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摘要摘要摘要摘要 

極端降雨事件與其對應之洪水預報在學術上一直為相當具有挑戰性的議題。

由於台灣地區獨特的地形條件與氣候型態，對於雨量與洪水量預報的需求更為迫

切。雨量估計已存在有多種降雨觀測產品，例如地面雨量站、雨量筒、雷達估計

雨量、衛星影像推估雨量等，各自有其獨特的空間與時間特性。若能整合地面雨

量站、雷達觀測雨量及衛星影像之推估雨量，提供高精確度之雨量之時空間變化

趨勢，便能有效增加降雨預報模式之精確度。因此透過對於各種雨量資料的了解

與評估，使用適當之雨量資料，以資料驅動模式(data-driven model)進行預報，並

透過輸入資料的時空間整合流程，建置最佳預報模式為本研究之重點。 

本研究以石門水庫集水區為例，首先蒐集中央氣象局QPESUMS系統提供之雷

達雨量產品、美國加州大學水文氣象及遙測中心建置之PERSIANN-CCS衛星觀測

系統提供之雨量產品，以及集水區之地面雨量觀測紀錄，以倒傳遞類神經網路方

法校正不同觀測資訊之推估誤差，接著利用遺傳演算法融合地面雨量、雷達及衛

星影像推估雨量三種資訊；再以ANFIS架構降雨預報模式，預測未來1及2小時之降

雨。結果顯示QPESUMS經由倒傳遞類神經網路校正後，大幅改善校正前降雨推估

誤差；而PERSIANN-CCS在雨量誤差校正方面，由於模式建置是以大陸型氣候為

訓練背景，因此使用於台灣海島型氣候時產生較大之系統推估誤差。另經由GA進

行最佳融合權重搜尋，其融合雨量即t時刻之推估雨量與實際降雨量相當接近，相

關係數高達0.99，並且以融合了3種雨量資訊的降雨預報模式表現最佳，可證明融

合雨量之有效性。 

由於臺灣河川坡陡流急，逕流滯留時間短暫，上游洪水往往在數小時內便抵

達下游及注滿水庫。在這種特殊的降雨-逕流特徵下，為期能減輕洪水災害，掌握

「時間」該項關鍵因素，發展一精確多時刻流量預報模式、提供未來水庫入流量
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資訊及替決策者爭取更多時間實有其必要性。本研究使用不同雨量資訊及流量資

訊分別探討集水區降雨─逕流關係，並利用DEM資料，在符合集水區物理特性條

件下，依據高程、坡度資訊將集水區分別劃分成1、4、8及12個子集水區，進行空

間時間整合；接著設計6組不同輸入變數方案(S1、S2、S3(n), n=1,4,8,12)，使用ANFIS

架構流量預報模式，預報未來1~5小時石門水庫入流量。由降雨─逕流分析結果可

知降雨與水庫入流量之延遲時間約為5~7小時，當水庫入流量預報時間為未來1小

時，6個方案幾乎無差距，然而當流量預報延時大於3小時，加入雷達雨量資訊對

於水庫入流量預報之精確度有相當顯著之改善；另在畫分集水區個數上，以劃分4

個子集水區之模式表現最佳，其對於流量預報模式而言不會過於複雜或簡單，且

在長延時有最好的預報能力，顯示石門集水區適合簡單的空間整合，而使用12個

雨量站資訊雖有較多的雨量資訊輸入，但因為單點式資料，缺乏集水區整體而全

面之資訊，無法有效提高雨量預報精確度。 

由於颱風暴雨具有空間變異特性，其所造成之逕流量間之關係必非以簡單線

性相關即可描述，故本研究以非線性方法應用於石門水庫入流量之預報，先利用

SOM得到最佳的空間整合方式，接著應用2階段GT演算法，選擇最佳稽延雨量資

訊。由結果可知2階段GT演算法可有效率的降低電腦計算量，大量減少計算時間，

且可挑選出最佳輸入變數組合；使用(SOM+2階段GT)模式在流量預報時間為t+3至

t+4時，相關係數仍可高於0.94及CE值高於0.88，且預報結果在t+1小時預報上可做

到洪峰到達時間零延遲，t+3小時與t+4小時預報上，洪峰則皆僅有1~2小時的延遲，

這在使用類神經網路架構入流量預報模式上是非常顯著的改善；最後本研究由使

用者(或決策者)的角度出發，除了單一的模式預報值，亦提供預報值的可靠度，使

用機率的概念呈現預報結果。 

關鍵字：類神經網路、 雨量預報模式、流量預報模式、資料融合、2階段Gamma test、

可靠度分析 
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ABSTRACT 

Accurate forecasting of extreme rainfall event and its corresponding flow is still 

a challenging issue for most of hydrologists. Due to unique topographic feature and 

weather pattern in Taiwan, this issue is even more critical. Thus, there is an urgent 

need to develop an accurate forecasting of rainfall and discharge. The major aims of 

this study are two-folds. First, the study is to compare various rainfall products, such 

as rain-gauge measurement, radar rainfall, and rainfall estimation from satellite 

imagery, and evaluate the ability of merging different combiuations of rainfall 

products to improve rainfall forecasting using an artificial neural network model. 

Secondly, different approaches for spatio-temporal lumping of radar rainfall are 

proposed here to evaluate the rainfall-runoff relationship using a data driven model 

for inflow forecasting in Shihmen reservoir.  

In this study, ground measurements and a radar rainfall dataset (QPESUMS) 

provided by Center Weather Beural (CWB) and a satellite-based rainfall dataset 

(PERSIANN-CCS) are collected. A BP model was developed to calibrate the 

estimation errors of the QPESUMS and PERSIANN-CCS, respectively. After 

calibration, a Genetic Algorithm (GA) is applied to merge these three rainfall datasets. 

The merged rainfall is further used as the input of an ANFIS model for rainfall 

forecasting at 1 and 2 hours horizons. The results showed that the BP effectively 
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reduces the estimation error of QPESUMS dataset while only limit improvement can 

be made for PERSIANN-CCS. The reason for this may due to the PERSIANN-CSS 

was developed for Continental-scale climate modeling and may not be able applied 

directly to an island-scale climte pattern in Taiwan. After merged by GA, the merged 

rainfall has very high correlation with actural rainfall and has best performance for 

rainfall forecasting. With a better understanding of these rainfall products, the next 

focus of this study is to evealute inflow forecasting using proper rainfall dataset.  

Flood forecasting is an extremely crucial non-structural approach for real-time 

reservoir operation in Taiwan due to its unique topographical features and 

heterogeneous typhoon patterns. As a result of steep slope and short rivers in Taiwan, 

a flash flood occurs typically within few hours and reservoirs could easily and quickly 

be filled up with mass inflow in a typhoon event. Such conditions make real-time 

reservoir operation very challenging and reveal an urgent need for efficient and 

accurate multi-step-ahead inflow forecasting models. 

This study utilizes different rainfall datasets, such as rain-gauges and QPESUMS, 

and inflow data to evaluate the rainfall-runoff relationship. The spatial-lumping of 

QPESUMS is based on terrain analysis using DEM data and aggregrates the 

catchment into 1, 4, 8, and 12 sub-catchments. Six input strategies (S1, S2, S3(n), n= 

1,4,8,12) were designed for a ANFIS model to forecast inflow of Shihmen reservoir at 
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1 to 5 hours horizons. From correlation analysis, it reveals that the time of 

concentration is about 5-7 hours in the catchment. For one hour forecasting, there is 

no significant difference between 6 strategies; while for 3 hours horizon, the 

improvement of using radar dataset is quite clear than using gauge-based rainfall. The 

spatial lumping to 4 sub-catchments has optimal performance in long-term, longer 

than 3 hours, inflow forecasting. These results suggest that using point-based ground 

measurements fails to catch spatial information in the catchment and leads to poor 

results of inflow forecasting; while simple spatial aggregration, 4 sub-catchments, of 

radar rainfall is more suitable for ANFIS model than complex spatial aggregration, 12 

sub-catchments.  

The above inflow forecasting results may be further improved by using a 

non-linear spatio-temporal lumping approach. Here, the spatial lumping method based 

on terrain analysis using only DEM is replaced by a non-linear clustering method, 

Self-Orgnizied Map (SOM) using DEM and radar rainfall of typhoon events. The 

linear correlation analysis is replaced by a 2-staged Gamm test approach which is 

proposed in this study and is an efficient method to select non-trival input 

combination for ANFIS forecasting model. This novel spatio-temporal lumping 

method is termed as SOM+2-staged GT. There are several advantages in flow 

forecasting. First, it has best forecasting results for 3 and 4 hours horizons with 
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correlation coefficient (CC) as high as 0.94 and coefficient of efficience (CE) as 0.88. 

Secondly, for one hour ahead forecasting, there is no time-lag between estimated and 

observed inflow peak; while for 3 and 4 hours horizons the time-lags are typically less 

than 2 hours. This is a remarked improvement in an inflow forecasting model based 

on ANFIS. From the perspective of end-users (or decision makers), this study 

suggested a confidence level of inflow forecasting using a pre-determined threshold 

of forecasting error. The confidence level of forecasts is presented by the percentage 

of forecast errors that fall within the designed error threshold. 

Keywords: Artificial Neural Networks,  rainfall forecasting model, inflow 

forecasting model, data merging, 2-staged Gamma test, realiability analysis 
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第一章第一章第一章第一章 前言前言前言前言 

1-1研究動機及目的研究動機及目的研究動機及目的研究動機及目的 

極端事件的雨量預報一直為相當具有挑戰性的議題，由於集水區雨量受氣候

變遷、地形、季節及降雨分布等因素影響，使其預報之精確度往往不高。臺灣位

處亞熱帶四面環海地理位置特殊，平均每年遭受3~4個颱風侵襲，降雨量之分佈

在時間或空間上呈不均勻之狀態，在台灣主要的雨量觀測為地面雨量站，然地面

觀測之空間代表性低無法呈現雨量在空間中之變異；而近幾年應用之雷達觀測系

統QPESUMS便能提供較具體之雨量分布趨勢，但卻受山區地形遮蔽因素影響；

而衛星影像應用於雨量推估之成果雖然空間解析度不如雷達觀測高，但卻不受地

形變化影響；故若能整合地面雨量站、雷達觀測雨量及衛星影像之雨量推估，提

供高精確度之雨量變化之時間及空間趨勢，便能有效增加定量降雨預報模式之精

確度。 

降雨－逕流模式為水資源規劃、水庫操作及洪水預報之重要工具，因此水文

專家紛紛投入大量心力嘗試找尋降雨－逕流間之關係，傳統上對於洪水之預測，

常見方法有單位歷線、線性水庫及馬斯金更法等，其中單位歷線法之提出為20

世紀水文學發展之重大里程碑，其建立集水區降雨－逕流間之物理意義，惟單位

歷線之重要基本假設包括有效降雨與逕流間必須為線性之關係，且在時間空間上

集水區之降雨必須均勻分佈，然而一般天然集水區狀況並不能滿足這些基本假設，

因此降低單位歷線在實務上之應用性，其後發展的許多物理模式，基本上亦存在

諸多假設條件及適用的範圍，不易直接引用於複雜的自然環境中。受限於上述情

形，傳統理論與物理模式在無法突破瓶頸之處，人工智慧相關理論漸漸成為另一

種替代方式，其中在水文現象的預測上，類神經網路逐漸形成一種趨勢，具有強

大的學習能力與可塑性，只要給予適當的資料訓練，便能有效學習輸入－輸出變

數之間的非線性映射關係。 
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由於臺灣為一狹長型島嶼，中央山脈橫亙其中，因此河川坡陡流急，加上山

坡地開發，每逢颱風暴雨時期，上游的洪水往往在數小時內便抵達下游及注滿水

庫(Chang et al., 2002)。逕流滯留時間短暫，使得突發性洪水事件的發生更加難以

預料，因此水庫集水區的經營管理與排放操作相當困難。為避免水庫溢流且亦兼

顧下游平原地區居民生命與財產的安全，水庫必須適當洩洪，相關決策單位應提

前數小時告知媒體及警告下游居民，因此「時間」為相當關鍵之因素。在這種特

殊的降雨-逕流特徵下，為期能減輕洪水災害，因此發展一精確多時刻流量預報

模式、提供未來水庫入流量資訊及替決策者爭取更多時間實有其必要性。 

本研究首先分別校正各雨量觀測資訊以有效進行融合，並建立集水區定量降

雨預報模式，另分析不同雨量觀測資訊與流量間之降雨逕流關係，並建置多時刻

流量預報，最後分析流量預報模式之可靠度，以提供決策者合宜之洪災管理建議

以降低災害之損失。 

1-2研究研究研究研究架構架構架構架構 

本研究分為二部分，第一部分為定量降雨預報模式；第二部分為流量預報模

式分述如下： 

(1)定量降雨預報模式： 

以石門水庫集水區為研究區域，整合地面雨量站、雷達觀測資訊

(QPESUMS)(Quantitative Precipitation Estimation and Segregation Using Multiple 

Sensor)及衛星影像資訊(PERSIANN-CCS) (Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural Networks- Cloud Classification System)，

透過倒傳遞類神經網路分別校正各雨量觀測資訊以有效進行融合，並進一步建立

集水區定量降雨預報模式，研究流程如圖1-1所示。 
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圖1-1 定量降雨預報模式研究流程圖 
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(2)流量預報模式： 

本研究首先分別探討不同降雨資訊與水庫入流量間之降雨逕流關係，並使用

DEM資料劃分出不同數量之子集水區，以評估其對流量預報模式精確度之影響，

其流程如圖1-2所示；針對前述流量預報模式之結果，本研究再進一步探討利用

Gamma test挑選降雨逕流間最佳變數組合，及使用SOM劃分子集水區，評估流量

預報模式精確度外，亦探討不同降雨變數組合對預報流量延遲現象之影響，並分

析預報流量之可靠度，以提供使用者進一步之決策資訊，其流程如圖1-3所示。 

 

 

圖1-2 流量預報模式流程圖(一) 
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圖1-3 流量預報模式流程圖(二) 
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第二章第二章第二章第二章 文獻回顧文獻回顧文獻回顧文獻回顧 

2-1 類神經網路應用於雨量類神經網路應用於雨量類神經網路應用於雨量類神經網路應用於雨量預報預報預報預報 

由於集水區雨量受氣候變遷、地形、氣流、季節及降雨分布等因素影響，在

時間與空間上有高度的異質特性(heterogeneity)，使其雨量預報之精確性不高，導

致接續之水文模擬或流域水源管理不盡理想。為減少時空間異質性問題，類神經

網路(ANN)因具有處理高度非線性問題的能力而受到注目，因此有許多研究使用

不同降雨資料(例如測站、雷達或衛星等)利用類神經網路預報降雨量(蔡孟蓉等人，

2006、Chiang et al., 2007、Chiang and Chang, 2009、Hong et al., 2007、Partal and Kişi, 

2007)。因不同降雨資料具有不同特性，其用於雨量預報上的表現也不盡相同。

測站資料雖可最直接反映地面降水，但是測站分布點不均甚至稀少，在集水區尺

度的應用上便會出現資訊不足以代表空間特性的問題；衛星遙測資料雖具有較佳

之空間連續性，但往往受限於資料之空間解析度較低，而無法有效反映出集水區

內區域降雨變異特性；而雷達資料則同樣具備了空間連續性，且時間與空間解析

度也較衛星資料佳。過去亦有研究嘗試結合不同降雨資料，嘗試得到更好的降雨

預報結果。Chiang and Chang (2009)融合雷達與數值預報模式(Numerical weather 

prediction, NWP)之結果，發現融合後的產品正可反映真實降雨觀測，文中也提

到準確的降雨預報資料將有助於改善流量預報之表現。 

2-2 類神經網路應用於流量預報類神經網路應用於流量預報類神經網路應用於流量預報類神經網路應用於流量預報 

精確之集水區降雨-逕流模式及流量預報模式向來為水文學者所努力之課題，

過去已有許多研究使用類神經網路直接預報流量(Akhtar et al., 2009; Chang et al., 

2007; Chang et al., 2010; Chen, et al., 2013; Chiang and Chang, 2009; Dawson et al., 

2006; Nayak et al., 2005; Teschl and Randeu, 2006; Tsai et al., 2014;)，然而研究顯示

僅使用降雨資料仍無法有效地預報集水區內的逕流量，其中一個主要的因素為集
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水區的地表狀態，例如土壤濕度、表面粗糙度等皆是影響逕流量的重要因子

(Minns and Hall, 1996)，因此許多流量預報模式經常是同時使用前一個時刻或前

數個時刻的逕流資料與降雨資料作為輸入項，使用前幾個時刻的逕流資料是基於

流量資料的特性本身存在高度的自我相關性(auto-correlation)，亦即前一時刻的流

量值與下一時刻的流量值是非常相似的，因此有助於類神經模式進行下幾個時刻

的流量預報。 

考慮前幾時刻降雨資料的方式主要有兩種，一是基於降雨─逕流的延遲時間

(lag time, T)，將流量序列與往前此一延遲時間的雨量序列配對，例如降雨逕流模

式中的輸入為t-T時刻的降雨，輸出為t時刻的流量。另一為移動平均法，亦即將

降雨資料取移動平均為輸入，此兩種考慮前幾時刻的雨量資料加入流量預報模式

中可有效提高短期預報的精確度(e.g. Campolo et al., 1999; Dawson et al., 2006; 

Nayak et al., 2005)。然而當流量預報時間增長時，這樣的方法便無法得到與短延

時預報相似的精確度，其導致長期預報誤差的可能原因為模式或是預報因子選擇

不當，當模式中包含太多輸入變數，則可能引入噪音項以及一些不當的資訊。 

2-2-1 降雨資料之時空間整合降雨資料之時空間整合降雨資料之時空間整合降雨資料之時空間整合 

隨著雷達資料的普及，可以更了解降雨在集水區尺度內的空間變化，對於流

量預報而言也有相當大的幫助(Borga, 2002; Teschl and Randeu, 2006)，但是對於

類神經網路而言，過多的輸入變數將造成模式太龐大而變得沒有效率，因此如何

有效整合雷達資料的時空間特性，是類神經網路模式中進行流量預報，近期受到

許多矚目的重要議題。Tsai et al. (2014)指出若輸入變數中沒有考慮適當的空間與

時間整合(spatial and temporal lumping)，可能導致預報誤差產生，因此適當的空

間與時間整合可視為一種資料的前處理，這樣的前處理可以減低離群值的影響並

且建立更強韌的輸入輸出關係。 

時空間整合於類神經網路模式建構中，意旨在空間上減少輸入資料維度，使
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整合後的資料具有完整之集水區空間特性，時間上的整合則是挑選適當之延遲雨

量(lagged rainfall)作為輸入變數。過去經常使用之空間整合技術為計算面積平均

雨量，例如利用徐昇式法(Rajurkar et al., 2002; Wu and Chau, 2011)，此方法僅簡

單地考慮雨量站的二維控制面積，並未考慮高程資訊，因此在地形複雜之地區則

可能導致相當大的誤差。Tsai et al. (2014)以數值高程模式(DEM)劃分不同數量之

子集水區，探討最佳的分區數量對於流量預報之表現，其結果顯示分為四個子集

水區數量對於流量預報表現最佳，並不是分區越多越好。Rajukar et al. (2002) 依

據水文地質學中植生、坡度、土壤類別以及集水區長期降雨等值圖等一致性劃分

子集水區，其結果顯示劃分為三個子集水區可得到較佳的預報結果。 

時間上的整合除了可使用傳統水文方法決定降雨-逕流的稽延時間外，亦可

使用統計方法，例如將降雨資料往前平移t-1~t-n個時刻，將平移後的雨量序列與

流量序列計算相關係數，以相關係數最大之時刻所對應之平移序列作為最佳的輸

入變數。另外也有研究使用傳統水文方法計算渠流及漫地流速度與稽延時間，並

根據不同稽延時間劃分子集水區。例如：Akhtar et al. (2009)使用大約27.7km x 

25.2公里的衛星降雨資料，此衛星雨量資料與流量資料首先透過逕流長度(flow 

length)分別計算渠流及漫地流速度與稽延時間(Travel time)，並根據不同稽延時

間劃分為25個子集水區，將不同稽延時間的雨量與流量資料作為資料驅動模式的

輸入變數，預報Bangladesh中的Ganges河川流量。 

使用線性相關係數挑選出最相關的延遲降雨(lagged rainfalls)，雖然是簡單且

普遍的方法，但是也減少了ANN模式在處理非線性問題上的能力。這是典型在

處理非線性問題中，經常使用線性思維進行資料分析的盲點，特別是期望資料驅

動模式能模擬輸入與輸出的非線性關係時。近期已有研究指出非線性的統計方法，

例如Gamma Test即為一個有效率的輸入變數挑選方法(Chang et al., 2013; Noori et 

al., 2010)，可挑選出最有效率的輸入變數，提高類神經網路輸出的精確度。 
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前述的線性思維往往造成流量預報結果中難以突破的問題，其中一個就是流

量預報延遲(timing error issue)的問題，即模式預報的洪峰流量與觀測洪峰流量存

在數個小時的延遲，這是在許多流量預報模式中普遍存在的問題(Chen et al., 

2013; Khatibi et al., 2012; Nguyen and Chua, 2012; Pan et al., 2013)。然而，準確的

尖峰時間預報對於水庫操作而言是相當重要的，能幫水庫操作單位爭取更多時間

發布洪水警報。過去也有許多研究嘗試校正模式輸出結果，減少預報延遲的問題

(Abrahart et al., 2007; Liu et al., 2011)，也有些研究嘗試在ANN模式中直接減少預

報延遲效應(Chen et al., 2013)。 

2-2-2 機率預報機率預報機率預報機率預報 

除了洪峰預報延遲的問題，過去ANN模式的限制是預報結果的機率資訊經

常被忽略。然而對於水庫操作單位而言，預報的可信度是非常重要的資訊，因此

有許多研究陸續提出機率預報模式(probabilistic forecasting)，並顯示機率預報模

式通常可導向較佳的決策 (Alfieri et al., 2014; Araghinejad et al., 2011; Boucher et 

al., 2011, 2012; Chen and Yu, 2007; Dale et al., 2012; Dietrich et al., 2009; McCollor 

and Stull, 2008; Ramos et al., 2013; Schellekens et al., 2011; Verkade and Werner, 

2011; Younis et al., 2008)。Alfieri et al. (2014)結合歐洲中程氣候預報中心

(ECMWF)的51個數值預報模式，得到系集預報(ensemble forecasting)結果。

Araghinejad et al. (2011)應用多個獨立的類神經網路預報結果，並以非參數化的臨

域法(nonparametric K-nearest neighbor technology)將其加權結合為最佳的預報結

果，也可得到預報結果的上下界分佈，提供預報的不確定性資訊。然而許多類神

經網路都是單一的輸出結果，並未包含多個預報結果。因此有些研究從預報結果

中，計算預報誤差的機率分佈特性，從中提供預報的誤差分佈範圍作為模式的可

信度(Chen and Yu, 2007)，此亦為本研究將使用之方法。採用此方法重點在於必

須決定一個適當的門檻值，過去門檻值的決定往往過於主觀，故本研究以水庫操
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作者的需求出發，參考水庫操作規線區水位上限以上以及上限以下，分別計算適

當之流量誤差門檻值，並以此門檻值估算流量預報落於誤差門檻值內之機率，即

可反映出流量預報值的可靠度，此資訊將提供決策者更進一步之參考資訊。 

綜合上述，本研究將探討不同雨量產品之特性，及其於降雨與流量預報之效

果與限制，亦將提出以非線性方法整合雷達雨量之時空間特性，應用ANFIS模式

進行流量預報，提供預報誤差之機率資訊給水庫操作單位作為參考。 

 



11 

 

第三章第三章第三章第三章 研究區域及資料蒐集研究區域及資料蒐集研究區域及資料蒐集研究區域及資料蒐集 

3-1石門水庫集水區概述石門水庫集水區概述石門水庫集水區概述石門水庫集水區概述 

石門水庫集水區內水系皆發源自雪山山脈帶中，匯流至石門水庫內之阿姆坪

才進入西部麓山帶，以淡水河上游之大漢溪為主其主流，本支流總數為64條，流

路呈不規則樹枝狀，總長約352公里，形成石門水庫之廣大蓄水區域，集水面積

約763平方公里，為台灣地區第三大水庫(圖3-1)。水庫集水區屬於亞熱帶海洋季

風型氣候，因此冬夏季溫差極大。由於海拔高差影響導致各地氣溫變化較大，全

年氣溫約在 12℃～26℃間，年平均氣溫約為 20℃；在濕度方面，集水區內各月

份之平均濕度約80%～88%，年平均濕度約為84%，故集水區之乾濕季節變化不

甚明顯。集水區年平均降雨量約在2,200 mm～2,800 mm之間，降雨自二月開始

增加，至十月達到最高，而十一月至翌年一月為乾燥季節，雨量多集中分佈於五

至九月，其主要原因乃颱風所造成，另外尚有西南氣流所造成之雷陣雨、及熱帶

性低氣壓所帶來之豪雨。 

 

圖3-1 石門水庫集水區圖 
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3-2 集水區雨量站集水區雨量站集水區雨量站集水區雨量站、、、、雷達及衛星影像資料蒐集及處理雷達及衛星影像資料蒐集及處理雷達及衛星影像資料蒐集及處理雷達及衛星影像資料蒐集及處理 

3-2.1 地面雨量站資料地面雨量站資料地面雨量站資料地面雨量站資料 

石門水庫集水區具有相當完備氣象資料，主要來源為北區水資源局所設置之

氣象觀測站及雨量站，其中雨量站又可分為無線電遙報雨量站及自計雨量站等二

種不同類型。本研究蒐集12個雨量站之時雨量資訊，其中霞雲、高義、巴陵、玉

峰、嘎拉賀、鎮西堡、西丘斯山、白石等8站為無線電遙報雨量站，而自計雨量

站則有長興、復興、三光、秀巒等4站，各雨量站之位置與基本資訊如圖3-1與表

3-1所示。 

 

表3-1 石門水庫集水區雨量站基本資料表 

站名 TM二度分帶 X 坐標 TM二度分帶 Y 坐標 標高 (m) 

復興 284694.70  2745908.30  470 

巴陵 289171.30  2731177.40  1220 

高義 285756.10  2734043.10  620 

嘎拉賀 289655.70  2726339.50  1260 

長興 280209.20  2743888.00  350 

霞雲 286070.10  2743033.20  350 

三光 286273.50  2729607.80  630 

秀巒 278034.40  2723777.70  840 

玉峰 279650.70  2728315.70  780 

白石 275537.00  2720438.00  1620 

鎮西堡 280235.90  2718811.30  630 

西丘斯山 286024.00  2713155.30  2000 
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3-2.2 QPESUMS雷達雷達雷達雷達降雨降雨降雨降雨資料資料資料資料 

氣象雷達可利用電磁波遇雨滴粒子反射能量之強弱來判斷降雨強度。因雷達

由低仰角逐層作360度方位角掃描至高仰角，因此可測得多層不同時間之回波，

但最低與最高仰角掃描時間差異不超過10分鐘，故整個體積掃描(volume scan)視

為同一時間掃描。利用雷達進行定量降水測量的基礎雷達方程如下： 

( ) 22

22322

2ln1024 R

ZLKHGP
P t

r ×







=

λ

πθ
 

其中 rP 為目標物反散射雷達所發出電磁波為雷達所接收之能量 

     tP為雷達天線發射功率 

     G為天線增益因子 

     θ為雷達波束之束寬，即能流密度為最大值一半之波束寬 

     H為脈衝長度 

     K為與雷達硬體相關之物理常數 

     λ為雷達發射電磁波之波長 

     L為電磁波在大氣中因水相粒子所造成的衰減 

     Z 為回波因子 

     R為目標物離雷達的距離 

在一雷達取樣體積中，因雨滴反射到雷達的能量是和雷達取樣體積內的雨滴

顆粒直徑六次方總合成比例，所以雷達回波因子 )/( 36 mmmZ 與降雨粒子間的關

係為： 

∫≡ dDDDNZ 6)(  � 6DZ ∝  
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其中D為降雨粒子直徑； )(DN 為直徑為D的降雨粒子個數。 

而降雨量 )/( hrmmR 與降雨粒子間的關係為： 

∫= dDdwDDNR t )()(
6

3π
 � 3DR ∝  

其中 )(dwt 為雨滴終端速度。 

Marshall and Palmer(1948)提出的雨滴粒徑分布型態為： 

D
eNDN

λ−= 0)(  

其中 )/(8000 3
0 mmmN = ；λ為降雨量R的函數，可表示為 21.01.4 −= Rλ 。 

因此，雷達回波因子 )/( 36 mmmZ 與降雨量 )/( hrmmR 之相關取決於降雨粒子分布

)(DN ，可由標準粒徑分布假設或經驗式求得： 

b
aRZ =  

其中a與b為經驗常數。
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QPESUMS (Quantitative Precipitation Estimation and Segregation Using 

Multiple Sensor)多重觀測工具之定量降雨估計與分類技術(圖3-2)為經濟部水利

署、氣象局、農委會水保局及美國劇烈風暴實驗室整合多重氣象觀測資料並結合

地理資訊系統發展劇烈天氣監測系統，系統提供台灣地區整合後之定量降水估計

與極短時之定量降水外延預報產品，而系統在產品顯示方面共包含6大類(如圖

3-2所示)： 

 

  

圖3-2 QPESUMS系統介面 (http://qpesums.cwb.gov.tw/) 
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(一)雷達基本產品： 

雷達觀測方式是以一仰角做方位角360 度極坐標的掃描，於圓錐面上顯示，

當 觀 測 距 離 雷 達 愈 遠 ， 代 表 觀 測 到 的 高 度 愈 高 。 QPESUMS 

(http://qpesums.cwb.gov.tw)整合氣象局所屬五分山、花蓮、七股以及墾丁等四座

雷達，提供觀測之最大回波圖、回波垂直剖面圖、仰角回波、仰角風場、仰角差

異反射率、仰角相位差及仰角相關係數等資訊(圖3-3)。 

 

圖3-3 雷達基本產品(http://qpesums.cwb.gov.tw) 
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(二)地面觀測資料： 

(1)雨量觀測資料： 

包含氣象站及自動觀測站共471個站之地理位置資訊，並即時顯示10分鐘、1

小時、3小時、6小時、12小時、24、48及72小時等累積降雨量與縣市累積雨量圖，

其中若任一雨量站24小時累積雨量達50mm以上或1小時達15mm以上，則會顯示

閃爍字語予以顯示以及所達豪大雨等級，且可依使用者所需更改排序標準(圖

3-4)。 

 
圖3-4 雨量觀測資料(http://qpesums.cwb.gov.tw) 
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(2)地面氣象觀測： 

提供氣象站之風向、風速、溫度、濕度及氣壓每10分鐘及15分鐘即時資料，

及1小時、3小時、6小時、12小時、24小時縣市最大雨量圖、鄉鎮最大雨量圖及

累積雨量分布圖(圖3-5)。 

 

圖3-5 地面氣象觀測資料(http://qpesums.cwb.gov.tw) 
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(三)降水估計產品： 

使用之雷達資料為接近地面且不受地形及地面影響之仰角觀測的最低仰角

合成回波，再利用Z＝32.5R1.65取得降雨估計量，此估計量再經過雨量站校驗後，

即可產生降雨估計整合產品。目前已依下游使用單位之所需，分別將台灣地區區

分為縣市、鄉鎮、村里等行政分區，以及台灣流域、淡水河流域、土石流分區、

疊加日本雷達及橋樑估計雨量等分區之經雨量站修正1小時、3小時、6小時、12

小時、24小時及72小時之累積降雨量(圖3-6)，相關之應用有 Chang, et al., (2008)

及Chen et al., (2007)等。 

 
圖3-6 降水估計產品(http://qpesums.cwb.gov.tw) 
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(四)降水預報產品： 

定量降水預報系統的必要輸入場為整合回波資料，由於不同尺度對流胞消長

的生命期有所差異，因此系統中針對回波輸入場進行三個尺度的分類，分別應用

於30分鐘以內、30到90分鐘以及大於90分鐘的預報。分類完成後即針對三個尺度

分別進行相關分析與移動速度估計，於進行移動速度估計的過程中，同時也計算

出過去的回波強度變化趨勢，用以反應降水系統在短期內強度之增強或減弱的特

徵。針對估計所得之移動速度分布，以Kalman filter針對每個像素的移動速度進

行平滑處理，對於沒有移動速度的區域則由鄰近的資料進行內插處理。最後根據

回波所得之估計移動速度、強度變化趨勢，進行未來1小時的回波預報、降水預

報、以台灣流域分區之雨量預報及土石流分區之雨量預報(圖3-7)。 

 

圖3-7 未來1小時降水預報資訊 (http://qpesums.cwb.gov.tw) 
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(五)劇烈天氣分析： 

利用過去回波≥40dBZ之對流胞資訊表提供未來0~1小時對流胞侵襲機率圖，

並以顏色區分不同之侵襲機率，另提供雷達偵測對流胞表。除對流胞資訊外，亦

有颱風中心資訊，提供未來24小時颱風路徑潛勢動態圖(圖3-8)，以及閃電頻率顯

示圖。 

 
圖3-8 颱風路徑潛勢圖 (http://qpesums.cwb.gov.tw) 
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(六)風場分析產品： 

產品包括整合7組雙都卜勒合成風場之整合風場(圖3-9)、雷達水平風剖面圖

及與那國島剖風儀等資訊。 

 
圖3-9 整合風場圖(http://qpesums.cwb.gov.tw) 
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QPESUMS系統網格資料起始點為27。N，118。E (左下角)，範圍介於20。~27。
N，118。~123.5。E，其南北方向共有561個網格；東西方向共有441個網格。產品

空間解析度為0.0125。×0.0125。(約1.25km×1.25km)；時間解析度為10分鐘。本研

究透過中央氣象局提供QPESUMS雷達降雨推估產品，其所蒐集資料再細分為二

部份： 

(1) 校正前：QPESUMS系統針對最低可用仰角回波資料設定一Z-R關

係式，透過Z-R關係式推估降雨量，目前系統使用Z=32.5R1.65為參

考Alberat,Canada之夏季對流降雨與雷達觀測資料之關係(Xin et al. 

1997) 

(2) 校正後：QPESUMS系統針對Z=32.5R1.65推估所得之雨量，透過雷

達與地面雨量計整合法(radar-rain gauge method)，將距離網格30公

里內之雨量站，以距離平方反比法取權重進行幾何校正。 

由於雷達觀測於山區將會受到地形遮蔽影響(如圖3-10(a)所示)，造成部分網

格雨量推估值過小或為0，與實際降雨情形有相當大差異，經中央氣象局經校正

後之雷達雨量如圖3-10(b)所示。 

 

  

(a)校正前 (b)校正後 

圖3-10 雷達資料(QPESUMS)校正前後降雨分佈圖 
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3-2.3 PERSIANN-CCS衛星衛星衛星衛星降雨降雨降雨降雨資料資料資料資料 

遙測為利用感測器收集目標物反射或放射之能量，以獲得目標物資訊的一種

技術，其主要程序可分為：光源(source)、目標物(target)與感測器(sensor)三個部

分。其中光源即是指太陽光，目標物為欲觀測對象，如：雲、林地、水體、裸露

土壤等，而感測器即為衛星。衛星影像便從感測器所收集的能量轉換而來，這些

能量由太陽能源穿透地球大氣層到達地面，再經由地面欲觀測目標物的吸收、反

射和折射等作用後，再次穿透大氣層被感測器接收，如圖3-11所示。由於欲觀測

之目標物之屬性不同，因此其反射、吸收與穿透能力亦不相同，故感測器將接收

到目標物對電磁能的反射率或放射率轉換成衛星影像，經過適當的影像處理後便

能獲得相關資訊。 

 

圖3-11 衛星遙測示意圖 

 

在諸多以衛星影像資訊所建構之即時降雨推估模式中，本研究採用

PERSIANN (Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks)系統，此一系統由Hsu et al., (1997)所提出，其後再由其

研究團隊提出改良之PERSIANN-CCS (PERSIANN Cloud Classification System)系

統(Hong et al., 2004)，目前已實際應用於即時線上操作，其中PERSIANN-CCS模
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式之空間解析度為4km×4km (如圖3-12所示)，時間解析度為1小時，可不間斷地

提供即時降雨推估。以下針對此系統概述之。 

 

圖3-12 PERSIANN-CCS系統於線上即時推估水氣分布圖 

(http://www.chrs.web.uci.edu/) 

加州大學爾灣分校的水文氣象與遙測中心(Center for Hydrometerology & 

Remote Sensing, CHRS)由Soroosh Sorooshian教授所主持，主要由NASA(National 

Aeronautics and Space Administration)、NOAA(National Oceanic and Atmospheric 

Administration)、NSF(National Science Foundation)與UNESCO(United Nations 

Educational, Scientific and Cultural Organization)等大型機構贊助。 

CHRS於1997年提出以類神經網路結合全球尺度的衛星影像資料的降雨推

估系統，稱為 PERSIANN (Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Network)，能提供0.25°×0.25°的降雨推估結果。

PERSIANN所使用地球同步衛星，包括GOES-8, GOES-10, GMS-5, Metsat-6, 

Metsat-7，以及部分太陽同步衛星，包含有TRMM, NOAA-15, -16, -17, DMSP F13, 

F14, F15等。PERSIANN系統主要理論架構乃為一三層之修正型反傳遞類神經網

路(MCPN: Modified Counter Propagation Network)，其中包含兩個網路結構；第一
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個網路結構為自組織映射圖(Self-Organizing Map: SOM)網路，主要負責處理輸入

層至隱藏層間之轉換及分類。第二個網路結構為修正型之Grossberg線性輸出層，

其功能乃是將SOM網路分類之結果映射至輸出空間，方法乃是建構許多不同之

雲頂亮帶溫度(Tb)與降雨強度(R)間之線性關係。模式所使用之輸入維度為6維，

分別是；每一個pixel亮帶溫度(Tb
1)、地貌指標(SURF)、3×3 pixel 的平均亮帶溫

度(Tb
3)、5×5 pixel的平均亮帶溫度(Tb

5)、3×3 pixel的標準偏差(SDTb
3)以及5×5 pixel

的標準偏差(SDTb
5)。 

 

2004年CHRS再發展一套結合多衛星的降雨預報系統(PERSIANN-Cloud 

Classification System, PERSIANN-CCS)。PERSIANN-CCS相較於PERSIANN而言，

萃取出更多雲層的資訊，對於近紅外光影像中的雲層有更多的描述，例如雲高、

雲最低溫度、雲面積與紋理等，並由這些特徵用於對衛星雲圖分類，分類採用

SOFM(Self Organization Feature Mapping Algorithm)類神經網路，其由20×20個拓

墣層組成，並將20x20個拓蹼層分類為7個類別，以此七個類別建立非線性模式建

立雲頂溫度與降雨率(Tb-R)的關係。PERSIANN-CCS的主要核心為變動的門檻值

演算法，該演算法能成功萃取出雲層的特徵；PERSIANN-CCS系統之演算示意

圖如圖3-13所示。 
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圖3-13 PERSIANN-CCS演算示意圖(http://www.chrs.web.uci.edu/) 

 

PERSIANN-CCS系統不僅保留了PERSIANN的優點，更在架構上與影像前處

理之步驟有所改良，首先，在架構上PERSIANN-CCS之輸出層由線性轉換改良

成非線性轉換；其次，不同於PERSIANN將影像資料每一個pixel直接映射至降雨

強度，PERSIANN-CCS則是考慮了影像切割的方法，進而獲得不同大小的雲塊

資訊(江衍銘等人，2006)，雖然模式之計算較為複雜但卻大幅增加模式推估的精

確性。其模式步驟如下所述： 

(1) 雲影像的切割：以溫度的設定為切割準則，一般皆以固定門檻值(253K)

為主，低於此門檻值的雲頂溫度，其雲系視為有降水，而高於此門檻值

的雲頂溫度則視為無降水機率，然而若影像包含許多對流胞，單一門檻

值將無法有效分割出雲塊，PERSIANN-CCS系統則應用一增溫門檻值

(incremental temperature threshold: ITT)藉由逐漸增加溫度的方式對雲塊

進行切割。 

(2) 雲塊特徵之萃取：亦即對模式輸入變數之挑選，選擇之策略有三類-分別
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為雲塊冷特徵(coldness feature)、幾何特徵(geometric feature)以及組織特

徵(texture feature)，共萃取出九項雲塊特徵，在冷特徵上選取個別雲塊溫

度之最低值及平均值(Tmin & Tmean)，在幾何特徵上選取雲塊面積

(AREA)及雲塊形狀指標(SI)，而在組織特徵上則是選取雲頂溫度之標準

偏差(STD)、局部(5×5 pixel)雲頂溫度標準偏差之平均值(MSTD5)、局部

雲頂溫度標準偏差之標準偏差(STD5std)、雲頂溫度之梯度(TOPG)、灰階

組織(ASMm)。 

(3) 雲塊之分類；藉由SOM網路將所萃取出來之輸入變數，依其在幾何空間

上之相關性進行分類，同時亦將多維度之輸入向量映射至二維之特徵圖

上(圖3-14)，以簡化後續之計算。 

 

圖3-14 SOM分類(Hong et al., 2004) 

 

(4) 降雨量之推估：在輸出層上依不同之分類結果各自建立不同雲頂溫度與

降雨量之非線性迴歸式(圖3-15)，以期能獲得較佳之雨量推估。而上述兩

模式其輸出資料來源的選擇，乃是以七顆繞極軌道衛星上所接收之PR 

(Precipitation Radar)影像及所收集之地面雨量站資料所組成。基本上，模

式乃是採用批次學習的方式進行訓練，與其他網路最主要之差別則在於

MCPN模式具有分別訓練此二組架構(SOM & Grossberg Layer)之特徵，

在SOM層中演算之方法是屬於非監督式學習而Grossberg層則是屬於監
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督式的學習策略。 

 

圖3-15 各類別輸出之Tb-R關係式(Hong et al., 2004) 
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第四章第四章第四章第四章 不同雨量觀測資訊之特性評估不同雨量觀測資訊之特性評估不同雨量觀測資訊之特性評估不同雨量觀測資訊之特性評估 

4-1 不同雨量觀測資訊之誤差分析及校正不同雨量觀測資訊之誤差分析及校正不同雨量觀測資訊之誤差分析及校正不同雨量觀測資訊之誤差分析及校正 

一般於雨量校正程序上大部分以地面觀測雨量為真值，做為校正雷達或衛星

影像推估雨量之依據，故本研究以石門水庫集水區地面雨量站為主要之參考依據，

透過倒傳遞類神經網路 (BPNN)分別對雷達 (QPESUMS)及衛星影像

(PERSIANNCCS)推估之雨量進行系統性校正，以消除各系統推估雨量之誤差。 

首先本研究利用徐昇式法求取石門水庫集水區之平均面積雨量，由於石門水

庫集水區16個雨量中，十一份、鞍部及池端三站超出集水區邊界，故刪除超出邊

界之三個雨量站，再利用石門、長興、復興、巴陵、霞雲、高義、玉峰、嘎拉賀、

鎮西堡、白石、三光、秀巒及西丘斯山等13個雨量站，經由徐昇式法求得各雨量

站權重，其各雨量站權重如表4-1所示。 

 

表4-1 雨量站權重 

站名 權重 站名 權重 

石門 0.018 嘎啦賀 0.049 

長興 0.061 秀鑾 0.045 

復興 0.040 鎮西堡 0.108 

霞雲 0.096 巴陵 0.075 

高義 0.081 白石 0.115 

三光 0.038 西丘斯山 0.157 

玉峰 0.117   

 

在QPESUMS方面，涵蓋石門水庫集水區之網格共有434格，本研究將其434

個網格之雨量值累加後除以網格總數，求得一平均面積雨量，即為QPESUMS所

推估之石門水庫集水區每小時平均面積雨量。而PERSIANN-CCS資料處理步驟

與QPESUMS相同，由於PERSIANN-CCS其空間解析度為4km×4km，因此所涵蓋

之石門水庫集水區為45格，將45個網格之雨量值累加後除以網格總數，即可求得
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PERSIANN-CCS所推估之石門水庫集水區每小時平均面積雨量。 

分別求得QPESUMS及PERSIANN-CCS之每小時面積平均雨量後，本研究以

徐昇式法所求得之集水區平均面積雨量為真值，透過倒傳遞類神經網路進行雨量

誤差校正，分別架構雷達(QPESUMS)及衛星(PERSIANN-CCS)二種誤差校正模式。

本研究蒐集西元2006~2009年共13場颱風事件，區分為訓練、驗證及測試3個部份，

其中訓練部份包含7場颱風事件，資料筆數為350筆；驗證部份包含3場颱風事件，

資料筆數共153筆；測試部份包含3場颱風事件，資料筆數共138筆，詳細颱風事

件分配如表4-2所示。最後再將其網路輸出值與真值相互比較，以推求得最佳校

正係數a及b值。雨量誤差校正模式示意圖如圖4-1所示。 

 

圖4-1 雨量誤差校正模式示意圖 

 

表4-2 倒傳遞類神經網路颱風事件分配表 

 颱風事件 

訓練 寶發、桑美、科羅莎、帕布、哈格比、辛樂克、莫拉克 

驗證 聖帕、薔蜜、蓮花 

測試 韋帕、卡玫基、鳳凰 
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由圖4-2可明顯看出QPESUMS校正前所推求之平均面積雨量皆比實際降雨

低估很多，其原因為雷達於山區容易受到地形阻隔影響，而QPESUMS系統又採

取最低有效仰角策略，將會造成受到地形阻隔處所推估之降雨幾近於0，因此在

累加涵蓋石門水庫之434個網格後除以網格總數，QPESUMS所推估之平均面積

雨量將會產生嚴重低估現象。QPESUMS經由模式校正後，圖4-2可看出結果相當

不錯，其最佳校正係數a、b值分別為0.96及0.64(表4-3)，校正後大幅改善降雨低

估情形，降雨趨勢與實際降雨皆相當符合，且尖峰降雨經模式校正後亦有相當不

錯之表現。表4-4為13場颱風QPESUMS校正前後RMSE、BIAS及MAE計算結果，

由表4-4可知各場颱風經過模式誤差校正後，明顯有效降低校正前之系統推估誤

差，其校正前後誤差改善率在RMSE、BIAS及MAE分別有53.19%、128.02%及

53.76%之改善。 

在PERSIANN-CCS誤差校正方面，由於PERSIANN-CCS之建置是以大陸型

氣候為訓練背景，模式參數設定亦較適用於大陸型氣候；而台灣地理位置特殊，

當直接應用PERSIANN-CCS推估之降雨產品於台灣海島型氣候時將會產生較大

之系統推估誤差，因此由圖4-3可看出PERSIANN-CCS所推估之雨量產品與實際

降雨有相當大之誤差存在，無論是降雨趨勢或是尖峰降雨量，PERSIANN-CCS

皆無法掌握，經由模式校正後雖有些微改善，但其改善幅度仍相當有限，如表4-5

所示，其於RMSE、BIAS及MAE之平均改善率為1.28%、46.53%及0.65%(表4-6)。 

 

表4-3 最佳校正係數表 

 a b 

QPESUMS 0.96  0.64  

PERSIANN-CCS 0.71  -2.61  

 

 

 



33 

 

 
圖4-2 QPESUMS雨量校正前後與實際雨量時序圖 

 
 

表4-4 QPESUMS 13場颱風雨量校正前後比較表 

      INDEX 

颱風         

RMSE(mm) BIAS(mm) MAE(mm) 

校正前 校正後 校正前 校正後 校正前 校正後 

BOPHA 3.58  1.81  -0.85  -0.19  2.21  1.35  

SAOMAI 0.32  0.32  -0.86  0.52  0.16  0.25  

KROSA 12.51  3.06  -0.82  0.02  8.33  2.08  

PABUK 3.24  2.34  -0.75  0.41  2.11  1.62  

HAGUPIT 0.81  0.61  -0.89  -0.38  0.49  0.41  

SINLAKU 10.84  4.20  -0.81  0.01  8.70  2.93  

MORAKO 7.73  3.70  -0.87  -0.24  4.91  2.20  

JANGMI 8.91  3.24  -0.81  0.06  5.65  2.42  

SEPAT 5.11  1.93  -0.79  0.18  3.42  1.27  

LINFA 0.36  0.61  -0.64  1.24  0.15  0.36  

FONG-WONG 5.95  1.63  -0.80  0.06  3.61  1.10  

KALMAGEI 2.16  5.66  -0.56  1.36  1.31  3.30  

WIPHA 9.68  4.20  -0.85  -0.17  7.36  3.09  
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圖4-3PERSIANN-CCS雨量校正前後與實際雨量時序圖 

 
 

表4-5 PERSIANN-CCS 13場颱風雨量校正前後比較表 

       INDEX 

颱風         

RMSE(mm) BIAS(mm) MAE(mm) 

校正前 校正後 校正前 校正後 校正前 校正後 

BOPHA 3.73  3.49  -0.90  -0.81  2.45  2.34  

SAOMAI 0.66  1.12  0.57  1.90  0.35  0.57  

KROSA 13.27  12.84  -0.87  -0.81  9.39  9.26  

PABUK 1.92  2.48  0.23  0.48  1.47  1.83  

HAGUPIT 0.80  0.96  -0.64  -0.33  0.47  0.55  

SINLAKU 9.80  9.33  -0.72  -0.68  7.79  7.39  

MORAKO 7.84  7.57  -0.85  -0.78  5.10  4.89  

JANGMI 9.14  9.15  -0.79  -0.79  5.75  5.69  

SEPAT 6.01  5.67  0.10  0.09  4.30  4.16  

LINFA 0.40  0.36  -0.86  -0.73  0.16  0.14  

FONG-WONG 6.29  6.32  -0.51  -0.39  4.38  4.65  

KALMAGEI 2.99  3.20  0.11  0.39  2.05  2.24  

WIPHA 10.04  9.47  -0.85  -0.76  7.64  7.27  
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表4-6 雨量校正前後改善率 

 RMSE BIAS MAE 

QPESUMS 53.19% 128.02% 53.76% 

PERSIANN-CCS 1.28% 46.53% 0.65% 

 

4-2 以資料融合方法整合多重雨量觀測資訊以資料融合方法整合多重雨量觀測資訊以資料融合方法整合多重雨量觀測資訊以資料融合方法整合多重雨量觀測資訊 

資料同化融合技術最早係使用在氣象預報領域上，為了改進氣象預報值之準

確性，而結合觀測值至數值模式內，如今已成為預報工作重要的一環。其通常可

分為二種方法，一為序列法(sequential)，另一為變分法(variational)。前者依據估

計理論，利用統計方法，結合所有與系統相關且有用的知識來預測系統變數；後

者依據控制理論，針對模式預報值，從空間與時間進行全面性的調整至觀測值，

屬於解決平滑化的問題。本研究將利用遺傳演算法（Genetic Algorithm, GA）融

合QPESUMS、PERSIANN-CCS雨量產品及地面雨量站觀測資訊。 

4-2.1 遺傳演算法遺傳演算法遺傳演算法遺傳演算法 

源自達爾文進化論中「物競天擇、適者生存」觀念之遺傳演算法，乃是利用

自然進化、擇優而生的理論來達到增進結果表現值的目的。J.H. Holland首先於其

論著「Adaptation in Natural and Artificial Systems」 (1975) 中提出，染色體字串

能夠用來模擬生物演化機制，讓適應值較佳者進行繁衍下一代，其強大的演化能

力即使在搜尋空間相當龐大的區域中仍能收斂於近似全域最佳解。 

遺傳演算法（Genetic Algorithm, GA）為具演化能力的最佳化搜尋方法，在

許多研究與應用證實了GA在搜尋全域最佳解（global optimum）的問題上，表現

出此法具有強健性與效能性，也可以解決傳統數學規劃中對於非連續性、不可微

分、多峰及非凸函數的限制與瓶頸。 

遺傳演算法應用於決策模式最佳解的搜尋機制時，首先將決策變數進行編碼

轉換成基因，而問題中所有決策變數所轉換的基因集合成為染色體，接著透過初
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始化過程，產生第一個世代的群集由設定數目的染色體所集合而成，其中染色體

的總數目稱為群集大小；在第一個世代產生後，經由適合度評估每個染色體的優

劣程度後，透過機率式的篩選法則選出所需親代的染色體個數，再由遺傳運算子

進行複製（reproduction）、交配（crossover）跟突變（mutation）產生下一代；

GA搜尋機制的演算流程圖如圖4-4示。圖中每個世代要計算其相對應之適合度前，

必須先將染色體解碼以對應決策變數的數值後，再計算其目標函數值或轉換為適

合度，並利用菁英策略（elite strategy）將演算過程中最佳解保留下來，以避免

被取代掉，經過世代的進化後，最後可獲得適合度最高的解。(Holland, 1975; Wang 

et al., 2011) 

由於GA一般用於處理無限制式的最佳化問題，但對於有限制式的最佳化問

題之處理方式並沒有特定的策略，因此，本研究採取懲罰機制(penalty strategy)

處理限制式部分，避免GA在搜尋過程中產生不可行解。懲罰機制的概念是給予

個別限制式被違反時之對應懲罰函數或懲罰值，並將這些懲罰函數與目標函數整

併運算，使得不可行解的染色體因違反限制式而降低其適合度，但可行解的染色

體之各限制式的懲罰函數值則皆為0，不影響其適合度。故任一染色體無論是落

在可行解或不可行解區域都可正常運作。 
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圖4-4遺傳演算法流程圖 
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4-2.2 雨量融合雨量融合雨量融合雨量融合 

在雨量融合過程中最重要的即是融合權重之搜尋，融合權重搜尋方法有很多

種，常見有平均法、最陡坡降法及梯度法等。本研究在雷達(QPESUMS)、衛星

(PERSIANN-CCS)雨量產品及觀測雨量經過誤差校正後，將以三種不同校正後之

雨量產品來源做資料融合之處理，利用遺傳演算法求得最佳融合係數，產生融合

雨量(Pm)。 

本研究將分別融合出兩種不同之融合雨量，第一種融合雨量為使用雷達

(QPESUMS)與透過徐昇式法所求出之石門水庫集水區平均面積雨量二種雨量資

訊，以上述二種雨量資訊透過遺傳演算法方式求得最佳融合係數θ 1及θ 2，其GA

目標函式及限制式如4.1式與4.2式所示， 

 

YtPtPXfMin rg −×+×= 21 )()()( θθ  (4.1) 

1θ + 2θ =1 (4.2) 

 

其中 1θ 及 2θ 分別代表雨量站(Pg)及雷達(Pr)資訊在融合過程中所佔之權重，其值

應介於[0 1]之間，Y為石門水庫t+5時刻之入庫流量。根據研究文獻(何，2009)石

門水庫集水區降雨與流量間之時間延遲為5個小時，即t時刻之降雨與t+5時刻之

石門水庫入庫流量有最大之相關性，故本研究假設t+5時刻之入庫流量與t時刻之

融合雨量有最佳之相關性，因此透過GA所搜尋之最佳融合權重所組成之融合雨

量，即可視為石門水庫集水區t時刻之推估雨量。 

第二種融合雨量為使用雷達(QPESUMS)、衛星(PERSIANN-CCS)與透過徐昇

式法所求出之石門水庫集水區平均面積雨量三種雨量資訊，以上述三種雨量資訊

透過遺傳演算法方式求得最佳融合係數θ 1、θ 2與θ 3，其GA目標函式及限制式如

4.3式與4.4式所示， 

 

YtPtPtPXfMin srg −×+×+×= 321 )()()()( θθθ  (4.3) 



39 

 

1θ + 2θ + 3θ =1 (4.4) 

其中 1θ 、 2θ 及 3θ 分別代表雨量站(Pg)、雷達(Pr)及衛星(Ps)觀測在融合過程中

所佔之權重，其值應介於[0 1]之間，Y亦為石門水庫t+5時刻之入庫流量。其雨量

融合程序示意圖如圖4-5示。 

 

 

(a)二種資訊融合 

 

(b)三種資訊融合 

圖4-5雨量融合示意圖 

 
上述二種資訊資訊之融合雨量與三種資訊之融合雨量，經由GA進行最佳融

合權重搜尋結果如表4-7所示。由圖4-6與圖4-7的結果可知，透過t+5時刻流量所

搜尋出之最佳融合參數，其融合雨量即t時刻之推估雨量與實際降雨量相當接近，

其相關係數高達0.99，因此可推論透過t+5時刻流量所搜尋出之融合參數，即為推

估t時刻降雨量之最佳參數。
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表4-7 最佳融合權重 

 1θ  2θ  3θ  

二種資訊融合 0.77 0.23  

三種資訊融合 0.79 0.14 0.07 

 

  
圖4-6(a) 二種資訊融合後t時刻流量 圖4-6(b) 二種資訊融合後t時刻雨量 

  
圖4-7(a) 三種資訊融合後t時刻流量 圖4-7(b) 三種資訊融合後t時刻雨量 
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4-3 融合雨量應用於定量降雨預報模式融合雨量應用於定量降雨預報模式融合雨量應用於定量降雨預報模式融合雨量應用於定量降雨預報模式 

4-3.1 Adaptive Network-based Fuzzy Inference System (ANFIS) 

調適性網路模糊推論系統(Adaptive Network-based Fuzzy Inference System, 

ANFIS, Jang, 1993)結合了前饋式類神經網路的監督式學習法，在代入訓練範例後，

比較真實輸出值與模式推估值間的誤差，在求得誤差的最小平方和過程中，使模

糊推論系統中的所有參數作適當的調整。參數的修正方法是採用二階段的複合式

學習演算法：(1)訊號向前傳遞部分，各層節點輸出值往前傳至第四層後，藉由

最小平方推估法來調整推論項參數。(2)誤差訊號逐層逆向傳導至第一層，再利

用最陡坡降法將誤差往前傳以更新前提項參數。當前提項參數與推論項參數在改

變的過程中，其各個隸屬函數亦隨之改變，最後當前提項參數與推論項參數固定

後，就出現了各個配合適當之隸屬函數。藉由這樣的二階段學習程序，ANFIS

即可透過輸入—輸出資料與專家知識(化為模糊If-then規則形式)建立出輸入—輸

出之映射關係。 

ANFIS 模式在架構時具有許多彈性，例如在第一層架構輸入變數的映射集

合時，可預先設定好每一種輸入變數的集合數目，再利用排列組合的方式組合出

所有可能規則。也可使用聚類的方式獲得前提與結論部分的組合，也就是將輸入

變數與輸出變數合併，利用聚類的方法找出所需的中心點數目，確定中心點後，

再將輸入變數部分與輸出變數部分分開，由輸入變數所組成的集合形成IF-THEN

規則中的前提部分，而輸出變數則形成結論部分；通常聚類的方法有許多種，如 

k-means、fuzzy c-means 與減法聚類等。此外，亦可結合專家系統或從知識中萃

取的規則，將之使用於IF-THEN 規則之中。(Jang, 1993) 

類神經網路雖無法處理定性的知識與邏輯推論過程，卻具有極佳的自我學習

與組織能力，其強大的調整能力正可用來作模糊系統的結構與參數之調整，使合

乎模糊推論系統中輸入、輸出間的關係。也就是說調適性網路模糊推論系統是用
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類神經網路的技術，由所獲取的資料中萃取出模糊規則，並利用新獲取的資料逐

漸的調整這些規則。因此，ANFIS結合了二種演算法，可充分發揮模式對於系統

不確定性與不精確性的處理能力，透過ANFIS學習與自我調適進而求得參數最佳

解。調適性網路模糊推論系統之架構分為五層，如圖4-8所示。(張與張，2010) 

 
圖4-8 ANFIS架構圖 

第一層 輸入層 

將輸入變數映射至模糊集合，以設定之隸屬函數估算其隸屬度，在此隸屬函

數以S型函數為例： 

)(1

1
iii cxaA

e
−−+

=µ ，

)(1

1
2 iii cyaB

e
−−+

=
−

µ  

(4.5) 

其中 1O 為輸入值相對於模糊集合之隸屬函數，{ ia , ic }為模糊隸屬函數的參

數，即前提項參數，當這些參數值改變，隸屬函數形式也會跟著改變。 

第二層 規則層 

進行變數間模糊邏輯規則之先決條件配對，以得到各規則之firing strength 
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2,1),()( =×= iyxw
ii BAi µµ

(即權重值)，再利用T-norm乘積運算，即輸出值為所有輸入訊息之乘積： 

 (4.6) 

第三層 權重平均 

此層各節點計算該規則相對於所有規則的firing strength之比例，也就是將第 

i 條規則的輸出結果除以所有規則之輸出結果，使其輸出值介於 0 到 1 之間。 

 (4.7) 

第四層 結論推論層 

2,1),(,4 =++== iryqxpwfwO iiiiiii  (4.8) 

其中{ ip , iq , ir }為模糊推論之結論參數，即推論項(consequent)參數。 

第五層 輸出層 

將前層訊息加總以計算輸出變數值，一如解模糊化之功能： 

輸出值=
∑

∑
∑ ==

i

i

i
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fwO 1,5  (4.9) 
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4-3.3 定量降雨預報模式結果與討論定量降雨預報模式結果與討論定量降雨預報模式結果與討論定量降雨預報模式結果與討論 

本研究於集水區定量降雨預報模式之建立，將採用調適型類神經網路建構未

來一小時與未來二小時共計二個時刻之預報模型，為比較資料融合之有效性與否，

本研究將架構三種不同定量降雨預報模式，第一種模式使用雷達(QPESUMS)、

衛星(PERSIANN-CCS)及雨量站三種資訊未經融合作為ANFIS之網路輸入項，為

一多輸入-單輸出之定量降雨預報模式；第二種模式僅使用雷達(QPESUMS)及雨

量站資訊，將其二項資訊融合後作為ANFIS之網路輸入項，為一單輸入-單輸出

模式；第三種模式為使用雷達(QPESUMS)、衛星(PERSIANN-CCS)及雨量站資訊，

將其三項資訊融合後作為ANFIS之網路輸入項，亦為一單輸入-單輸出模式，其

詳細網路架構圖如圖4-9所示。 

 

(a)模式一：三種資訊(未融合) 

 

(b)模式二：二種資訊(融合) 

 

(c)模式三：三種資訊(融合) 
圖4-9(a)~(c) 類神經網路定量降雨預報架構圖 
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ANFIS 定量降雨模式架構前需將資料區分為訓練、驗證及測試 3 個部份，

故本計畫將已蒐集完成之西元 2006~2009年共 13場颱風事件，如同第 4-1節雨

量校正模式之颱風場次分配，訓練部份包含 7場颱風事件，資料筆數為 350筆；

驗證部份包含 3場颱風事件，資料筆數共 153筆；測試部份包含 3場颱風事件，

資料筆數共 138筆，詳細颱風事件分配如表 4-2所示。 

表 4-8為三種定量降雨預報模式於 t+1時刻預報雨量之結果，由其結果可知

在 t+1 時刻三種資訊未融合的預測雨量 CC、RMSE 及 MAE 之表現都不如三種

資訊融合後的預測雨量，而從表 4-10亦可得知 QPESUMS、PERSIANN-CCS及

地面雨量站三種資訊融合後與三種資訊未融合之 RMSE 及 MAE 改善率分別為

28.23%及 27.24%；由此可證明 QPESUMS、PERSIANN-CCS及地面雨量站經過

誤差校正再融合成一融合雨量有其有效性。而在融合二種資訊與融合三種資訊於

預測 t+1 時刻雨量之比較，由表 4-8 及表 4-9 可知增加 PERSIANN-CCS 雨量產

品於定量降雨預報模式中，模式改善並不顯著，推論其原因為依據前述雨量校正

結果，PERSIANN-CCS 推估雨量產品與實際降雨觀測相關性較差，並且經過倒

傳遞類神經網路校正後，其校正結果亦相當有限，因此造成當增加

PERSIANN-CCS 所推估雨量產品於定量降雨預報模式中，模式改善效果不大，

在 RMSE及MAE改善率分別僅有 5.80%及 6.20%之改善(表 4-10)。 

在三種定量降雨預報模式中，預測 t+2時刻雨量之結果皆比預測 t+1時刻結

果稍差，然而就其相關係數、RMSE及MAE來說仍可維持於一定水準，其預測

雨量與實際降雨趨勢亦大致符合(如圖 4-12~圖 4-17所示)，而在預報模式中，以

融合三種雨量資訊的定量降雨模式表現最佳，模式測試部分相關係數、RMSE及

MAE分別為 0.72、4.43及 3.15；三種資訊未融合表現最差模式測試部分相關係

數、RMSE及MAE分別為 0.61、5.29及 3.77(如圖 4-11及表 4-9所示)。就改善

率來看，融合了三種雨量資訊的定量降雨模式與三種資訊未融合的定量降雨模式
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RMSE 及 MAE 改善率分別有 16.31%%及 16.60%；而融合了二種雨量資訊的定

量降雨模式與融合了三種雨量資訊的定量降雨模式RMSE及MAE改善率則分別

有 7.44%%及 5.21%(表 4-10)。 

 
表4-8 t+1時刻結果比較表 

 
三種資訊(未融合) 二種資訊(融合) 三種資訊(融合) 

訓練 驗證 測試 訓練 驗證 測試 訓練 驗證 測試 

CC 0.85  0.80  0.71  0.88  0.86  0.83  0.88  0.85  0.85 

RMSE(mm) 4.33  4.12  4.70  3.88  3.32  3.58  3.88  3.52  3.37 

MAE(mm) 2.65  2.56  3.07  2.35  1.96  2.38  2.39  2.00  2.23 

 
 

表4-9 t+2時刻結果比較表 

 
三種資訊(未融合) 二種資訊(融合) 三種資訊(融合) 

訓練 驗證 測試 訓練 驗證 測試 訓練 驗證 測試 

CC 0.77  0.74  0.61  0.79  0.69  0.68  0.78  0.79  0.72 

RMSE(mm) 5.21  4.53  5.29  4.96  5.03  4.79  5.05  4.02  4.43 

MAE(mm) 3.32  2.92  3.77  3.13  2.87  3.32  3.14  2.65  3.15 

 
 

表4-10 測試部分不同模式間之改善率 

 
t+1 t+2 

SS(未融合-融合) SS(二種-三種) SS(未融合-融合) SS(二種-三種) 

RMSE 28.23% 5.80% 16.31% 7.44% 

MAE 27.24% 6.20% 16.60% 5.21% 
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圖4-10 測試資料t+1時刻比較關係圖 

 
圖4-11 測試資料t+2時刻比較關係圖 

 

 

 

 

 

 

 

 

0.000.501.001.502.002.503.003.504.004.505.00
三種資訊(未融合) 二種資訊(融合) 三種資訊(融合) 0.600.650.700.750.800.850.90RMSEMAECC

0.001.002.003.004.005.006.00
三種資訊(未融合) 二種資訊(融合) 三種資訊(融合) 0.540.560.580.600.620.640.660.680.700.720.74RMSEMAECC
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(a)訓練 (a)訓練 

  
(b)驗證 (b)驗證 

  
(c)測試 (c)測試 

圖4-12 三種資訊(未融合)t+1時刻之時序圖 圖4-13 三種資訊(未融合)t+2時刻之時序圖 
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(a)訓練 (a)訓練 

  
(b)驗證 (b)驗證 

  
(c)測試 (c)測試 

圖4-14 二種資訊(融合)t+1時刻之時序圖 圖4-15 二種資訊(融合)t+2時刻之時序圖 
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(a)訓練 (a)訓練 

  
(b)驗證 (b)驗證 

 
 

(c)測試 (c)測試 
圖4-16 三種資訊(融合)t+1時刻之時序圖 圖4-17 三種資訊(融合)t+2時刻之時序圖 
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第五章第五章第五章第五章結合結合結合結合 Pearson 相關性分析相關性分析相關性分析相關性分析及及及及 ArcGIS 架構水庫入流量架構水庫入流量架構水庫入流量架構水庫入流量

預報模式預報模式預報模式預報模式 

由於臺灣河川坡陡流急，加上山坡地過度開發，逕流滯留時間短暫，每逢颱

風暴雨時期，上游的洪水往往在數小時內便抵達下游及注滿水庫。在這種特殊的

降雨-逕流特徵下，為期能減輕洪水災害，掌握「時間」該項關鍵因素，發展一

精確多時刻流量預報模式、提供未來水庫入流量資訊及替決策者爭取更多時間實

有其必要性。 

5-1 以以以以 Pearson相關性分析相關性分析相關性分析相關性分析探討集流時間探討集流時間探討集流時間探討集流時間 

5-1.1 以地面觀測雨量分析降雨逕流機制以地面觀測雨量分析降雨逕流機制以地面觀測雨量分析降雨逕流機制以地面觀測雨量分析降雨逕流機制 

降雨及逕流之間一般存有延遲特性，雨量和流量的尖峰發生時間通常會有數

小時之延遲，其視集水區地文條件而有所不同；本研究採用經濟部水利署石門水

庫管理中心所提供之石門水庫入流量以及集水區上游雨量測站，分析石門水庫集

水區降雨逕流機制，進行雨量及入流量於不同時刻差異之探討，並以延遲0～10

小時為探討之標的。根據中央氣象局統計，西元2006~2009年期間共有13場颱風

發布陸上颱風警報；然而由於各場次降雨強度、侵臺路徑並不相同(如圖5-1所示)，

造成石門水庫集水區降雨分布情形亦不相同，故本研究以選取強降雨高流量之颱

風場次為主，刪除總降雨量低於100 mm之颱風場次。颱風資料經篩選過後，本

研究將使用8場颱風降雨事件進行時雨量及時入流量於不同時間延遲之探討，篩

選後之颱風事件如表5-1所示。 
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圖5-1 颱風侵台路徑分類圖(資料來源：氣象局颱風

資料庫http://rdc28.cwb.gov.tw/TDB/) 

 

表5-1 8場颱風事件基本資料表 

事件名稱 英文名稱 觀測日期 強度 路徑 

聖帕 SEPAT 2007/08/16～08/19 強烈 3 
韋帕 WIPHA 2007/09/17～09/19 中度 1 
柯羅莎 KROSA 2007/10/04～10/07 強烈 2 
卡玫基 KALMAEGI 2008/07/16～07/18 中度 2 
鳳凰 FUNG-WONG 2008/07/26～07/29 中度 3 
辛樂克 SINLAKU 2008/09/11～09/16  強烈 2 
薔蜜 JANGMI 2008/09/26～09/29 強烈 2 
莫拉克 MORAKOT 2009/08/05～08/10 中度 3 
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本研究首先利用Pearson相關性分析分別探討石門水庫集水區上游12個雨量

站之時雨量(R(t)~R(t-10))與水庫時入流量(Q(t))於不同時間延遲之關係。由於影響

颱風降雨因子甚多，例如:路徑、風向、風速、氣壓及強度等等多項因素，因此

降雨量與入流量於不同時間延遲之相關係數會隨著颱風事件不同而不同，因此若

以單一事件判斷降雨逕流時間延遲關係將較不具代表性，故本研究分別計算12

個雨量站8場事件於不同時間延遲之平均相關係數，其結果如圖5-2及表5-2所示。

從圖5-2可知12個雨量站於不同時間延遲之平均相關係數趨勢表現相當一致，相

關係數首先隨著時間延遲越長而增加，當時間延遲約為6~7小時抵達最大相關係

數，接著相關係數再度隨著時間延遲更久而下降。12個雨量站中最大相關係數介

於0.5~0.7之間，其中復興、長興、霞雲、高義、三光、嘎拉賀及玉峰等7站，最

大相關係數出現於時間延遲為6小時；巴陵、秀巒、白石、鎮西堡及西丘斯山等5

站，其最大相關係數出現於時間延遲為7小時。 

 

 

圖5-2 各雨量站於不同時間延遲之平均相關係數圖 
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表5-2 各雨量站於不同延遲時間之平均相關係數表 

測站測站測站測站 t(無無無無

延延延延

遲遲遲遲) 

t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 

復興 0.219 0.333 0.420 0.463 0.514 0.528 0.534 0.525 0.524 0.506 0.461 

長興 0.226 0.340 0.419 0.459 0.509 0.516 0.518 0.512 0.506 0.486 0.431 

霞雲 0.231 0.346 0.439 0.480 0.532 0.542 0.550 0.536 0.515 0.496 0.440 

高義 0.203 0.304 0.396 0.461 0.510 0.538 0.556 0.553 0.541 0.528 0.480 

巴陵 0.186 0.285 0.381 0.458 0.520 0.564 0.588 0.599 0.595 0.592 0.558 

三光 0.227 0.328 0.420 0.497 0.553 0.591 0.599 0.597 0.578 0.567 0.524 

嘎拉賀 0.211 0.292 0.375 0.449 0.500 0.540 0.553 0.550 0.543 0.528 0.485 

玉峰 0.312 0.409 0.494 0.559 0.595 0.610 0.619 0.585 0.560 0.527 0.475 

秀巒 0.303 0.405 0.489 0.559 0.617 0.649 0.655 0.659 0.632 0.611 0.560 

白石 0.315 0.407 0.491 0.560 0.618 0.669 0.673 0.685 0.662 0.622 0.579 

鎮西堡 0.247 0.340 0.425 0.493 0.560 0.613 0.639 0.647 0.639 0.617 0.580 

西丘斯山 0.223 0.303 0.386 0.456 0.514 0.564 0.565 0.574 0.569 0.547 0.523 
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5-1.2 以以以以 QPESUMS雨量推估產品分析降雨逕流機制雨量推估產品分析降雨逕流機制雨量推估產品分析降雨逕流機制雨量推估產品分析降雨逕流機制 

雖然地面雨量觀測記錄值為直接觀測最為接近真實降雨量，然而其空間代表

性低，僅能代表單點之值；而遙測推估雨量產品則能有效解釋降雨系統在空間中

的分布與移動情形。一般常見以雷達回波或衛星影像等遙測技術推估雨量，然而

衛星影像推估之雨量產品有時間與空間解析度偏低之缺點，且一般而言衛星影像

推估之雨量產品精確性偏低(詳請見第四章)，故本研究採用中央氣象局所提供之

雷達推估雨量產品(QPESUMS)進行降雨-逕流機制之探討分析。由於雷達觀測於

山區將會受到地形遮蔽影響，造成部分網格雨量推估值過小或為0，與實際降雨

情形有相當大差異，因此本研究以中央氣象局校正後之雷達雨量資料(QPESUMS)

為主進行分析，其校正方式為計算測站觀測降雨與測站上方雷達降雨之差值，以

內插法推估其他網格之差值後，將差值加回原雷達降雨中，即可得到以測站資料

為參考之校正後雷達雨量資料。 

QPESUMS空間解析度為1.25km×1.25km; 時間解析度為10分鐘，為進行雷達

推估雨量及入流量於延遲0～10小時為探討之標的，故本研究首先將10分鐘之雷

達推估雨量累加成1小時雨量，再進行每個網格每小時之降雨量與水庫入流量於

不同時間延遲之時間與空間相關性分析，Pearson相關性分析所使用之颱風場次

共8場(表5-1)。由於每場颱風事件於空間中之降雨分佈皆不相同，因此每場事件

所計算得之相關係數圖會有些差異，故若以單一事件即判斷石門集水區雷達推估

雨量及入流量間之時間延遲將會造成誤差，故本研究取其8場颱風事件平均相關

性分析結果，以判斷雷達推估雨量及入流量間之時間延遲關係。 

圖5-3為8場颱風事件平均最大相關係數分佈圖；圖5-4為平均最大相關係數

相對應之延遲時間分佈圖，由圖5-4可知雷達推估雨量與入流量之時間延遲約為

5~8小時，且可發現時間延遲現象可以支流做為分類標準，每一支流各有不同之

時間延遲。然而從圖5-4亦可發現有小部分支流的上游區域之時間延遲小於下游
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區域，此結果並不合理，推測其原因為雷達推估之雨量產品受地形遮蔽因素影響，

雖經校正後仍有誤差，因此部分支流上游區域會發生不合理之時間延遲現象。另

外從相關性分析結果可知每個網格之最大相關係數與第二、第三大相關係數非常

接近(如圖5-5(a)(b)所示)，故為使時間延遲結果更為連續平滑，本研究將前三大

相關係數所對應之時間延遲取其平均，以代表雷達推估雨量與水庫入流量間時間

延遲關係，其可解決空間不連續問題，雷達推估雨量與入流量之時間延遲約為5~7

小時，結果如圖5-6所示。 
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圖5-3 平均最大相關係數分佈圖 圖5-4 平均最大相關係數之相對應延遲時間
分佈圖 

  

(a) 平均第二大相關係數分佈圖 (b)平均第三大相關係數分佈圖 
圖5-5 平均第二及第三大相關係數分佈圖 

 

hr 



58 

 

 

圖5-6平均前三大相關係數之相對應延遲時間分佈圖 

 

5-2 以以以以 ArcGIS劃分集水區劃分集水區劃分集水區劃分集水區 

QPESUMS涵蓋石門水庫集水區之網格數為434格，由於本研究將利用類神

經網路架構多時刻流量預報模式，若將434個網格做為模式之輸入會造成模式相

當大的負擔，因此本研究利用DEM(Digital Elevation Model)資料，在符合集水區

物理特性條件下，依據高程、坡度資訊將集水區分別劃分成1、4、8及12個子集

水區，降低輸入維度、進行空間時間整合。 

雷達降雨資料的空間整合方式是依據 40 公尺解析度的 DEM 資料，透過

ArcHydro 中的集水區劃分(stream sgementation)功能，設定不同門檻值將集水區

劃分為不同的子集水區，其詳細理論來自 Jensen and Domingue (1988)。本研究將

石門水庫集水區劃分為四種不同的子集水區組合，分別是單一集水區、4、8 與

12個子集水區，詳細步驟如下： 

(1) 填充窪地(Filling of depressions)：DEM中的窪地與坑洞會造成逕流演算阻礙，

因此首先必須將窪地的網格高程提高至此窪地邊緣最低的高程值，產生一無

坑洞的 DEM，如圖 5-7所示。 
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圖5-7 填充窪地 

 
(2) 流向演算(Flow direction mapping)：由無坑洞的 DEM依據高程及坡度計算水

流流向，並給定流向編碼，其八個方位之流向分別以 2n, n=0,1,2,3,4,5,6,7 進

行編碼，如圖 5-8所示。 

 

 
圖5-8 水流流向編碼 

 
(3) 水流累積(Flow accumulation mapping)：利用上述流向資訊計算水流累積的路

徑，每個網格上的數值代表水流抵達該網格時所經過的總網格數。 

(4) 定義河川(Stream definition)：在給定一水流累積的門檻值後，即可定義出河

川，越小的門檻值將會產生越密的河川網路，一般而言並不會使用過小的門

檻值，通常是採用較大的門檻值來定義河川較多。本研究分別採用不同的門

檻值得到 4 個子集水區(T=100)、8 個子集水區(T=30)與 12 個子集水區

(T=25)。 

(5) 河川劃分(Stream segmentation)：此功能為將上述定義之河川做劃分，每一個

河川網格劃分後皆會產生一獨立且單一的識別碼。 

(6) 集水區網格劃分(Catchment grid delineation)：此功能可產生網格式資料，集水

區中的每個網格具有單一的數值表示其所屬之子集水區，依據網格數值劃分

出子集水區。 

因此本研究利用DEM資料依據上述子集水區劃分方法，分別計算河川流向，
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判斷每個網格之流向路徑、水流累積值、定義河川及河川劃分等，將石門水庫集

水區分別切割出1、4、8及12個子集水區，接著配合雷達推估降雨與水庫入流量

間時間延遲關係分佈圖(如圖5-6)計算每個子集水區之延遲時間，如圖5-9所示。 

    
圖5-9 (a)4個子集水區(b)8個子集水區(c)12個子集水區  

(子集水區上數字代表降雨─逕流延遲時間) 
 
 

5-3利用利用利用利用 ANFIS架構石門水庫入流量預報模式架構石門水庫入流量預報模式架構石門水庫入流量預報模式架構石門水庫入流量預報模式 

精確之集水區降雨-逕流模式及流量預報模式向來為水文學者所努力之課題，

本研究於集水區多時刻流量預報模式之建立上，將採用ANFIS建構未來1~5小時

共計5個時刻之流量預報，而網路輸入之變數組合則依據4-3節降雨-逕流時間延

遲關係，使用地面雨量觀測值、QPESUMS推估雨量資料及水庫入流量觀測值等

資訊，設計6組不同輸入項目；網路輸出為未來1~5小時石門水庫入流量。除了以

ANFIS架構流量預報模式外，本研究另外使用多變數線性迴歸法(Multiple Linear 

Regression, MLR)預報未來1~5小時之水庫入流量，以MLR為基準模式與ANFIS

相互比較探討。研究流程圖如圖5-10所示。 

(a) (b) (c) 
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圖5-10 ArcGIS與相關係數法時空間整合法之流程圖 
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5-3.1 方案介紹方案介紹方案介紹方案介紹 

為比較使用不同資訊於水庫入流量預報之有效性，本研究設計6組不同輸入

項方案，首先以方案S1為基準方案，其僅使用現時刻入流量及流量差為預報模式

之輸入；方案S2及S3設計為輸入項除流量資訊外另分別加入雨量站資訊或

QPESUMS雨量資訊，其可與方案S1比較加入雨量資訊是否可增加流量預報模式

之精確度，及不同雨量資訊對於模式精確度之影響；另為方案S3又細分為切割不

同子集水區數目n，n為1、4、8及12個子集水區，其用於比較切割不同子集水區

數目，進行空間時間整合後所提供之雨量資訊，對於流量預報模式精確度之影響。

詳細各方案之輸入項目及描述如表5-3所示。  
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表5-3 6組水庫入流量預報模式方案 

方案 方案描述 
輸入項

總數 
輸入變數 

S1 僅使用入流量資訊  2 
� Q(t): 現時刻入流量 
� △Q: 現時刻與前一時刻之入流量差 

S2 
使用 12 個雨量站不同時間延
遲之雨量資訊及入流量資訊。 

14 

� Gi(t+h-k):12 個雨量站不同時間延遲
之雨量 
雨量站 i=1~12，時間延遲 k=6 or 7及
預報時間 h=1~5. 

� Q(t) 
� △Q 

S3(1) 

使用整個集水區平均面積總

雨量資訊(QPESUMS)及入流
量資訊。 

3 

� R(t+h-k):集水區總雨量(QPESUMS) 
時間延遲 k=6及預報時間 h=1~5. 

� Q(t) 
� △Q 

S3(4) 

使用 4 個子集水區不同時間
延 遲 之 總 雨 量 資 訊

(QPESUMS)及入流量資訊。 
6 

� Ri(t+h-k):4個子集水區不同時間延遲
之總雨量(QPESUMS) 
時間延遲 k=5 or 6 or 7，子集水區
i=1~4 及預報時間 h=1~5. 

� Q(t) 
� △Q 

S3(8) 

使用 8 個子集水區不同時間
延 遲 之 總 雨 量 資 訊

(QPESUMS)及入流量資訊。 
10 

� Ri(t+h-k):8個子集水區不同時間延遲
之總雨量(QPESUMS) 
時間延遲 k=5 or 6 or 7 or 8，子集水
區 i=1~8 及預報時間 h=1~5. 

� Q(t) 
� △Q 

S3(12) 

使用 12 個子集水區不同時間
延 遲 之 總 雨 量 資 訊

(QPESUMS)及入流量資訊。 
14 

� Ri(t+h-k): 12個子集水區不同時間延
遲之總雨量(QPESUMS) 
時間延遲 k=5 or 6 or 7 or 8，子集水
區 i=1~12及預報時間 h=1~5. 

� Q(t) 
� △Q 
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5-3.2 結果與討論結果與討論結果與討論結果與討論 

本研究挑選實際影響石門集水區之颱風事件共8場，將之分為訓練、驗證、

測試三組，訓練組用來訓練模式，使之調整內部權重及參數，驗證組則進行模式

架構之挑選，而測試組用以測試模式之表現，各分為訓練5場、驗證2場及測試1

場事件，其基本資料及流量序列如表5-4及圖5-11所示。 

 

表5-4 訓練、驗證及測試組之颱風事件 

組別 
事件 
名稱 

觀測日期 強度 路徑 
洪峰流量 

(cms) 

訓練 

聖帕 2007/08/16～08/19 強烈 3 1844.4 

柯羅莎 2007/10/04～10/07 強烈 2 5300.39 

卡玫基 2008/07/16～07/18 中度 2 203.13 

辛樂克 2008/09/11～09/16  強烈 2 3351.24 

莫拉克 2009/08/05～08/10 中度 3 1837.54 

驗證 
韋帕 2007/09/17～09/19 中度 1 2788.15 

鳳凰 2008/07/26～07/29 中度 3 2039.78 

測試 薔蜜 2008/09/26～09/29 強烈 2 3291.99 

 

 

 

圖5-11 8場颱風事件流量序列圖 
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圖5-12及圖5-13分別為S1、S2及S3(n),n=1,4,8,12在CC、RMSE、MAE、CE

及SS在測試部分之表現，從圖5-12可知，當水庫入流量預報時間為未來1小時，6

個方案無論在CC、RMSE、MAE及CE值幾乎無差距，皆有相當不錯之表現，此

原因為流量有非常高之自相關性，因此無論使用哪一種輸入組合方案並無明顯不

同，然而當流量預報時間逐漸增長，不同方案間預報精確度開始逐漸有明顯之差

距，其中以S3(n)使用雷達雨量之方案表現較S1及S2佳，且當流量預報延時大於3

小時，加入雷達雨量資訊對於水庫入流量預報之精確度有相當顯著之改善，其可

證明透過降雨─逕流分析後，使用不同時間延遲之雨量及流量資訊，可有效改善

流量預模式。另外從圖5-12及圖5-13中亦可發現S1及S2之表現無明顯差異，雖然

S2模式使用雨量站不同時間延遲之雨量資訊，然而12個雨量站對於石門集水區面

積763平方公里空間代表性不足，因此雨量站雨量資訊對流量預報模式精確度改

善之貢獻度不如雷達雨量資訊。 

由於颱風暴雨具有空間變異特性，同一場颱風在不同子集水區內可能導致不

同逕流量，因此雨量資訊於時間空間整合顯得相當重要。本研究在S3(n)的四個

模式中，主要差異為時間空間的整合不同及模式輸入資訊個數不同，而這兩項差

異皆會影響ANFIS模式的預報表現。從研究結果顯示S3(4)有最佳的預報能力，

特別是當預報延時大於3小時的預報，S3(4)具有最高的CE與最小的RMSE與

MAE(圖5-13(b)(d))，其次為S3(1)、S3(8)與S3(12)。據此可知S3(4)模式在劃分4

個子集水區且考慮不同子集水區雷達雨量資料稽延時間後，對於ANFIS流量預報

模式而言不會過於複雜或簡單，且在長延時的預報有最好的預報能力，亦可證明

方案S3(4)的時間空間整合模式可解決颱風降雨在空間上不一致性的問題。 

另外研究亦發現S2模式使用12個雨量站資訊相較於S3(1,4,8)模式雖然有較

多的雨量資訊輸入，但是對於預報並沒有實質幫助，其原因為方案S2輸入資料為

單點式資料，缺乏集水區整體而全面之資訊，模式間的差異在預報t+5時刻的時

候特別明顯，例如CC從S2的0.76增加到S3(4)的0.87，而CE也由0.35增加到0.68。
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相同的改善也可在RMSE(S3(4)為484.54cms，S2為695.36cms)與MAE(S3(4)為

318.97cms，S2為424.11cms)中發現，由此可見雷達資料在長延時預報上的效果，

其差異可由本研究所使用的模式改善率指標中明顯看出(圖5-13)。整體而言，S3(n)

模式對於預報延時大於3小時的預報有較佳的表現，其中S3(4)更是在預報延時大

於3小時都有最高的模式改善率。若比較S3(1), S3(8)與S3(12)，可發現S3(1)有較

佳的預報表現，顯示石門集水區簡單的空間整合較適合水庫入流量的預報，而不

是複雜的空間整合。 

針對測試資料(薔蜜颱風)，圖5-14比較其觀測值與不同預報延時下S2及S3(4)

預報的入流量序列，由圖5-13可知S3(4)的預報值比其他模式而言最接近觀測序列。

另外值得一提的是在預報t+5時刻入流量時，預報洪峰發生時間的延遲從S2模式

的6小時減少為S3(4)模式的3小時，此顯示時間空間最佳整合後的雷達降雨資料

不僅能增加整體預報的精度，也能減少流量預報模式輸出洪峰時間延遲問題

(Campolo et al., 1999; Akhtar et al., 2009)。 

圖5-15為ANFIS模式與MLR模式在降雨逕流預報上的表現差異，由RMSE與

CE的指標中可看出ANFIS模式優於MLR模式，特別是在長延時的預報表現上。

圖5-14亦顯示出在短延時的預報上線性特徵較為明顯，而在長延時的預報中非線

性的特徵則隨著預報延時增加而增加，凸顯非線性模式在提供颱風事件的長延時

水庫入流量預報是相當重要的。 
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(a) CC (b) RMSE 
 

 

(c) MAE (d) CE 

 

圖5-12 6組ANFIS入流量預報模式(測試部分)比較圖  
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圖5-13 5組ANFIS入流量預報模式(測試部分)相較於S1之改善率 
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(d) t+4  

 

(e) t+5 

圖5-14 S2及S3(4)預報入流量序列比較圖 
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圖5-15 ANFIS與MLR模式於6組方案間RMSE及CE比較圖 
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第六章第六章第六章第六章 結合結合結合結合 SOM 及及及及 2-stage GT 架構架構架構架構水庫入流量預報水庫入流量預報水庫入流量預報水庫入流量預報模式模式模式模式 

由於颱風暴雨具有空間變異特性，同一場颱風在不同子集水區內可能導致不

同逕流量，因此雨量資訊於時間空間整合顯得相當重要。依據第五章研究結果可

知石門水庫劃分4個子集水區且考慮不同子集水區雷達雨量資料稽延時間後，對

於ANFIS流量預報模式而言不會過於複雜或簡單，且使用QPESUMS雷達降雨資

訊比雨量站資訊為佳，在長延時的預報有最好的預報能力，據此可證明時間空間

整合模式可解決颱風降雨在空間上不一致性的問題。然而颱風暴雨所造成之逕流

量，其間之關係可能無法以簡單線性相關即可完整描述其非線性特性，另水庫入

流量為整個集水區降雨量累積所造成，逕流累積過程也存在高度非線性特性，因

此本研究第五章使用單網格雨量與入流量進行降雨─逕流探討將可能造成分析

誤差。為改善此問題，本章節中首先利用SOM劃分集水區，並進一步使用2-stage 

Gamma test優選出集水區最佳降雨逕流延遲時間因子，透過ANFIS架構水庫入流

量預報模式。 

6-1 以以以以自組特徵映射網路自組特徵映射網路自組特徵映射網路自組特徵映射網路 SOM劃分集水區劃分集水區劃分集水區劃分集水區 

SOM屬於前饋式、非監督式神經網路，於1982年由Kohonen首先提出。其以

特徵映射方式，將任意維度的輸入向量映射至較低維度的特徵映射圖上，而輸出

層的神經元則會依輸入向量的特徵，以有意義的拓樸結構展現在輸出空間中，由

於所產生的拓樸結構可以反應所有輸入值間的分布關係，因此該映射圖亦可稱為

拓樸圖(topology)，而自組特徵映射過程即是一個聚類的過程(Chang et al., 2010 & 

2014; Kang and Yusof, 2012; Wallner, et al., 2013)。 

QPESUMS雷達網格資料可提供空間大範圍且連續性的降雨資訊，但由於本

研究利用ANFIS架構多時刻水庫入流量預報模式，若使用所有雷達網格資料作為

ANFIS之輸入項，將會造成模式結構過度複雜，因此本研究透過自組特徵映射網

路(Self-Organizing Map, SOM)將雷達網格資料做一分類。 
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除第五章所使用之8場颱風事件外，本研究再新增1場2012年蘇拉颱風，將所

蒐集之9場颱風事件(表6-1)每個雷達網格平均雨量及集水區地理特徵(經度、緯度

及高程)等4項變數經標準化後作為SOM之輸入項，根據前述第五章結論，石門水

庫集水區以劃分為4個子集水區可得到最佳流量預報結果，據此本研究即設定

SOM拓樸圖為2×2結構，將石門水庫集水區分成四個類別(如圖6-1所示)。與第五

章僅使用DEM資料透過ArcGIS劃分集水區的方式不同，此處加入降雨特徵，並

以SOM處理降雨與地形特徵之非線性特性，雖然同樣分為四區，但其分區特性

與第五章之分區特性不同。 

 

表6-1 9場颱風事件 

Event Name Period Peak inflow (cms) 

1 SEPAT 2007/08/16~08/19 1844  

2 KROSA 2007/10/04~10/07 5300  

3 KALMAEGI 2008/07/16~07/18 203  

4 SINLAKU 2008/09/11~09/16 3351  

5 MORAKOT 2009/08/05~08/10 1838  

6 WIPHA 2007/09/17~09/19 2788  

7 FUNG-WONG 2008/07/26~07/29 2040  

8 JANGMI 2008/09/26~09/29 3292  

9 SAOLA 2012/07/31~08/03 5385  
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1: Longitude  2: Latitude  3: Elevation  4: Average Rainfall 

圖6-1 SOM (2×2) 拓樸圖(Y軸為每個類別之權重) 
 
 
 

 

圖6-2 利用SOM所劃分出4個子集水區圖 
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由圖6-1及圖6-2可發現：(1)高程該項變數對於SOM分類有著相當重要影響第

1個類別高程最低而第4個類別高程最高；(2)經度及緯度地理特性因子在SOM分

類上亦扮演重要角色，透過經度可區分出第2類及第3類，透過緯度則可區分出第

1類及第4類；(3)雷達網格平均降雨量該項變數，在第2、3及4類上非常相似，在

第1類則相對較低。故根據上述結果可知透過SOM可劃分出有意義及符合地理特

性之4個子集水區。 

6-2以以以以 2-staged Gamma Test探討集水區集流時間探討集水區集流時間探討集水區集流時間探討集水區集流時間 

6-2.1 2-staged Gamma Test 

由降雨所產生之逕流量在經過複雜地形進入水庫所需時間，其為一高度非線

性關係(Zuazo et al.,2014)，然而大部分研究針對降雨逕流之集流時間多以簡單線

性相關係數法分析，透過尋找最大相關係數定義集流時間(Pianosi et al., 2014; 

Pramanik and Panda, 2009)，如本研究第五章所述。因此本研究將透過一非線性方

法 Gamma Test 尋找降雨逕流最佳延遲時間。 

Gamma Test為一個可挑選模式最佳輸入項方法，其假設一組資料(資料變數

為M)可由某個平滑函數所描述(Chang et al., 2013; Chang, et al., 2014; Jones, et al., 

2007; Koncar, 1997)，而剩下無法被平滑函數描述的部分，即稱為Gamma統計量

(Γ)。GT演算中的平滑函數為輸入向量(X�)的p個 	1 ≤ k ≤ p�鄰近資料點所組成，
可計算輸入向量的Delta函數： 

��	�� =
1
�����	�,�� − ����

�

���
		1 ≤ � ≤  � (6.1) 

其中|⋯ |為尤拉距離，而相對應的輸出向量Gamma函數則可表示為 
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#�	�� =
1
2���%�	�,�� − %���

�

���
		1 ≤ � ≤  � (6.2) 

其中p的決定則與取樣密度有關(Koncar, 1997)，而y�	�,��為��第k個鄰近點所

對應之y值。針對每個鄰近點都可以計算得到一組Delta函數與Gamma函數。

Gamma統計量的計算，則可透過p組Delta函數與Gamma函數的迴歸式中獲得，如

下式 

# = '� + ) (6.3) 

其中A為迴歸係數。 

針對每個輸入向量的子集合，GT估計其噪音項(即))，當此噪音項最接近零時，

其對應的子集合則可視為最佳的輸入變數組合，因此可有效的找出類神經網路的

最佳輸入變數組合，以減少ANN的輸入維度(Chang et al., 2013; Noori et al., 

2010)。 

一般而言，使用GT挑選出最佳輸入變數組合的計算流程包含： 

1. 計算所有可能的輸入組合(2� − 1)之Gamma統計量。 

2. 將所有統計量())由小至大排序，並將最小的前10%分類為最好的群組，

將最大的後90%，分為最差的群組。 

3. 計算每個變數出現在最好跟最差群組中出現次數的比值，此比值越高表

示該變數越好。 

雖然GT可有效的找出最佳的輸入變數組合，但是當M值較大時，GT的

演算需要很大量的計算量，例如當M=32，則所有可能的輸入變數組合共有

2*� − 1個，換言之必須執行約4.3億次的迴歸計算，必須花費非常多的時間

與計算量。為改善此問題，本研究提出二階段GT演算法(2-staged GT)，首先
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在第一階段： 

� 從M個變數中挑選其中1至N個變數，因此可能之輸入組合數共有

C�, + C�� + C*, +…+ C.,個。 

� 重複上述的步驟2與步驟3。 

� 由上述的比值，利用手肘點法(Kim et al., 2013; Su et al., 2006)挑出

前K個變數。 

在此階段，所有的M個變數彼此之間將互相競爭，而只需要較少的可

能組合數(2, − 1中的C�, + C�, + C*, +…+ C.,)。為加快計算時間，N值不需

過大，經過許多嘗試後，本研究使用N=4。如前述，每個變數出現在最好與

最差群組中的次數比值，可做為判斷變數好壞的指標，但是並沒有統一的論

述說明如何設定一門檻值來決定該挑選的變數。因此本研究以該比值做為參

考，用以挑選出可能的最佳輸入組合數(K)。由手肘點決定出變數個數(K)

後，若K ≤ N，則最佳的輸入變數組合即為第一階段中具有最低)值的變數
組合。若K>N，則最佳的變數組合尚未經過GT的計算，因此需要第二階段： 

� 第二階段中，GT演算需要從M個變數中挑選出K個變數，因此可能

的變數組合為C/,。例如M=32且K=7，則可能的變數組合由4.3億次

(2*� − 1)減少為3百多萬次。 

� 最佳輸入組合即為具有最低)值的組合。 

本研究所提出的2-staged Gamma Test演算法，當輸入變數很多時，可節省大

量的計算時間並有效的從眾多可能的輸入變數組合中，挑選出由ANFIS所架構石

門水庫入流量預報模式之最佳輸入變數組合。 
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6-3 方案介紹方案介紹方案介紹方案介紹 

為比較使用線性方法(相關係數法)與非線性方法(Gamma test)所選出雨量與

水庫入流量最佳延遲時間，及使用二階段GT所選出最佳延遲時間組合於水庫入

流量預報之效益，本研究設計5組不同方案，詳述如下(如表6-2)，研究流程圖如

圖6-3所示： 

Model 1：與前述S3(4)方案相同，利用相關係數法找出每個雷達網格最大相

關係數所對應之降雨量與水庫入流量最佳延遲時間，再利用

ArcGIS劃分出4個子集水區，詳細資料處理方式如第五章節所述。

輸入項包含�0、ΔQ及不同時間延遲的分區雨量(R(I,t-5), R(II,t-6), 

R(III,t-7), R(IV,t-7))。本章節將此一方案作為參考(benchmark)。 

Model 2：與Model 1相似，輸入項包含�0、ΔQ及不同時間延遲的分區雨量。
其中集水區劃分方式為使用SOM劃分出4個子集水區，再分別將

各子集水區不同時間延遲之降雨量(R(t-1) ~ R(t-8))及水庫入流量

Q(t)，透過Gamma Test選出各子集水區降雨量與水庫入流量最佳

延遲時間，每個子集水區僅選1個最佳延遲時間，分別為R(I,t-5), 

R(II,t-6), R(III,t-6), R(IV,t-7)。 

Model 3：本方案雨量輸入項與Model 2相同，分別為R(I,t-5)、R(II,t-6)、

R(III,t-6)、R(IV,t-7)，但本方案不使用流量資訊。 

Model 4：本方案亦僅輸入各子集水區不同時間延遲之雨量。其中集水區劃

分方式是使用SOM劃分出四個子集水區，但與Model 3不同地方為

使用4個子集水區所有不同時間延遲降雨量(R(t-1) ~ R(t-8))共32

個變數，透過2-staged GT減少過多變數組合之電腦計算量(32個變

數共有232-1種組合)，並選出最佳變數組合。首先GT第1階段本研
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究從32個變數中挑選其中1至4個變數，共有41448(C�*� + C�*� +
C**� + C1*�)種組合，並計算41448個Γ值，將最小的前10%分類為

最好群組，將最大的後90%分為最差群組，再計算每個變數出現

在最好跟最差群組中出現次數的比值，此比值越高表示該變數越

好。由表6-3可知排序第7及第8之變數比值已相當小，因此藉由手

軸點定義，本研究即可挑選出可能的最佳輸入組合數為7。由於在

GT第1階段並未計算7種變數組合(C2*�)，因此在GT第2階段直接計

算C2*�=3365856種組合之Γ值，其最低Γ值為0.0226所對應之7種

變數組合即為預報模式最佳輸入變數組合(詳表6-4所示)。 

Model 5：本方案雨量輸入項與Model 4相同(詳表6-4所示)，再加入流量資訊

�0及ΔQ。 
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圖6-3 SOM與二階段GT演算時空間整合法之流程圖 
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表6-2 方案輸入項描述表  

Model 輸入項輸入項輸入項輸入項 方案描述方案描述方案描述方案描述 

M1 

(GIS+CC) 

�0 
ΔQ 

R(I,t-5), R(II,t-6), R(III,t-7), R(IV,t-7) 

與前述 S3(4)方案相同，輸入項包含�0、ΔQ及不
同時間延遲的分區雨量。其中集水區劃分方式

是為使用 DEM資料透過 ArcGIS劃分出四個子

集水區，並利用相關係數法找出最大相關係數

所對應之降雨量與水庫入流量最佳延遲時間。

本章節將此一方案作為 benchmark。 

M2 

(SOM+GT) 

�0 
ΔQ 

R(I,t-5), R(II,t-6), R(III,t-6), R(IV,t-7)  

與 M1 方案相似，輸入項包含�0、ΔQ及不同時
間延遲的分區雨量。其中集水區劃分方式是使

用 SOM劃分出四個子集水區，並利用 GT選出

各子集水區降雨量與水庫入流量最佳延遲時

間，每個子集水區僅選 1個最佳延遲時間。 

M3 

(SOM+GT) 

R(I,t-5), R(II,t-6), R(III,t-6), R(IV,t-7)  本方案僅輸入各子集水區不同時間延遲之雨

量。其中集水區劃分方式是使用 SOM劃分出四

個子集水區，並利用 GT選出各子集水區降雨量

與水庫入流量最佳延遲時間，每個子集水區僅

選 1個最佳延遲時間。 

M4 

(SOM+ 

2-staged 

GT) 

不同時間延遲降雨量(詳表 6-3). 本方案僅輸入各子集水區不同時間延遲之雨

量。其中集水區劃分方式是使用 SOM劃分出四

個子集水區，並使用 4 個子集水區所有不同時

間延遲降雨量(R(t-1) ~ R(t-8))共 32個變數，透

過 2-staged GT選出最佳變數組合。 

M5 

(SOM+ 

2-staged 

GT) 

�0 
ΔQ 

不同時間延遲降雨量(詳表 6-3) 

與 M4 相似，輸入項除不同時間的延遲雨量再

加入�0及ΔQ。 
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表6-3 第一階段GT 比值之前8名。 排序 1 2 3 4 5 6 7 8 比值 R(IV,t-8)a R(IV,t-7) R(III,t-8) R(IV,t-6) R(II,t-8) R(III,t-7) R(I,t-8) R(III,t-6) 

Ratio Inf.b Inf. 428.7 57.6 32.2 26.8 7.8 7.6 

a: R(IV,t-8)為第四分區延遲 8小時之雨量 

b: Infinity. 

 

 

表6-4 2-staged GT優選出最佳前7名變數組合 排序 預報延時 1 2 3 4 5 6 7 

T+1 R(I,t-4) R(II,t-1) R(II,t-3) R(III,t-2) R(IV,t-1) R(IV,t-4) R(IV,t-6) 

T+2 R(I,t-4) R(II,t-3) R(III,t-2) R(IV,t-4) R(IV,t-6)   

T+3 R(I,t-4) R(II,t-3) R(IV,t-4) R(IV,t-6)    

T+4 R(I,t-4) R(IV,t-4) R(IV,t-6)     
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6-4 預報模式可靠度分析預報模式可靠度分析預報模式可靠度分析預報模式可靠度分析 

機率預報(probabilistic forecasting)在水文領域逐漸受到矚目，許多研究也指

出使用機率預報於水文預報上的諸多優點，也顯示透過機率預報通常可以獲得較

好的決策(Boucher et al., 2011, 2012; Dale et al., 2012; Dietrich et al., 2009; 

McCollor and Stull, 2008; Ramos et al., 2013; Schellekens et al., 2011; Verkade and 

Werner, 2011; Younis et al., 2008)。颱洪時期的水庫操作是一項複雜的過程，也是

台灣經常面對的重要議題，本研究由定率預報模式提供機率的資訊，透過預先決

定之誤差門檻值，提供預報數據之信心區間，將可提供水庫操作的決策者一個重

要的量化風險參考資料。 

過去許多水文模式都是以模式開發者的角度出發，期望提供最精確的模式預

報結果，然而在資訊的呈現上常常無法真正滿足使用者的需求，這樣的模式建立

方法可稱為由上而下(Top-down)的建模方式。然而使用者往往關心的是模式預報

數值具有多少的不確定性，必須承擔多少的風險，因此本研究將在模式預報結果

呈現採用由下而上(Bottom-up)的方式進行，即由使用者的角度出發，為了使預報

資訊真正符合需求，本研究提供模式輸出的信賴區間，提供決策者參考的風險資

訊。 

雖然ANFIS預報模式為定率式模式，只有單一的預報結果，然而從模式建立

過程中，從模式輸出的誤差分析亦可提供有用之機率資訊。本研究首先假設預報

與觀測數值的誤差為常態分布，其平均值為零，具有一定的標準偏差(N(0,σ))，

當給定一個預先決定的誤差門檻值(Te)後，則預報數值與未來真值的誤差落在門

檻值內的機率即可表示為： 

P	�4 − 56 < �8 < �4 + 56� = 9	�4 + 56� − 9	�4 − 56� (6.4) 

其中F為累積分布函數(cumulative distribution function, CDF)。 
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此方法為一簡單且易於計算的統計方法，但如何決定適當且符合使用者需求

的誤差門檻值為最關鍵的問題。石門水庫為一多目標之水庫，其同時扮演防洪洪、

發電及水資源供應等多項任務，以M5規線為操作原則。本研究僅針對颱洪時期

討論，以石門水庫防洪操作為例，防洪操作必須考慮壩體安全與下游洪峰流量控

制等因素，因此當水庫水位在不同高度時必須有不同的操作考量，例如當水位在

上限以上時，考量壩體安全，決策者對於水庫入流量預報的可容忍誤差將相對的

小。 

本研究將所蒐集颱風季節(7-10月)的9場颱風事件之歷史水位記錄(共501筆)，

依據石門水庫M5操作規線(如圖6-4)，發現水位大多落於225-245公尺之間。可容

忍誤差門檻值計算方式以石門水庫M5規線的上限為分界點，將水位資料分成水

位在上限以上及上限以下2個群組，找出每個水位對應之水庫入流量後，分別計

算入流量之標準偏差，該標準偏差即為本研究所設定之可容忍誤差值。 

 

 

圖6-4 石門水庫M5操作規線 

 

依據本研究所蒐集之水庫水位紀錄，分別計算水位在上限以上及上限以下的

入流量標準偏差，作為模式預報容忍誤差門檻值，在上限以上門檻值為275cms，

上限以下則為330cms。由決策者觀點出發，上限以上的容忍誤差門檻值較小
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(275cms)反映出水位在上限以上時，決策者所能容忍之流量預報誤差較小，因此

需要較精確的預報值才具有參考價值。 

6-5 結果與討論結果與討論結果與討論結果與討論 

本研究為探討資料時間及空間最佳化方法，以Model 1(GIS+CC)作為參考模

式(benchmark)，並與Model 2(SOM+GT)做一比較。Model 2各子集水區降雨量與

水庫入流量最佳延遲時間，除透過GT選出外並考慮集水區上下游間之物理意義，

因此每個子集水區僅選1個最佳延遲時間(分別為R(I,t-5), R(II,t-6), R(III,t-6), 

R(IV,t-7))。從Model 1及Model 2測試資料(薔蜜颱風、蘇拉颱風)可知，二種模式

雖然在洪峰到達時間皆有明顯延遲現象(如圖6-5)，但在CC、CE、RMSE及MAE

的表現皆不錯，另流量預報時間拉長至t+4時則以Model 2表現較佳(如圖6-6所

示)。 

由Model 1及Model 2比較結果可知，利用SOM劃分子集水區及透過GT選出

降雨逕流最佳延遲時間變數之Model 2表現較佳，故本研究在Model 3及Model 4

即繼續使用相同方式SOM劃分集水區，並進一步比較GT及2階段GT之效益。由

圖6-6可知，使用2階段GT所選出之7個最佳變數(表6-4)之Model 4，在t+1至t+4之

流量預報評估指標(CC、CE、RMSE及MAE)皆明顯優於Model 3且在洪峰到達時

間之延遲亦有1~2小時之改善(如圖6-7)，因此透過類神經網路架構之流量預報模

是最常發生洪峰到達延遲現象，利用2階段GT所選出的最佳7個降雨逕流延遲時

間組合做為模式輸入，即可有效減少洪峰延遲時間。 
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t+3

t+4 

 

 
圖6-5 Model 1與Model 2於t+1至t+4小時模式預報比較圖(測試資料) 
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圖6-6 各模式評估指標比較圖(測試資料) 

 

 

 

 

 

 

 

R
M

S
E

 (
c
m

s)

 
M

A
E

 (
cm

s)
 



88 

 

 

t+1

t+2 

 

 

 

t+3

t+4 

 

 
圖6-7 Model 3與Model 4於t+1至t+4小時模式預報比較圖(測試資料) 
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Model 4雖可有效減少洪峰延遲時間，然而在流量預報評估指標表現(CC、

CE、RMSE及MAE)皆比Mode1 1及Model 2差(如圖6-6)，因此本研究於Model 5

之輸入項除跟Model 4相同利用2階段GT所選出的最佳7個降雨逕流延遲時間組

合外，再加入現時刻的流量(Q(t))及ΔQ。由圖6-5可知，Model 5在洪峰延遲現象

有著大幅度改善(如表6-5所示)，且當預報時間為t+3及t+4時，洪峰延遲僅有1~2

小時，這個改善對於ANN所架構之預報模式來說是相當重要的；另在流量預報

評估指標表現(CC、CE、RMSE及MAE)方面，Model 5非常明顯優於其他4個模式，

從模式測試部分結果亦可發現，當流量預報時間為t+3至t+4時，相關係數仍高於

0.94及CE值高於0.88。在改善率(SS)部分，Model 5與Model 1相較在t+3~t+4時刻

約有20%之改善。 

 

表6-5 尖峰流量與尖峰預報延遲的比較(測試資料) 

 Difference of peak inflow (cms) Time-step error of peak inflow (hour) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

JANGMI 

t+1 53.7 105.6 392.1 -173.9 94.2 1 1 2 -2 0 

t+2 265.5 177.0 393.4 429.2 301.6 2 1 2 -2 1 

t+3 583.9 360.0 393.5 447.5 490.8 2 2 2 -2 1 

t+4 561.3 321.5 392.5 -115.7 551.4 3 3 2 -2 2 

SAOLA 

t+1 -76.7 97.4 1941.1 1025.9 -55.9 1 1 3 1 1 

t+2 61.4 430.2 1939.3 1032.1 -152.1 2 2 3 1 2 

t+3 126.9 559.7 1938.4 1037.5 -173.3 3 3 3 1 2 

t+4 730.8 742.3 1937.9 1046.1 379.0 3 3 3 1 1 
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圖6-8 Model 2與Model 5之技術分數(以Model 1為基準) 

 

綜合上述5個模式可知，流量變數(Q(t)及ΔQ)對於ANFIS所架構之預報模式為

一相當重要之輸入因子，其可改善模式預報之精確度(CC、CE、RMSE及MAE)，

而使用2階段GT所選出的最佳降雨逕流延遲時間組合做為模式之輸入項，可有效

大幅減少洪峰延遲時間。
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本研究利用ANFIS架構流量預報模式，以Model 5(t+4)時刻為例，其雨量輸

入變數如表6-4所列，包含了3個不同時間延遲之降雨量、�0 與ΔQ等，本研究將
�0、ΔQ與R(IV,t-6)之隸屬度函數繪於圖6-9，每個變數各有兩個高斯隸屬度函數，

因其他降雨變數的隸屬度函數皆相似，故僅繪出R(IV,t-6)作為代表。從圖6-9中可

看出，�0的兩個隸屬度函數可清楚區分出類別1為低流量而類別2則代表高流量之

狀況；而由ΔQ對於t+1至t+3預報之隸屬度函數，則可發現類別1代表負的流量差，

對應於流量歷線之退水段，而類別2則為正的流量差，代表對應於流量歷線之上

升段。同樣地，稽延降雨亦可分為高雨量及低雨量2類。 

 
�0 ΔQ R(IV,t-6) 

t+
1

 
t+

2
 

t+
3

 
t+

4
 

 

圖6-9 Model 5中�0、ΔQ與R(IV,t-6)之隸屬度函數圖 
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另一方面，從ANFIS模式的輸出權重亦可看出有趣的線索，例如表6-6中，

每個預報延時下ΔQ的兩組輸出權重都是一正一負，配合前述類別1代表負的流

量差、類別2代表正的流量差，因此ΔQ的兩組輸出權重都有助於降低預報值，

因此減少了高估的問題。舉例而言，ΔQ的類別1輸出權重為0.742(對t+4而言)，

然而因為ΔQ類別1是傾向於負值之方向；反之，類別2雖然傾向於正的流量差

(ΔQ)，但因為負的輸出權重，因此兩個輸出權重都將某種程度的降低模式輸出

值，而達到減少模式預報高估的問題。此外，比較每個類別之不同預報延時權重，

可發現主要對於預報模式貢獻最大的變數是現時刻之觀測流量(Q:)，其具有最高

的輸出權重，其中類別1的輸出權重值從0.903(t+1)降低至0.519(t+4)，類別2的輸

出權重值則從0.858(t+1)降低至0.661(t+4)，這亦顯示出目前觀測流量對於預報的

貢獻，隨著預報時間越長而遞減，符合一般對於流量自相關特性的概念。另一方

面，隨著預報時間越長，不同時間延遲之降雨資訊所扮演的腳色也越重要。這點

可由類別1中的R(I,t-4)在t+1時的權重為-0.003增加至t+4時的0.284；類別2也是從

-0.019增加至0.033清楚發現，類似的趨勢在R(IV,t-4)與R(IV,t-6)亦可發現。 

 

表6-6 Model 5之輸出權重表 

輸入項 
t+1 t+2 t+3 t+4 

類別 1 類別 2 類別 1 類別 2 類別 1 類別 2 類別 1 類別 2 

R(I,t-4) -0.003 -0.019 0.016 0.028 0.004 0.035 0.281 0.033 

R(II,t-1) 0.033 -0.003 - - - - - - 

R(II,t-3) 0.034 0.039 0.069 0.015 0.127 0.049 - - 

R(III,t-2) -0.001 0.010 0.022 0.041 - - - - 

R(IV,t-1) -0.003 0.009 - - - - - - 

R(IV,t-4) 0.020 -0.035 0.044 -0.033 0.046 0.012 0.002 0.012 

R(IV,t-6) 0.011 0.030 0.034 0.027 0.069 0.012 0.075 0.019 

Qt 0.903 0.858 0.811 0.775 0.712 0.725 0.519 0.661 

Δ. 0.306 -0.384 0.312 -0.426 0.655 -0.430 0.742 -0.263 

Constant -147.3 15.44 -264.3 22.48 -294.7 22.93 313.50 86.49 
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在模式可靠度分析部分，本研究由訓練(樣本數為293)、驗證(樣本數75)與測

試(樣本數133)資料，分別建立常態分布，並計算預報誤差落於容忍門檻值之間

的機率值，此機率值即為預報誤差小於門檻值的機率，換言之為預報精度可接受

的機率或稱為模式可靠度(圖6-10與表6-7)。以訓練資料為例，Model 5在t+4小時

的預報結果具有83%的可靠度，也就是決策者基於此結果做決策的風險僅有17%。

雖然對於驗證與測試資料而言，可靠度降低至65%，但Model 5仍是所有預報模

式中表現最佳。值得一提的是，Model 5與Model 2比較，可發現Model 5在t+3及

t+4小時的預報可靠度改善了36%，這對於長時間入流量預報而言是很大的改

善。 

 

表6-7 預報流量落於可容忍誤差範圍內之機率 

  Te = 275 Te = 330 

 Model 1 Model 2 Model 5 Model 1 Model 2 Model 5 

T
ra

in
in

g
 

(N
=

 2
9

3
) 

t+1 91.3 91.5 93.9 96.0 96.1 97.5 

t+2 75.5 76.9 82.4 83.8 84.8 89.5 

t+3 67.8 66.9 74.7 76.5 75.7 83.1 

t+4 66.0 65.6 75.0 74.9 74.4 83.4 

V
a

lid
a

tio
n

 

(N
=

 7
5

) 

t+1 91.8 92.1 95.5 96.2 96.4 98.4 

t+2 75.2 72.4 81.6 83.3 81.0 88.7 

t+3 60.8 70.0 72.6 69.5 78.7 81.0 

t+4 50.7 52.1 58.0 58.8 60.4 66.8 

T
estin

g
 

(N
=

 1
3

3
) 

t+1 87.7 85.5 96.1 93.5 92.0 98.6 

t+2 63.6 64.3 76.3 72.5 72.7 84.4 

t+3 49.4 50.3 68.3 57.7 58.4 77.2 

t+4 47.0 49.8 56.5 54.8 57.8 65.2 

A
ll*

 

(N
=

 5
0

1
) 

t+1 91.0 90.9 94.4 95.9 95.7 97.8 

t+2 74.1 74.6 81.4 82.6 83.0 88.8 

t+3 63.7 63.5 73.2 72.4 71.9 81.9 

t+4 60.2 59.0 68.0 69.0 67.7 76.9 

*: All means using all typhoon events to derive probability. 
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Model 5 

  
圖6-10 Model 1、Model 2與Model 5之預報誤差常態分佈圖(2場測試資料) 
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第七第七第七第七章章章章 結論結論結論結論與建議與建議與建議與建議 

7-1 結論結論結論結論 

隨著雷達觀測技術的進度，雷達降雨資料的時間與空間解析度將不斷提高，

然而當這樣的資料應用於類神經網路這類資料驅動模式，進行水文資訊預報時，

如何有效的整合雷達降雨資料的時空間特性，並挑選出最適當的輸入變數組合，

是現在與未來應用資料驅動模式進行降雨逕流關係模擬與預報的重點之一。 

本研究首先詳細評估測站雨量觀測資料、QPESUMS雷達降雨資料與

PERSIANN-CCA衛星降雨資料等三種不同屬性的降雨資料特性。嘗試以倒傳遞

類神經網路(BP)校正QPESUMS與PERSIANN-CCS兩資料之誤差，結果顯示

QPESUMS經過校正後，大幅改善校正前降雨推估低估的問題，降雨趨勢與實際

降雨皆相當符合，且尖峰降雨經模式校正後亦有相當不錯之表現。

PERSIANN-CCS之建置是以大陸型氣候為訓練背景，模式參數設定亦較適用於

大陸型氣候；而台灣地理位置特殊，當直接應用PERSIANN-CCS雖推估之降雨

產品於台灣海島型氣候時將會產生較大之系統推估誤差。此外，本研究以GA進

行最佳融合權重搜尋，嘗試將三種雨量資訊融合，並檢視融合雨量在雨量預報上

的表現。結果顯示融合越多雨量資料，對於雨量預報越有幫助。由此也顯示每種

雨量資料都有其資訊量，然而也有其適用的情況。例如：雷達雨量資料相較於測

站資料具備較多空間細節資訊，時間解析度也適用於即時流量預報。基於第一部

分的研究，由於雨量預報仍具有極高的不確定性，以及PERSIANN-CCS暫時不

適用於台灣地區，本研究第二部分之採用類神經網路模式以測站與雷達降雨資料

為輸入，直接建構降雨逕流模式進行流量預報。 

以石門水庫集水區為例，本研究蒐集2006~2009年共8場颱風事件之水庫每小

時入流量資料、集水區內12個雨量站之時雨量資料及雷達推估雨量資料
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(QPESUMS)，使用不同雨量及流量資訊，分別探討集水區降雨─逕流關係。由

於涵蓋石門集水區之雷達網格共有434格，若要將434個網格資料全部輸入模式，

將會造成預報模式的負擔且無效率，因此本研究利用DEM資料，在符合集水區

物理特性條件下，依據高程、坡度資訊將集水區分別劃分成1、4、8及12個子集

水區，並採用常見之線性相關係數法，計算各子集水區之降雨-逕流間之積延時

間，藉此進行空間時間整合，達到降低模式輸入維度的目的。由6組不同輸入變

數方案(S1、S2、S3(n), n=1,4,8,12)，統一使用ANFIS架構流量預報模式，預報未

來1~5小時石門水庫入流量，並比較ANFIS模式與多變數迴歸法於非線性問題處

理之有效性。結果顯示S3(4)使用雷達雨量並分為四個子集水區之方案表現最佳，

當流量預報延時大於3小時，加入雷達雨量資訊對於水庫入流量預報之精確度有

相當顯著之改善，相較於使用雨量站的方案(S1)，其技術得分(SS)改善率在4小時

與5小時預報延時的預報上可分別達20%與30%以上。由測試資料(蔷蜜颱風)的結

果顯示，S3(4)模式在t+5時刻的尖峰流量預報延遲時間為3小時，雖然已經較S2

模式的6小時改善許多，但是仍存在改善空間。 

有鑑於前述之時空間降雨資料的整合方法中，採用了線性的相關係數法挑選

與入流量有最高相關性之積延時間下的雨量，然而此方法可能降低了整個降雨逕

流模式處理非線性問題的能力。因此本研究進一步提出以SOM結合DEM與颱風

降雨平均特性，以非線性的方法劃分子集水區，並提出以二階段Gamma Test(GT)

方法，選取最佳的輸入變數組合，結合兩方法達到最佳的時空間資訊整合。二階

段GT主要的目的在於減少龐大的計算量，挑選出最佳的流量預報模式之輸入變

數組合。在流量預報的表現上，使用SOM+2階段GT(Model 5)在流量預報時間為

t+3至t+4時，相關係數仍可高於0.94及CE值高於0.88；在改善率(SS)部分，Model 

5與Model 1相較在t+3~t+4時刻亦有20%之改善。此外，本研究發現透過SOM與二

階段GT的方式所挑選的輸入變數組合，對於流量預報亦可減緩尖峰流量預報延

遲的問題，Model 5的預報結果在t+1小時預報上可做到零延遲，t+3小時與t+4小
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時預報上，則皆僅有1~2小時的延遲，這在使用類神經網路架構入流量預報模式

上是非常顯著的改善，值得一提的是，這樣的改善只需要透過非線性的方法

(SOM+2階段GT)即可達成，不再需要額外的校正流程或是更複雜的模式來校正

尖峰延遲的問題。 

ANFIS模式的建構過程中發現，針對大型集水區只需要兩個模糊規則將流量

分為高流量與低流量兩群，即可達到良好的入流量預報結果，分析模糊規則的隸

屬度函數與權重亦可了解ANFIS演算法中如何分析降雨逕流關係。例如每個預報

延時下ΔQ的兩組輸出權重都是一正一負，配合流量差值，因此ΔQ的兩組輸出

權重都有助於降低預報值，減少流量預報高估問題。此外，比較每個類別之不同

預報延時權重，可發現主要對於預報模式貢獻最大的變數為現時刻觀測流量

(Q_t)，其具有最高的輸出權重，但權重隨著預報時間增長而遞減，符合一般對

於流量自相關特性的概念，另一方面，隨著預報時間增長，不同時間延遲之降雨

資訊所扮演的腳色也越重要，如R(I,t-4)在t+1時的權重為-0.003增加至t+4時的

0.284。最後本研究由使用者(或決策者)的角度出發，除了單一的模式預報值，也

提供預報值的可靠度，使用機率的概念呈現預報結果。以訓練資料為例，Model 

5在t+4小時的預報結果具有83%的可靠度，也就是決策者基於此結果做決策的風

險僅有17%。若Model 5與Model 2比較，亦可發現Model 5在t+3及t+4小時的預報

可靠度改善了36%，這對於長時間入流量預報而言是很大的改善。 

7-2 建議建議建議建議 

1. 本研究目前使用中央氣象局校正後之QPESUMS資料，未來可嘗試不同雨量

校正方式，以評估不同校正方法對於預報模式之影響。 

2. 受限於資料蒐集不易，目前本研究僅使用9場颱風事件架構預報模式，未來可

再加入更多颱風事件以使流量預報模式更為穩定。 
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3. 未來將建構防災降雨雷達，其可獲得更高之時間空間解析度觀測資料，對於

架構台灣集水區預報模式應可使精確度提高，另使用高解析度時空間資料，

將造成數據相當龐大複雜，因此資料整合及管理方式亦是未來相當重要之課

題。 

4. 目前系集預報在大氣科學應用已相當普遍，未來可發展使用類神經網路於系

集降雨預報或系集流量預報。 

 



99 

 

參考文獻參考文獻參考文獻參考文獻 

Abrahart, R. J., Heppenstall, A. J., & See, L. M., 2007, Timing error correction 

procedure applied to neural network rainfall-runoff modelling. Hydrological 

Science Journal, 52(3):414-431. 

Akhtar, M. K., Corzo, G. A., Andel, S. J. V., & Jonoski, A., 2009, River flow 

forecasting with artificial neural networks using satellite observed 

precipitation pre-processed with flow length and travel time information: case 

study of the Ganges river basin. Hydrology and Earth System Sciences, 

13:1607-1618. 

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., Salamon, P., 

2014, Evalution of ensemble streamflow predictions in Europe, Journal of 

Hydrology, 517:913-922. 

Araghinejad, S., Azmi, M., Kholghi, M., 2011, Application of artificial neural 

network ensembles in probabilistic hydrological forecasting, Journal of 

Hydrology, 407:94-104. 

Borga, M., 2002, Accuracy of radar rainfall estimates for streamflow simulation. 

Journal of Hydrology, 267:26-39. 

Boucher, M.A., Anctil F., Perreault, L., Tremblay, D., 2011, A comparison between 

ensemble and deterministic hydrological forecasts in an operational context, 

Advances in Geosciences, 29:85-94. 

Boucher, M.A., Tremblay, D., Delormn, L., Perreault, L., Anctil, F., 2012, 

Hydro-economic assessment of hydrological forecasting systesms, Journal of 

Hydrology, 416-417:133-144. 

Campolo, M., Andreussi, P. a., & Soldati, A., 1999, River flood forecasting with a 



100 

 

neural network model. Water Resources Research, 35(4):1191-1197. 

Chang, F.-J., Chang, L.-C., & Wang, Y.-S., 2007, Enforced self-organizing map neural 

networks for river flood forecasting. Hydrological Processes, 21: 741-749. 

Chang, F.-J., Chang, L.-C., Kao, H.-S., Wu, G.-R., 2010, Assessing the effort of 

meteorological variables for evaporation estimation by self-organizing map 

neural network, Journal of Hydrology, 384:118-129. 

Chang, F.-J., Chen, P.-A., Liu, C.-W., Liao, V.H.-C., Liao, C.-M., 2013, Regional 

estimation of groundwater arsenic concentrations through systematical 

dynamic-neural modeling, Journal of Hydrology, 499:265-274. 

Chang, F.-J., Chen, P.-A., Lu, Y.-R., Huang, E., Chang, K.-Y., 2014, Real-time 

multi-step-ahead water level forecasting by recurrent neural networks for 

urban flood control, Journal of Hydrology, 517:836-846. 

Chang, L.-C., Chang, F.-J., Hsu, H.-C., 2010, Real-time reservoir operation for flood 

control using artificial intelligent techniques, International Journal of 

Nonlinear Sciences and Numerical Simulation, 11(11):887-902. 

Chen, S.-T. and Yu, P.-S., 2007, Real-time probabilistic forecasting of flood stages, 

Journal of Hydrology, 340:63-77. 

Chen, C.-Y., Lin, L.-Y., Yu, F.-C., Lee, C.-S., Tseng, C.-C.,Wang, A.-H., and Cheung, 

K.-W., 2007, Improving debris flow monitoring in Taiwan by using 

high-resolution rainfall products from QPESUMS, Natural Hazaeds, 40:447-461. 

Chen, P.-A., Chang, L.-C., and Chang, F.-J., 2013, Reinforced recurrent neural 

networks for multi-step-ahead flood forecasts, Journal of Hydrology, 

497:71-79. 

Chiang Y.-M., and Chang F.-J., 2009, Integrating hydrometeorological information for 



101 

 

rainfall-runoff modeling by artificial neural networks. Hydrological Processes, 

23(11):1650–1659. 

Chiang Y.-M., Chang F.-J., Jou B.J.-D., & Lin P.-F., 2007, Dynamic ANN for 

precipitation estimation and forecasting from radar observations. Journal of 

Hydrology, 334:250-261. 

Dale, M., Davies, P., Harrsion, T., 2012, Review of recent advances in UK operational 

hydrometeorology, Proceeding of the Institution of Civil Engineers – Water 

Management, 156(2): 55-64. 

Dawson, C. W., See, L. M., Abrahart, R. J., & Heppenstall, A. J., 2006, Symbiotic 

adaptive neuro-evolution applied to rainfall-runoff modelling in northern 

England. Neural Networks, 19(2):236-247. 

Dietrich, J., Schumann, A.H., Redetzky, M., Walther, J., Denhard, M., Wang, Y., 

Pfutzner, B., Buttner, U., 2009, Assessing uncertainties in flood forecasts for 

decision making: prototype of an operational flood management system 

integrating ensemble predictions, Natural Hazards and Earth System Sciences, 

9:1529-1540. 

Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X., 2004, Precipitation Estimation from 

Remote Sensing Imagery Using an Artifical Neural Network Cloud 

Classification System. Journal of Applied Meteorology, 43:1834-1852. 

Hong, Y., Gochis, D., Cheng, J.T., Hsu, K.L., Sorooshian, S., 2007, Evaluation of 

PERSIANN-CCS rainfall measurement using the NAME rain gauge network, 

Journal of hydrometeorology, 8(3):469-482. 

Hsu, K.L., Gao, X., Sorooshian, S., and Gupta, H.V., 1997, Precipitation estimation 

from remotely sensed information using artificial neural networks. Journal of 

Applied Meteorology, 36:1176-1190. 

http://www.chrs.web.uci.edu/ 



102 

 

http://qpesums.cwb.gov.tw/taiwan-html/ 

Holland, J.H., Adaptation and Artificial Systems, University of Michigan Press: Ann 

Arbor, 1975. 

Jang, R. J.-S., 1993, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE 

Transactions on Systems, Man, and Cybernetics, 23(3): 665-685. 

Jones, A. J., Evans, D., and Kemp, S.E., 2007, A note on the Gamma test analysis of 

noisy input/output data and noisy time series, Physica D., 229:1-8. 

Kang, H. M., and Yusof, F., 2012, Application of self-organizing map (SOM) in 

missing daily rainfall data in Malaysia. International Journal of Computer 

Applications, 48(5):23-28. 

Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K., and Zadeh, D. F., 

2012, Investigating chaos in river stage and discharge time series. Journal of 

Hydrology, 414:108-117. 

Kim, S.B., Lee, J.W., Kim, S.Y., Lee, D.W., 2013, Dental informatics to characterize 

patients with dentofacial deformities, PLOS ONE, 8(8):e67862. 

Koncar, N., 1997, Optimisation methodologies for direct inverse neurocontrol, PhD 

thesis, Department of Computing, Imperial College of Science, Technology 

and Medicine, University of London. 

Liu, Y. Brown, J., Demargne, J., Seo, D.J., 2011, A wavelet-based approach to 

assessing timing errors in hydrologic predictions, Journal of Hydrology, 

397:210-224. 

Marshall, J.S., and Palmer, W. Mc K., 1948, The distribution of raindrops with size, J. 

Meteor. 5: 165-166. 

McCollor D., and Stull R., 2008, Hydrometeorological short-range ensemble forecasts 

in complex terrain. Part II: Economic evaluation, Weather and Forecasting, 

23(4):557-574. 



103 

 

Minns A. W. & Hall M. J., 1996, Artificial neural networks as rainfall-runoff models. 

Hydrological Sciences Journal 41(3):399-417. 

Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S., 2005, Short-term 

flood forecasting with a neurofuzzy model. Water Resources Research, 

41:W04004. 

Nguyen, P. K.T. and Chua, L. H.C., 2012, The data-driven approach as an operational 

real-time flood forecasting model, Hydrological Processes, 26:2978-2893. 

Noori, R., Hoshyaripour, G., Ashrafi, K., Nadjar-Araabi, B., 2010, Uncertainty 

analysis of developed ANN and ANFIS models in prediction of carbon 

monoxide daily concentration, Atmospheric Environment, 44:476-482. 

Partal, T. and Ö. Kişi, 2007, Wavelet and neuro-fuzzy conjunction model for 

precipitation forecasting, Journal of Hydrology, 342:199-212. 

Pan T.Y., Yang Y.T., Kuo, H.C., Tan, Y.C., Lai, J.S., Chang, T.J., Lee, C.S., Hsu, K.H., 

2013, Improvement of watershed flood forecasting by typhoon rainfall climate 

model with an ANN-based southwest monsoon rainfall enhancement, Journal 

of Hydrology, 506:90-100. 

Pramanik N. and Panda, R.K., 2009, Application of neural network and adaptive 

neuro-fuzzy inference systems for river flow prediction, Hydrological 

Sciences Journal, 54(2):247-260. 

Pianosi, F., Castelletti, A., Mancusi, L., Garofalo, E., 2014, Improving flow 

forecasting by error correction modelling in altered catchment conditions, 

Hydrological Processes, 28:2524-2534. 

Ramos, M.H., Van Andel, S.J., Pappenberger, F., 2013, Do probabilistic forecasts lead 

to better decisions?, Hydrology and Earth System Sciences, 17(6):2219-2232. 

Rajurkar, M. P., Kothyari, U. C., & Chaube, U. C., 2002, Artificial neural networks 

for daily rainfall-runoff modelling. Hydrologkal Sciences Journal, 



104 

 

47(6):865-877. 

Su, C.T., Chen, Y.H., and Sha, D.Y., 2006, Linking innovative product development 

with custmor knowledge: a data-mining approach, Technovation, 26:784-795. 

Schellekens, J., Weerts, A. H., Moore, R.J., Pierce, C.E., Hildon, S., 2011, The use of 

MOGREPS ensemble rainfall forecasts in operational flood forecasting system 

across England and Wales, Advances in Geosciences, 29:77-84. 

Teschl, R. and Randeu, W.L., 2006, A neural network model for short term river flow 

prediction, Natural Hazards and Earth System Sciences, 6:629-635. 

Tsai, M.-J., Abrahart, R. J., Mount, N. J., Chang, F.J., 2014, Including spatial 

distribution in a data-driven rainfall-runoff model to improve reservoir inflow 

forecasting in Taiwan, Hydrological Process, 28:1055-1070.  

Verkade, J.S., and Werner, M.G.F., 2011, Estimating the benefits of single value and 

probability forecasting for flood warning, Hydrology and Earth System 

Sciences Discussions, 8:6639–6681. 

Wallner, M., Haberlandt, U., and Dietrich, J., 2013, A one-step similarity approach for 

the regionalization of hydrological model parameters based on 

Self-Organizing Maps. Journal of Hydrology, 494:59-71. 

Wang, K.-W., Chang, L.-C., Chang, F.-J., 2011, Multi-tier interactive genetic 

algorithms for the optimization of long-term reservoir operation, Advances in 

Water Resources, 34: 1343-1351. 

Wu, C.-L., and Chau, K.-W., 2011, Rainfall-runoff modelling using artificial neural 

network coupled with singular spectrum analysis, Journal of Hydrology, 399 

(3-4): 394-409. 

Xin, L.,et al. (1997). Reflectivity‐rain rate relationships for convective rainshowers in 

Edmonton: Research note. Atmosphere-Ocean, 35(4):513-521. 

Younis, J., Ramos, M.H., Thielen J., 2008, EFAS forecasts for the March-April 2006 



105 

 

flood in the Czech part of the Elbe River Basin – a case study, Atmospheric 

Science Letters, 9(2):88-94. 

Zuazo, V., Gironás, J., and Niemann, J.D., 2014, Assessing the impact of travel time 

formulations on the performance of spatially distributed travel time methods 

applied of hillslopes, Journal of Hydrology, 519:1315-1327. 

江衍銘、張斐章，2006，以遙測資訊建立類神經網路雲分類系統於雨量推估及洪

水預測，中國農業工程學報 52(4): 39-47。 

何宜樺，2009，建構集水區多時刻降雨-逕流機制與類神經網路洪水預報模式，

國立臺灣大學生物環境系統工程學研究所碩士論文。 

張斐章、張麗秋，2010，類神經網路導論原理與應用，滄海書局。 

蔡孟蓉，2006，類神經網路結合衛星影像於颱風降雨預報，台灣水利 55(1)：

22-31。 

 


