請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38828完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | |
| dc.contributor.author | Che-Wei Lin | en |
| dc.contributor.author | 林哲緯 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:48:05Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-15 | |
| dc.identifier.citation | 【1】 http://en.wikipedia.org/wiki/File:Peltierelement.png
【2】 T.J. Seebeck, “Magnetic polarization of metals and minerals” Abhandlungen der Deutschen Akademie der Wissenschaftenzu Berlin ,(1821),265,pp. 1822-1823 【3】 J.C. Peltier, “Nouvelles experience sur la caloricite des courans elec trique”Ann. Chim. (1834), LV1, 371. 【4】 W. Thomson, “in On a mechanical theory of thermoelectric currents”, Edin burgh, (1851), p. 91-98. 【5】 H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoe lectric refrigeration”,British Journal of Applied Physics 5, (1954).,pp.386-390 【6】 R.E Simons and R.C.Chu, “Application of Thermoelectric Cooling to Electronic Equipment:A Review and Analysis”,Sixteenth IEEE SEMI-THERM Symposium, (2000), pp.1-9. 【7】 G.S. Nolas,G.A. Slack,J.L. Cohn and S.B. Schujman, “The Next Generation of Thermoelectric Materials”, Proceeding of the 17th International Confer-ence in Thermoelectrics,(1998),pp.294-297. 【8】 J.P.Fleurial,A.Borshchevsky,T.Caillat,and R.Ewell,”New Materials and Devic es for Thermoelectric Application”,Applied Thermal Engingeer-ing,Vol.22,(2002),pp.407-422. 【9】 Seijiro Sano,Hiroyuki Mizukami,and Hiromasa Kaibe,Development of “High-Efficiency Thermoelectric Power Generation System,KOMATSU Technical Report”,(2003),Vol.49,No.152 【10】 CRC Handbook of Thermoelectrics, Edited by D.M.Rowe, CRC Press LLC., USA, (1995). 【11】 Hsu, K. F. et al. “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit”. Science , (2004).303, pp.818–821 【12】 Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, “B. E. Quantum dot superlattice thermoelectric materials anddevices”. Science 297, 2229–2232 (2002) 【13】 Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. “Thin-film thermoelectric devices with high room-temperature figures of merit”.Nature (2001), 413, pp.597–602 【14】 A.I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A.Goddard III,and James R. Heath, “Silicon Nanowires as Efficient Thermoelectric Materials”,Nature (2008),451,pp.168-171. 【15】 Allon I. Hochbaum et al, Nature (2008).,451, pp.163-167 【16】 Sales BC, Mandrus D, Willams RK.” Filled skutterudite antimonides: a new class of thermoelectric materials”. Science(1996);272:pp.1325–8. 【17】 Nolas GS, Cohn JL, Slack GA.” Effect of partial void filling on the lattice thermal conductivity of skutterudites”. Phys Rev B (1998);58:164–7. 【18】 Tang XF, Zhang LM, Yuan RZ, Chen LD, Goto T, Hirai T, Chen W, Uher C.” High temperature thermoelectric properties of n-type BayNixCo4-xSb12”. J Mater Res (2001);16:pp.3343–6. 【19】 Puyet M, Lenoir B, Dauscher A, Dehmas M, Stiewe C, Mu‥ ller E. “High temperature transport properties of partially filled CaxCo4Sb12 skutterudites”. J Appl Phys (2004);95:4852–7. 【20】 http://web.nchu.edu.tw/~lschang/Thermoelectric.htm 【21】 Wen P. Lin ,Daniel E. Wesolowski and Chin C. Lee, “Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules”, JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELEC TRONICS, Online First™, 25 January (2011) 【22】 James L.Bierschenk,Richard A.Howarth and Norbert J.Socolowski,United States Patent :”Thermoelectric Cooler”,Num.5441576(1995) 【23】 D.M. Rowe, “Thermoelectrics Handbook: Macro to Nano (Taylor and Franics Group, New York,(2006)”, pp. 1–9. ISBN 0849322642 【24】 Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren,”Diffusion of Nickel and Tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, APPLIED PHYSICS LETTERS , (2008),92,pp.1019-10 【25】 Takehiko Sato,Mino ,Kazuo Kamada,Hirakata,United States “ Pa tent:Thermoelectric Piece and Process of Making the Same”, (2000),Num.6083770 【26】 T. E. Svechnikova, V. S. Zemskov, M. K. Zhitinskaya, S. A.Nemov and N. V. Polikarpova, “Properties of Sn-doped Bi2Te3-xSex, Inorganic Materials”, (2006), Vol42,, pp.101-107 【27】 I. V. Gasenkova, M. K. Zhitinskaya, S. A. Nemov and T. E. Svechnikova, “Electron density redistribution in Sn-doped Bi2Te3, Physics of the Solid State”, (1999),Vol. 41, Number 11, pp. 1805-1808 【28】 T. E. Svechnikova, I. V. Gasenkova, “Structural and Transport Properties of Sn-Doped Bi2Te3-xSex Single Crystals, Inorganic Materials”, (2004),Vol. 40 Issue 6, pp.570-575 【29】 T. Kacsich, E. Kolawa, J.P. Fleirual, T. caillat, M.-A. Nicolet,”Films of Ni-7%, Pd, Pt and Ta-Si-N as diffusion barriers for copper on Bi2Te3”. J. Phys. D Appl. Phys. (1998),vol.31, pp.2406–2411 【30】 O.J.Mengali and M.R.Seiler, ”Contact resistance studies on thermoelectric material”, Advanced Energy Conversion. (1962), vol2, ,pp.59-68 【31】 R. J. Buist and S. J. Roman,” in Proceedings of the 18th International Con ference on Thermoelectrics”, International Thermoelectric Society, (1999),p. 249,Baltimore, MD 【32】 T.D. Alieva, B.Sh. Barkhalov, and D.Sh. Abdinov,”Structure and electrical properties of interface between Bi0.5Sb1.5Te3(Bi2Te2.7Se0.3) crystal and some alloys”, Inorg. Mater. (1995), 31, p.178 【33】 C. N. Liao, C. H. Lee and W. J. Chen,” Effect of Interfacial Compound For mation on Contact Resistivity of Soldered Junctions Between Bismuth Tellu ride-Based Thermoelements and Copper”, Electrochemical and Solid-State Letters, (2007),Vol.10,9,pp23-25 【34】 C. N. Liao and C. H. Lee, J. “Suppression of vigorous liquid Sn/Te reactions by SnCu solder alloys”, J. Mater. Res. 23(2008) 【35】 H. S. Belson, B. Houston: J. Appl. Phys. (1970), 41 ,p.422 【36】 Masaki Orhashi,Y asutoshi Noda,L idong Chen.et, “Ni/n-PbTe and Ni/p-Pbo.SSno.STe Joining by Plasma Activated Sintering”, IEEE, (1998): 543-547 【37】 Elgenk M S, Saber H H, Caillat T. Energ. Convers. Manage. (2003),44 (11) : pp.1755-1759. 【38】 J. S. Lin, K. Tanihata, Y. Miyamoto and H. Kido: Proc.4th Int. Symp. Func tionally Graded Materials (FGM96),Tsukuba, Japan(1996),p.599 【39】 M.S. El-Genk, H.H. Saber, T. Caillat, Energy Convers.Manage. (2003),44,pp.1755–1772 【40】 M. Gao, D.M. Rowe, J. Power Sources , (1992),38, pp.253–259 【41】 Fan J F, Chen L D, Bai S Q, et al. Mater. Lett. (2004),58(30) :pp.3876-3879. 【42】 ZHAO De-Gang, LI Xiao-Ya1, JIANG Wan, CHEN Li-Dong ,”Fabrication of CoSb3 /MoCu Thermoelectric Joint by One-step SPS and Evaluation”, Journal of Inorganic Materials, (2009),Vol.24,No.3 , 【43】 Degang Zhao, Xiaoya Li , Lin He,Wan Jiang, Lidong Chen, “Interfacial evolu tion behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging”, Journal of Alloys and Compounds (2009),477 ,pp.425– 431 【44】 P.T.Vianco,”Solder Alloys:A Look at the Past,Present and Future”,Welding Journal ,(1997),pp.45-49. 【45】 P.T.Vianco and D.R.Freae,”Issue in the Replacement of Lead-Bearing”,JOM, (1993),July,Vol45,No7,pp.14-19 【46】 莊東漢博士, “擴散軟焊技術在電子封裝之應用”,封裝技術電子月刊第五 卷第十一期 【47】 D.M. Jacobson & G. Humpston, “Diffusion Soldering”,Soldering and Surface Mount Technology,(1992), 10(2), 99.27-32 【48】 G.Humpston,D.M. Jacobson and S.P.S.Sangha,”Diffusion Soldering for Electronics Manufacturing”, (1994),18,2, pp.55-60 【49】 Jacobson, D.M., Humpston, G and S.P.S.Sangha. ' Diffusion soldering a new low temperature process for joining carat gold jewellery ', Gold Bull, (1991)Vol. 26(3). 【50】 D.M. Jacobson and S.P.S.Sangha.”A Novel Lightweight Microwave Packaging Technology”, IEEE Trans . Comp . Pack . and Manu.Techn,21A,3(1998) ,pp.515-520 【51】 M. Abtew and G. Selvaduray,” Lead-Free Solders in Microelectronics,Materials Science & Engineering R-Reports”, (2000),Vol. 27,No.5-6,pp.95-141. 【52】 AWS Brazing Manual,4thed,American Weling Society,Miami,Florida 【53】 S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. (1995), 43, 329 【54】 V.Simic and Z.Marinkovic, “Room temperature interactions in Ag-metals thin film couples”,Thin Solid Film,61(1979),p.149 【55】 Z.Marinkovic and V.Simic, “Kinetics of reaction at room temperature in thin silver-metal couples”, Thin Solid Film,195(1991),p127 【56】 V.Simic and Z.Marinkovic, “Stability of compounds in thin film metal couples in the course of long ageing at room temperature”,Thin Solid Film,209(1992),p181 【57】 T.B.Massalski,H.Okamoto,P.R.Subramanian and L.Kacprzak,Binary Alloy Phase Diagrams,ASM International.(1990) 【58】 D.M. Jacobson, S.P.S Sangha, “Novel Application of Diffusion Soldering”, Soldering & Surface Mount Technology, (1996), Vol.8 ,2 【59】 P.Skrzyniarz,A.Sypien,J.Wojewoda-Budka, “Microstructure and Kinectic of intermetallic phases growth in Ag/Sn/Ag joint obtain as the result of diffusion soldering”, ARCHIVES OF METALLURGY AND MATERIALS, (2010),Vol.55 ,issue 1,pp.123-130 【60】 W.Kepper,R.Wesche,T.Klas,J.Voigt and G.Schatz,”Thin Solid Film”, (1991),143, p.201 【61】 R.Roy and S.K.Sen,”Thin Solid Film”, (1991),197 ,p.303 【62】 Y.C.Chen,W.W.So and C.C.Lee,”A Fluxless Bonding Technology Using Indium-Silver Multilayer Composites”,IEEE Trans.on CPMT,20, (1997),pp.46-57 【63】 K.N.Tu,”Cu/Sn Interfacial Reaction:Thin Film Case Versus Bulk Case”,Mat.Chem. and Phys.,46, (1996) ,pp217-223 【64】 K.N.Tu,”Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Film”,Acta Metall. (1973),21,pp.347-354 【65】 K.N.Tu,”Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Film”,Acta Metall. (1982),30,pp.947-952 【66】 S.Bader,W.Gust and H.Hieber,”Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”,Acta Metall.Mater. (1995),43,1,pp.329-337 【67】 G.Matijasevic, Y.C.Chen and C.C.Lee,”Copper-Tin Multilayer Composite Solder for Fluxless Processing”,The Interational Journal of Microcircuits and Electronic Packaging 17, (1994),pp.108-117 【68】 G.W.Powell and J.D.Braun,Trans. AIME, (1964).230,pp.694-699 【69】 V.Simic and Z.Marinkovic,”Thin Film Interdiffusion of Au and In at Room Temperture”,Thin Solid Films, (1977),41,pp.57-61 【70】 J.Bjontegaard,L.Buene,T.Finstad,O,Lonsjo and T. Olsen,Low “Temperture Interdiffusion in Au/In Thin Film Couple,Thin Solid Films”, (1983),101,pp.253-262 【71】 Y.Hasumi,”Lateral Diffusion of In and Formation of AuIn2 in Au-In Thin Films”,J.Appl.Phys. (1985),58,pp.3081-3086 【72】 T.H. Chuang, H.J. Lin, and C.W. Tsao,” Intermetallic Compounds Formed During Diffusion Soldering of Au/Cu/Al2O3 and Cu/Ti/Si with Sn/In Inter-layer”, Journal of ELECTRONIC MATERIALS, (2006), Vol. 35, No. 7, 【73】 Chen-Nan Chiu,Chao-Hong Wang,and Shnn-Wen Chen,”Interfacial Re actions in the Sn-Bi/Te Couples”, Journal of ELECTRONIC MATERIALS, (2008) ,Vol. 37, No. 1, 【74】 Kopoin Adouby, Addoulaye Abba Toure, Gabrielle Kra,Josette Olivi er-Fourcade,Jean-Claude Jumas,Carlos Perez Vicente, “Phase diagram and local environment of Sn and Te: SnTe-Bi and SnTe-Bi2Te3 systems”, C. R. Acad. Sci. Paris, Se’rie IIc, Chimie : Chemistry 3,(2000),pp.51–58, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38828 | - |
| dc.description.abstract | 熱電材料即近年興起的一種再生能源,它是一種能將熱能與電能互相轉換之材料,此種材料可應用於溫差發電及熱點致冷兩種主要用途。而由於熱電元件將在高溫環境下操作,在元件和電極之間,傳統之軟、硬焊接合方法面臨許多的挑戰。本研究遂於Bi2Te2.55Se0.45熱電材料上電鍍Ni後,採用Ag/Sn薄膜作為固液擴散接合技術之材料,並和Cu/Ag電極接合,利用其低溫接合,高溫應用的特性,接點之介金屬將在相對低溫即可產生,同時在高溫仍然可以保有其穩定性。實驗探Bi2Te2.55Se0.45/Ni以及Ag/Sn薄膜與Cu/Ag電極之界面反應觀察,計算介金屬生長動力學,以及針對不同接合參數下之接點強度做量測。
實驗結果顯示,於Bi2Te2.55Se0.45熱電材料與Ni層間電鍍一層Sn,將能有效改善Bi2Te2.55Se0.45及Ni層之界面強度,此Sn層將和Bi2Te2.55Se0.45生成Sn(Te,Se),並和Ni生成Ni3Sn4。於250°C以上之溫度接合3分鐘以上,Bi2Te2.55Se0.45/Sn/Ni/Ag與Sn/Ag/Cu接合之界面即可把中間4μm之Sn層完全消耗完畢並形成Ag3Sn、Cu6Sn5及Cu3Sn三種介金屬,其中250°C、275°C時隨著接合時間上升,Ag3Sn及Cu3Sn將消耗Cu6Sn5而逐漸增厚,Cu6Sn5將快速被消耗殆盡;溫度為300°C、325°C時,隨著時間上升,Cu3Sn將消耗Ag3Sn而增厚。本系統之接點強度最高可以達到21.7 MPa,接合條件為250°C-60分鐘,於250°C接合時,平均強度可維持在19 MPa以上。當溫度上升至325°C將使得Bi2Te2.55Se0.45及Ni層之間鍍Sn層的緩衝效果降低,導致接點強度將會快速下降至6.2 MPa。 | zh_TW |
| dc.description.abstract | Thermoelectrical materials is one of the renewable energy resourses which has been largely developed recently. It is a material which can transform heat energy to electrical energy reversibly.This materials have two major application:thermal energy and thermoelectric refrigeration. As there are more and more studies dedicate to this field, the energy transform efficiency of thermoelectrical materials has been gradually enhanced. Since thermoelectrical device usually operates in high temperature envi-ronment,the conventional jointing method (ex.soldering、brazing) have faced a lot of challenges. Therefore, this study uses Bi2Te2.55Se0.45 thermoelectrical material, adopts Ag/Sn thin films as the solid-liquid interdiffusion bonding materials joints with Cu/Ag electrode, and tries to make a use of the special feature of this technique : jointing in a relative low temperatures; operating in a relative high temperatures. The intermetallic compounds (IMCs) between the substrates can form in a relative low temperatures but,once formed, they are stable in much higher temperatures. This investigation includes the interfacial reaction between Bi2Te2.55Se0.45 and nickel and between Ag/Sn thin films and Cu/Ag substrate, calculating the kinectic of intermetallic compounds and analysising the shear stress of devices jointing in different parameters.
The results show that electroplating a tin layer between Bi2Te2.55Se0.45 and nickel layer can dramatically enhance the shear strength of this interface. This tin layer form Sn(Te,Se) with Bi2Te2.55Se0.45 and form Ni3Sn4 with nickel. At the temperature above 250°C,3 minute will be enough to exhaust the 4μm tin layer between two substrates. The intermetallic compounds formed at the interface between Cu/Ag/Sn and Ag/Ni/Sn/Bi2Te2.55Se0.45 are Ag3Sn、Cu6Sn5 and Cu3Sn. At 250°C、275°C, as the jointing increase, Ag3Sn and Cu3Sn will consume Cu6Sn5 and get thicker gradually, Cu6Sn5 will be exhausted rapidly. At 300°C、325°C, since there are no Cu6Sn5 anymore, as the jointing increase, Cu3Sn will start to consume Ag3Sn. Sound shear strength of 21.7 MPa have been obtained under bonding condition at 250°C for 60 minute. At 250°C,the average shear strengths can maintain over 19 MPa. Heating at the temperature above 325°C caused the tin buffer layer between Bi2Te2.55Se0.45 and nickel lost its functionality, and the shear strength drastically droped off to 6.2 MPa. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:48:05Z (GMT). No. of bitstreams: 1 ntu-100-R98527029-1.pdf: 6490304 bytes, checksum: 4de51afa19195a0833db81b38d5017a5 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 V 表目錄 VII 壹. 前言 1 貳. 文獻回顧 4 2.1熱電材料之發展簡介 4 2.2熱電元件模組 9 2.2.1 熱電材料之擴散阻隔層 11 2.2.2 熱電材料/電極之接合材料 13 2.3 材料接合製程簡介 16 2.3.1 軟焊技術與焊錫材料 16 2.3.2 硬焊技術原理與材料 17 2.3.3 固液擴散接合原理 17 2.4 界面反應回顧 24 2.4.1 界面成長動力學 24 2.4.2 Ag-Sn系統 27 2.4.3 Ag-In系統 28 2.4.4 Cu-Sn系統 29 2.4.5 Au-In系統 30 2.4.6 其他系統 31 參. 實驗步驟 34 3.1 材料製備 34 3.2 介金屬成長分析 35 3.3 接合強度測試 35 肆. 結果與討論 45 4.1 Bi2Te2.55Se0.45/Ni/Ag—Sn/Ag/Cu 系統 45 4.1.1 界面介金屬分析 45 4.1.2 接合強度測試 46 4.2 Bi2Te2.55Se0.45/Sn/Ni/Ag—Sn/Ag/Cu 系統 50 4.2.1 Bi2Te2.55Se0.45/Sn/Ni之界面反應研究 50 4.2.2 介金屬生長動力學 57 4.2.3 接點強度測試 69 伍. 結論 77 陸. 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 接點強度 | zh_TW |
| dc.subject | 熱電材料 | zh_TW |
| dc.subject | 固液擴散接合 | zh_TW |
| dc.subject | 介金屬化合物 | zh_TW |
| dc.subject | 界面反應 | zh_TW |
| dc.subject | solid-liquid interdiffusion bonding | en |
| dc.subject | bonding strength | en |
| dc.subject | interfacial reaction | en |
| dc.subject | intermetallic compound | en |
| dc.subject | thermoelectrical material | en |
| dc.title | Bi2Te2.55Se0.45熱電材料與Cu/Ag電極之薄膜固液擴散接合研究 | zh_TW |
| dc.title | Thin Film Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectrical Material with Cu/Ag Electrode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴宏仁,黃振東,張道智,溫政彥 | |
| dc.subject.keyword | 熱電材料,固液擴散接合,介金屬化合物,界面反應,接點強度, | zh_TW |
| dc.subject.keyword | thermoelectrical material,solid-liquid interdiffusion bonding,intermetallic compound,interfacial reaction,bonding strength, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
