS ONE, 8(8):e67862.
Koncar, N., 1997, Optimisation methodologies for direct inverse neurocontrol, PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London.
Liu, Y. Brown, J., Demargne, J., Seo, D.J., 2011, A wavelet-based approach to assessing timing errors in hydrologic predictions, Journal of Hydrology, 397:210-224.
Marshall, J.S., and Palmer, W. Mc K., 1948, The distribution of raindrops with size, J. Meteor. 5: 165-166.
McCollor D., and Stull R., 2008, Hydrometeorological short-range ensemble forecasts in complex terrain. Part II: Economic evaluation, Weather and Forecasting, 23(4):557-574.
Minns A. W. & Hall M. J., 1996, Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3):399-417.
Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S., 2005, Short-term flood forecasting with a neurofuzzy model. Water Resources Research, 41:W04004.
Nguyen, P. K.T. and Chua, L. H.C., 2012, The data-driven approach as an operational real-time flood forecasting model, Hydrological Processes, 26:2978-2893.
Noori, R., Hoshyaripour, G., Ashrafi, K., Nadjar-Araabi, B., 2010, Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration, Atmospheric Environment, 44:476-482.
Partal, T. and Ö. Kişi, 2007, Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, Journal of Hydrology, 342:199-212.
Pan T.Y., Yang Y.T., Kuo, H.C., Tan, Y.C., Lai, J.S., Chang, T.J., Lee, C.S., Hsu, K.H., 2013, Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN-based southwest monsoon rainfall enhancement, Journal of Hydrology, 506:90-100.
Pramanik N. and Panda, R.K., 2009, Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction, Hydrological Sciences Journal, 54(2):247-260.
Pianosi, F., Castelletti, A., Mancusi, L., Garofalo, E., 2014, Improving flow forecasting by error correction modelling in altered catchment conditions, Hydrological Processes, 28:2524-2534.
Ramos, M.H., Van Andel, S.J., Pappenberger, F., 2013, Do probabilistic forecasts lead to better decisions?, Hydrology and Earth System Sciences, 17(6):2219-2232.
Rajurkar, M. P., Kothyari, U. C., & Chaube, U. C., 2002, Artificial neural networks for daily rainfall-runoff modelling. Hydrologkal Sciences Journal, 47(6):865-877.
Su, C.T., Chen, Y.H., and Sha, D.Y., 2006, Linking innovative product development with custmor knowledge: a data-mining approach, Technovation, 26:784-795.
Schellekens, J., Weerts, A. H., Moore, R.J., Pierce, C.E., Hildon, S., 2011, The use of MOGREPS ensemble rainfall forecasts in operational flood forecasting system across England and Wales, Advances in Geosciences, 29:77-84.
Teschl, R. and Randeu, W.L., 2006, A neural network model for short term river flow prediction, Natural Hazards and Earth System Sciences, 6:629-635.
Tsai, M.-J., Abrahart, R. J., Mount, N. J., Chang, F.J., 2014, Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan, Hydrological Process, 28:1055-1070.
Verkade, J.S., and Werner, M.G.F., 2011, Estimating the benefits of single value and probability forecasting for flood warning, Hydrology and Earth System Sciences Discussions, 8:6639–6681.
Wallner, M., Haberlandt, U., and Dietrich, J., 2013, A one-step similarity approach for the regionalization of hydrological model parameters based on Self-Organizing Maps. Journal of Hydrology, 494:59-71.
Wang, K.-W., Chang, L.-C., Chang, F.-J., 2011, Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation, Advances in Water Resources, 34: 1343-1351.
Wu, C.-L., and Chau, K.-W., 2011, Rainfall-runoff modelling using artificial neural network coupled with singular spectrum analysis, Journal of Hydrology, 399 (3-4): 394-409.
Xin, L.,et al. (1997). Reflectivity‐rain rate relationships for convective rainshowers in Edmonton: Research note. Atmosphere-Ocean, 35(4):513-521.
Younis, J., Ramos, M.H., Thielen J., 2008, EFAS forecasts for the March-April 2006 flood in the Czech part of the Elbe River Basin – a case study, Atmospheric Science Letters, 9(2):88-94.
Zuazo, V., Gironás, J., and Niemann, J.D., 2014, Assessing the impact of travel time formulations on the performance of spatially distributed travel time methods applied of hillslopes, Journal of Hydrology, 519:1315-1327.
江衍銘、張斐章,2006,以遙測資訊建立類神經網路雲分類系統於雨量推估及洪水預測,中國農業工程學報52(4): 39-47。
何宜樺,2009,建構集水區多時刻降雨-逕流機制與類神經網路洪水預報模式,國立臺灣大學生物環境系統工程學研究所碩士論文。
張斐章、張麗秋,2010,類神經網路導論原理與應用,滄海書局。
蔡孟蓉,2006,類神經網路結合衛星影像於颱風降雨預報,台灣水利55(1):22-31。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3964-
dc.description.abstract極端降雨事件與其對應之洪水預報在學術上一直為相當具有挑戰性的議題。由於台灣地區獨特的地形條件與氣候型態,對於雨量與洪水量預報的需求更為迫切。雨量估計已存在有多種降雨觀測產品,例如地面雨量站、雨量筒、雷達估計雨量、衛星影像推估雨量等,各自有其獨特的空間與時間特性。若能整合地面雨量站、雷達觀測雨量及衛星影像之推估雨量,提供高精確度之雨量之時空間變化趨勢,便能有效增加降雨預報模式之精確度。因此透過對於各種雨量資料的了解與評估,使用適當之雨量資料,以資料驅動模式(data-driven model)進行預報,並透過輸入資料的時空間整合流程,建置最佳預報模式為本研究之重點。
本研究以石門水庫集水區為例,首先蒐集中央氣象局QPESUMS系統提供之雷達雨量產品、美國加州大學水文氣象及遙測中心建置之PERSIANN-CCS衛星觀測系統提供之雨量產品,以及集水區之地面雨量觀測紀錄,以倒傳遞類神經網路方法校正不同觀測資訊之推估誤差,接著利用遺傳演算法融合地面雨量、雷達及衛星影像推估雨量三種資訊;再以ANFIS架構降雨預報模式,預測未來1及2小時之降雨。結果顯示QPESUMS經由倒傳遞類神經網路校正後,大幅改善校正前降雨推估誤差;而PERSIANN-CCS在雨量誤差校正方面,由於模式建置是以大陸型氣候為訓練背景,因此使用於台灣海島型氣候時產生較大之系統推估誤差。另經由GA進行最佳融合權重搜尋,其融合雨量即t時刻之推估雨量與實際降雨量相當接近,相關係數高達0.99,並且以融合了3種雨量資訊的降雨預報模式表現最佳,可證明融合雨量之有效性。
由於臺灣河川坡陡流急,逕流滯留時間短暫,上游洪水往往在數小時內便抵達下游及注滿水庫。在這種特殊的降雨-逕流特徵下,為期能減輕洪水災害,掌握「時間」該項關鍵因素,發展一精確多時刻流量預報模式、提供未來水庫入流量資訊及替決策者爭取更多時間實有其必要性。本研究使用不同雨量資訊及流量資訊分別探討集水區降雨─逕流關係,並利用DEM資料,在符合集水區物理特性條件下,依據高程、坡度資訊將集水區分別劃分成1、4、8及12個子集水區,進行空間時間整合;接著設計6組不同輸入變數方案(S1、S2、S3(n), n=1,4,8,12),使用ANFIS架構流量預報模式,預報未來1~5小時石門水庫入流量。由降雨─逕流分析結果可知降雨與水庫入流量之延遲時間約為5~7小時,當水庫入流量預報時間為未來1小時,6個方案幾乎無差距,然而當流量預報延時大於3小時,加入雷達雨量資訊對於水庫入流量預報之精確度有相當顯著之改善;另在畫分集水區個數上,以劃分4個子集水區之模式表現最佳,其對於流量預報模式而言不會過於複雜或簡單,且在長延時有最好的預報能力,顯示石門集水區適合簡單的空間整合,而使用12個雨量站資訊雖有較多的雨量資訊輸入,但因為單點式資料,缺乏集水區整體而全面之資訊,無法有效提高雨量預報精確度。
由於颱風暴雨具有空間變異特性,其所造成之逕流量間之關係必非以簡單線性相關即可描述,故本研究以非線性方法應用於石門水庫入流量之預報,先利用SOM得到最佳的空間整合方式,接著應用2階段GT演算法,選擇最佳稽延雨量資訊。由結果可知2階段GT演算法可有效率的降低電腦計算量,大量減少計算時間,且可挑選出最佳輸入變數組合;使用(SOM+2階段GT)模式在流量預報時間為t+3至t+4時,相關係數仍可高於0.94及CE值高於0.88,且預報結果在t+1小時預報上可做到洪峰到達時間零延遲,t+3小時與t+4小時預報上,洪峰則皆僅有1~2小時的延遲,這在使用類神經網路架構入流量預報模式上是非常顯著的改善;最後本研究由使用者(或決策者)的角度出發,除了單一的模式預報值,亦提供預報值的可靠度,使用機率的概念呈現預報結果。
zh_TW
dc.description.abstractAccurate forecasting of extreme rainfall event and its corresponding flow is still a challenging issue for most of hydrologists. Due to unique topographic feature and weather pattern in Taiwan, this issue is even more critical. Thus, there is an urgent need to develop an accurate forecasting of rainfall and discharge. The major aims of this study are two-folds. First, the study is to compare various rainfall products, such as rain-gauge measurement, radar rainfall, and rainfall estimation from satellite imagery, and evaluate the ability of merging different combiuations of rainfall products to improve rainfall forecasting using an artificial neural network model. Secondly, different approaches for spatio-temporal lumping of radar rainfall are proposed here to evaluate the rainfall-runoff relationship using a data driven model for inflow forecasting in Shihmen reservoir.
In this study, ground measurements and a radar rainfall dataset (QPESUMS) provided by Center Weather Beural (CWB) and a satellite-based rainfall dataset (PERSIANN-CCS) are collected. A BP model was developed to calibrate the estimation errors of the QPESUMS and PERSIANN-CCS, respectively. After calibration, a Genetic Algorithm (GA) is applied to merge these three rainfall datasets. The merged rainfall is further used as the input of an ANFIS model for rainfall forecasting at 1 and 2 hours horizons. The results showed that the BP effectively reduces the estimation error of QPESUMS dataset while only limit improvement can be made for PERSIANN-CCS. The reason for this may due to the PERSIANN-CSS was developed for Continental-scale climate modeling and may not be able applied directly to an island-scale climte pattern in Taiwan. After merged by GA, the merged rainfall has very high correlation with actural rainfall and has best performance for rainfall forecasting. With a better understanding of these rainfall products, the next focus of this study is to evealute inflow forecasting using proper rainfall dataset.
Flood forecasting is an extremely crucial non-structural approach for real-time reservoir operation in Taiwan due to its unique topographical features and heterogeneous typhoon patterns. As a result of steep slope and short rivers in Taiwan, a flash flood occurs typically within few hours and reservoirs could easily and quickly be filled up with mass inflow in a typhoon event. Such conditions make real-time reservoir operation very challenging and reveal an urgent need for efficient and accurate multi-step-ahead inflow forecasting models.
This study utilizes different rainfall datasets, such as rain-gauges and QPESUMS, and inflow data to evaluate the rainfall-runoff relationship. The spatial-lumping of QPESUMS is based on terrain analysis using DEM data and aggregrates the catchment into 1, 4, 8, and 12 sub-catchments. Six input strategies (S1, S2, S3(n), n= 1,4,8,12) were designed for a ANFIS model to forecast inflow of Shihmen reservoir at 1 to 5 hours horizons. From correlation analysis, it reveals that the time of concentration is about 5-7 hours in the catchment. For one hour forecasting, there is no significant difference between 6 strategies; while for 3 hours horizon, the improvement of using radar dataset is quite clear than using gauge-based rainfall. The spatial lumping to 4 sub-catchments has optimal performance in long-term, longer than 3 hours, inflow forecasting. These results suggest that using point-based ground measurements fails to catch spatial information in the catchment and leads to poor results of inflow forecasting; while simple spatial aggregration, 4 sub-catchments, of radar rainfall is more suitable for ANFIS model than complex spatial aggregration, 12 sub-catchments.
The above inflow forecasting results may be further improved by using a non-linear spatio-temporal lumping approach. Here, the spatial lumping method based on terrain analysis using only DEM is replaced by a non-linear clustering method, Self-Orgnizied Map (SOM) using DEM and radar rainfall of typhoon events. The linear correlation analysis is replaced by a 2-staged Gamm test approach which is proposed in this study and is an efficient method to select non-trival input combination for ANFIS forecasting model. This novel spatio-temporal lumping method is termed as SOM+2-staged GT. There are several advantages in flow forecasting. First, it has best forecasting results for 3 and 4 hours horizons with correlation coefficient (CC) as high as 0.94 and coefficient of efficience (CE) as 0.88. Secondly, for one hour ahead forecasting, there is no time-lag between estimated and observed inflow peak; while for 3 and 4 hours horizons the time-lags are typically less than 2 hours. This is a remarked improvement in an inflow forecasting model based on ANFIS. From the perspective of end-users (or decision makers), this study suggested a confidence level of inflow forecasting using a pre-determined threshold of forecasting error. The confidence level of forecasts is presented by the percentage of forecast errors that fall within the designed error threshold.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:39:21Z (GMT). No. of bitstreams: 1
ntu-105-D98622001-1.pdf: 8840281 bytes, checksum: f926b42f7fe80d92ea6333e91488bef6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 I
摘要 II
ABSTRACT IV
目錄 VIII
圖目錄 XI
表目錄 XIV
第一章 前言 1
1-1 研究動機及目的 1
1-2 研究架構 2
第二章 文獻回顧 6
2-1 類神經網路應用於雨量預報 6
2-2 類神經網路應用於流量預報 6
2-2-1 降雨資料之時空間整合 7
2-2-2 機率預報 9
第三章 研究區域及資料蒐集 11
3-1 石門水庫集水區概述 11
3-2 集水區雨量站、雷達及衛星影像資料蒐集及處理 12
3-2.1 地面雨量站資料 12
3-2.2 QPESUMS雷達降雨資料 13
3-2.3 PERSIANN-CCS衛星降雨資料 24
第四章 不同雨量觀測資訊之特性評估 30
4-1 不同雨量觀測資訊之誤差分析及校正 30
4-2 以資料融合方法整合多重雨量觀測資訊 35
4-2.1 遺傳演算法 35
4-2.2 雨量融合 38
4-3 融合雨量應用於定量降雨預報模式 41
4-3.1 Adaptive Network-based Fuzzy Inference System (ANFIS) 41
4-3.3 定量降雨預報模式結果與討論 44
第五章結合 Pearson相關性分析及ArcGIS架構水庫入流量預報模式 51
5-1 以Pearson相關性分析探討集流時間 51
5-1.1 以地面觀測雨量分析降雨逕流機制 51
5-1.2 以QPESUMS雨量推估產品分析降雨逕流機制 55
5-2 以ArcGIS劃分集水區 58
5-3 利用ANFIS架構石門水庫入流量預報模式 60
5-3.1 方案介紹 62
5-3.2 結果與討論 64
第六章 結合SOM及2-stage GT架構水庫入流量預報模式 72
6-1 以自組特徵映射網路SOM劃分集水區 72
6-2 以2-staged Gamma Test探討集水區集流時間 75
6-2.1 2-staged Gamma Test 75
6-3 方案介紹 78
6-4 預報模式可靠度分析 83
6-5 結果與討論 85
第七章 結論與建議 95
7-1 結論 95
7-2 建議 97
參考文獻 99
dc.language.isozh-TW
dc.subject雨量預報模式zh_TW
dc.subject流量預報模式zh_TW
dc.subject資料融合zh_TW
dc.subject2階段Gamma testzh_TW
dc.subject類神經網路zh_TW
dc.subject可靠度分析zh_TW
dc.subjectinflow forecasting modelen
dc.subjectrealiability analysisen
dc.subject2-staged Gamma testen
dc.subjectArtificial Neural Networksen
dc.subjectrainfall forecasting modelen
dc.subjectdata mergingen
dc.title時間與空間最佳化資訊於降雨逕流模式分析之研究zh_TW
dc.titleThe Study of Optimal Spatial-temporal Information in Rainfall-runoff Modellingen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee劉振宇,黃文政,游保杉,周仲島,徐國麟
dc.subject.keyword類神經網路,雨量預報模式,流量預報模式,資料融合,2階段Gamma test,可靠度分析,zh_TW
dc.subject.keywordArtificial Neural Networks,rainfall forecasting model,inflow forecasting model,data merging,2-staged Gamma test,realiability analysis,en
dc.relation.page105
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-02-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf8.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved