請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38569
標題: | 導函數不連續型態迴歸函數之非參數估計 ON ESTIMATING REGRESSION FUNCTION WITH CHANGE POINTS |
作者: | Kuang-Chen Hsiao 蕭光呈 |
指導教授: | 鄭明燕(Ming-Yen Cheng) |
關鍵字: | 不連續點,迴歸函數,無母數,尖點,導函數不連續, jump,regression function,nonparametric,cusp,discontinuity, |
出版年 : | 2005 |
學位: | 碩士 |
摘要: | Local polynomial fitting has been known as a powerful
nonparametric regression method when dealing with correlated data and when trying to find implicit connections between variables. This method relaxes assumptions on the form of the regression function under investigation. Nevertheless, when we try fitting a regression curve with precipitous changes using general local polynomial method, the fitted curve is oversmoothed near points where the true regression function has sharp features. Since local polynomial modelling is fitting a 'polynomial', a continuous and smooth function, to the regression function at each point of estimation, such drawback is intrinsic. Here, we suggest a modified estimator of the conventional local polynomial method. Asymptotic mean squared error is derived. Several numerical results are also presented. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38569 |
全文授權: | 有償授權 |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 366.91 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。