Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3902
Title: | Coleman積分及p-adic L-函數 On Coleman Integration and p-adic L-functions |
Authors: | Chung-Ru Lee 李宗儒 |
Advisor: | 謝銘倫(Ming-Lun Hsieh) |
Keyword: | Coleman積分,p-adic,對數F-crystal,對數多項式,久保田-Leopold L-函數,L-函數特殊值, Coleman integral,p-adic,logarithmic F-crystal,polylogarithm,Kubota-Leopold L-function,special value of L-functions at positive integers, |
Publication Year : | 2016 |
Degree: | 碩士 |
Abstract: | 本文探討在一維p-adic射影空間上的積分理論,並將其使用於建構 p-adic完備域上的對數F-crystal,主要關注在過程中自然構造出的對數多項式函數。對數多項式函數可實際應用在計算p-adic上的L-函數特殊值;準確來說,對數多項式函數在分圓點上的取值和久保田-Leopold L-函數在正整數上的特殊值有連繫。文章以推導Coleman(從Koblitz證明k=1的情形為推廣對象)描述當k為正整數時,L-函數的特殊值以及k次對數多項式關係的公式總結。 In this article we discuss the integration theory on p-adic projective space of dimension 1, and apply it to construct the logarithmic F-crystal on the p-adic complete field, where polylogarithm functions occurs in a natural development. The usage of polylogarithms realize in the computation for the p-adic L-values. To be precise, valuation of the polylogarithms at primitive roots of unity is related to the special values of the Kubota-Leopold L-function at positive integers. Eventually, we conclude by deriving a formula relating the evaluation of p-adic L-functions at k to the k-th polylogarithm, which extends the formula by Koblitz, who proved the case k=1. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3902 |
DOI: | 10.6342/NTU201600789 |
Fulltext Rights: | 同意授權(全球公開) |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf | 7.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.