Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘倫(Ming-Lun Hsieh)
dc.contributor.authorChung-Ru Leeen
dc.contributor.author李宗儒zh_TW
dc.date.accessioned2021-05-13T08:38:16Z-
dc.date.available2016-07-25
dc.date.available2021-05-13T08:38:16Z-
dc.date.copyright2016-07-25
dc.date.issued2016
dc.date.submitted2016-07-12
dc.identifier.citation1. [BGR84] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften[Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984, A systematic approach to rigid analytic geometry. MR 746961
2. [CdS88] Robert Coleman and Ehud de Shalit, p-adic regulators on curves and special values of p-adic L-functions, Invent. Math. 93 (1988), no. 2, 239 266. MR 948100
3. [Col82] Robert F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), no. 2, 171 208.
MR 674400
4. [Col85] Robert F. Coleman, Torsion points on curves and p-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111 168. MR 782557
5. [Con08] Brian Conrad, Several approaches to non-Archimedean geometry, p-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 9 63. MR 2482345
6. [Kob79] Neal Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455 468. MR 534062
7. [Tat71] John Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257 289. MR 0306196
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3902-
dc.description.abstract本文探討在一維p-adic射影空間上的積分理論,並將其使用於建構 p-adic完備域上的對數F-crystal,主要關注在過程中自然構造出的對數多項式函數。對數多項式函數可實際應用在計算p-adic上的L-函數特殊值;準確來說,對數多項式函數在分圓點上的取值和久保田-Leopold L-函數在正整數上的特殊值有連繫。文章以推導Coleman(從Koblitz證明k=1的情形為推廣對象)描述當k為正整數時,L-函數的特殊值以及k次對數多項式關係的公式總結。zh_TW
dc.description.abstractIn this article we discuss the integration theory on p-adic projective space of dimension 1, and apply it to construct the logarithmic F-crystal on the p-adic complete field, where polylogarithm functions occurs in a natural development. The usage of polylogarithms realize in the computation for the p-adic L-values. To be precise, valuation of the polylogarithms at primitive roots of unity is related to the special values of the Kubota-Leopold L-function at positive integers. Eventually, we conclude by deriving a formula relating the evaluation of p-adic L-functions at k to the k-th polylogarithm, which extends the formula by Koblitz, who proved the case k=1.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:38:16Z (GMT). No. of bitstreams: 1
ntu-105-R02221030-1.pdf: 7548151 bytes, checksum: 7e051a4b55d62ba84d98906dbd16933e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
口試委員審定書
1. Introduction 1
1.1 Coleman integral in brief 1
1.2 The logarithmic F-crystal and p-adic L-functions 3
2. Rigid Analysis on Punctured p-adic Projective Line 4
2.1 Affinoid subspaces of the p-adic complete field 4
2.2 The logarithm 5
3. The Dwork Principle 6
3.1 Frobenius morphisms 6
3.2 The Dwork Principle 7
4. The Logarithmic F-Crystals 9
4.1 Definition of a logarithmic F-crystal on p-adic affine line 9
4.2 Integration on a logarithmic F-crystal 10
5. Integration Theory for Basic Wide Open Sets 16
5.1 A(U) as a logarithmic F-crystal 16
5.2 The structure of integrated A(U) 17
6. The Polylogarithms 18
6.1 Definition and functional equations of the polylogarithms 18
6.2 The function D(z) and its related identities 20
7. Relation between the Polylogarithms and Special Values of the Kubota-Leopold L-function at Positive Integers 22
7.1 An identity for the valuation of k-th polylogarithm 22
7.2 The p-adic L-function and its special values 23
8. Conclusion and Suggestions 25
References 26
dc.language.isoen
dc.subject對數多項式zh_TW
dc.subjectp-adiczh_TW
dc.subjectColeman積分zh_TW
dc.subjectL-函數特殊值zh_TW
dc.subject久保田-Leopold L-函數zh_TW
dc.subject對數F-crystalzh_TW
dc.subjectKubota-Leopold L-functionen
dc.subjectspecial value of L-functions at positive integersen
dc.subjectpolylogarithmen
dc.subjectlogarithmic F-crystalen
dc.subjectp-adicen
dc.subjectColeman integralen
dc.titleColeman積分及p-adic L-函數zh_TW
dc.titleOn Coleman Integration and p-adic L-functionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳其誠(Ki-Seng Tan),余正道(Jeng-Daw Yu)
dc.subject.keywordColeman積分,p-adic,對數F-crystal,對數多項式,久保田-Leopold L-函數,L-函數特殊值,zh_TW
dc.subject.keywordColeman integral,p-adic,logarithmic F-crystal,polylogarithm,Kubota-Leopold L-function,special value of L-functions at positive integers,en
dc.relation.page26
dc.identifier.doi10.6342/NTU201600789
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf7.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved