請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38232
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉安義(An-I Yeh) | |
dc.contributor.author | Zong-lin Jhuang | en |
dc.contributor.author | 莊宗霖 | zh_TW |
dc.date.accessioned | 2021-06-13T16:28:26Z | - |
dc.date.available | 2007-07-19 | |
dc.date.copyright | 2005-07-19 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-14 | |
dc.identifier.citation | 沈賜川。2004。以葡萄糖-甘胺酸模式探討乙醇溶液之梅納反應。國立台灣大學食品科技研究所博士論文。
黃錦章。1997。丙烯醯胺中毒。台灣醫學。第一期。 楊登傑。2003。台灣產山藥的類固醇皂素及皂配基分析與加工處理對皂素之影響。國立台灣大學食品科技研究所。 蕭舜文。2004。以氣相層析離子阱質譜儀分析中式食品中丙烯醯胺之含量。國立台灣大學食品科技研究所碩士論文。 鄭維智。2002。食品中丙烯醯胺之認識。台灣公定化學家協會會員通訊。第1期。4∼8頁。 鄭維智譯。2002。聯合國糧農組織(FAO)/世界衛生組織(WHO)食品中丙烯醯胺與健康影響之諮詢會議。台灣公定化學家協會會員通訊。第2期。4∼10頁。 Adam B, Benjamin PY, Lau DL, Stephen WS. 2003. J Agric Food Chem. 51(2): 802-808 Ahn JS, Castle L, Clark DB, Lloyd AS, Philo MR, Speck DR. 2002. Verification of the findings of acrylamide in heated foods. Food Addit Contam. 19(5): 1116-1124. Andrawes F, Greenhouse S, Draney D. 1987. Chemistry of acrylamide bromination for trace analysis by gas chromatography and gas chromatography-mass spectrometry. J of chromatography 399(1): 269-275. Ashoor SH, Zent JB. 1984. Maillard browning of common amino acid and sugar. J Food Sci. 49: 1206-1207. Baisier WM, Labuza TP. 1992. Maillard browning kinetics in a liquid model system. J Agric Food Chem. 40: 707-713. Barber DS, Hunt JR, Ehrich MF, Lehning EJ, LoPachin RM. 2001. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology 22(1): 341-353. Becalski A, Lau BPY, Lewis D, Seaman SW. 2002. Acrylamide in foods: occurrence and sources. Abstracts, 116th Annual AOAC International Meeting, Los Angeles, CA, Sept 22-26, 2002; AOAC: Gaithersburg, MD, 125-126. Becalski A, Lau BPY, Lewis D, Seaman SW. 2003. Acrylamide in food: occurrences, sources, and modeling. J Agric Food Chem. 51(2): 802-808. Bergmark E, Calleman C, CostaL. 1993. Determination of hemoglobin in humans occupational exposed to acrylamide. Toxicol Appl Pharmacol 120: 45-54. Bologna LS, Andrawes FF, Barwenik FW, Lentz RD, Sojka RE. 1999. Analysis of residual acrylamide in field crops. J Chromatogr Sci. 37(1): 240-244. Calleman C, Wu Y, He F, Tian G, Bergmark E, Zhang S, Deng H, Wang Y, Crfton K, Fennell T, Costal L. 1994. Relationship between biomarkers of exposure and neurological effects in a group of worker exposed to acrylamide. Toxicol Appl PHarmacol 126: 361-371. Castle L. 1993. Determination of acrylamide monomer in mushrooms grown on polyacrylamide gel. J Agric Food Chem. 41(2): 1261-1263. Castle L, Camp MJ, Gilbert J. 1991. Determination of acrylamide monomer in hydroponically-grown tomatoes by capillary gaschromatography mass spectrometry. J Sci Food Agric. 54(1): 549-555. Clarke DB, Kelly J, Wilson LA. 2002. Assessment of performance of laboratories in determining acrylamide in crispbread. J. AOAC Int. 85(3): 1370-1373. Croll BT, Simkins GM. 1972. The Determination of Acrylamide in water by Electron-capture Gas Chromatography. Analyst. 97(1): 281-288. Gertz C, Klostermann S. 2002. Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur J Lipid Sci Technol. 104(2): 762-771. Hawley GG. Hd. 1981. The condensed chemical dictionary, 10th Edn. Van Nostrand Reinhold. New York. 16p. Hayes WA. 1985. Biology and technology of mushroom culture. In Microbiology of fermented foods. 1(1): 295-321. Holland B, Welch AA, Unwin ID, Buss DH, Paul AA, Southgate DA. 1991 McCance and Widdowson's The Composition of Foods, 5th ed.; Ministry of Agriculture Fisheries and FdRoyal Society of Chemistry. Huang CC. 1997. Acrylamide intoxication. Formosan J Med 1: 242-244. Hurst PA, Clark CJ. 1993. Postharvest changes in ammonium, amino-acids and enzymes of amino-acid metabolism in asparagus spear tips. J Sci Food Agric. 63(1): 465-471. Hurst PL, Boulton G, Lill RE. 1998. Towards a freshness test for asparagus: spear tip asparagine content is strongly related to post-harvest accumulated heat-units. Food Chem. 61(1): 381-384. IARC. Acrylamide. In IARC Monographs on the Evaluation of Carcinogen Risk to Humans: Some Industrial Chemicals; International Agency for Research on Cancer: Lyon, France, 1994; 60: 389-433. Johnson KA, Gorzinski SJ, Bondner KM, Campbell RA, Wolf CH, Friedman MA, Mast RW. 1986. Chronic toxicity and on cogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol Appl pharmacol. 85(1): 154-168. Jung MY, Choi DS, Ju JW. 2003. A Novel Technique for Limitation of Acrylamide Formation in Fried and Baked Corn Chips and in French Fries. Food Chem and Tocicology. 68(4): 1287-1290. Lyon F. 1994. International Agency for Research on Cancer. IARC Monographs on the EValuation of Carcinogenic Risks to Humans. 60: 389-433. Lee CM, Sherr B, Koh YN. 1984. Evaluation of kinetic parameters for a glucose-lysine Maillard reaction. J Agric Food Chem. 32: 379-382. MacWilliams DC. 1978. Acrylamide, in: Grayson M and others. Ed. Kirk-othmer encyclopedia of chemical technology, 3th Edn. Vol 1. Wiley, New York. 298-311. McLafferty, F. W., 1993, Interpretation of mass spectra. 4th ed. Aidan Kelly, CA, U. S. A. pp. 339-340. Mendel F. 2003. Chemistry, Biochemistry, and Safety of Acrylamide. A Review. J Agric Food Chem. 51: 4504-4526. Miller MJ, Carter DE, Sipes IG. 1982. Pharmacokinetics of acrylamide in Fischer 344 rats. Toxicol Appl Pharmacol 63: 36-44. Motram DS, Wedzicha BL, Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature. 419(1): 448-449. Nemoto S, Takatsuki S, Sasaki K, Maitani T. 2002. Determination of acrylamide in foods by GC/MS using 13C-labeled acrylamide as internal standard. J Food Hyg. Soc Japan. 43(6): 371-375 Ono H, Chuda Y, Ohnishi-Kameryama M, Yada H, Ishizaka M, Kobayashi H, Yoshida M. 2003. Analysis of acrylamide by LC-MS-MS and GC-MS in processed Japanese foods. Food Addit Contam. 20(3): 215-220. Petriella C, Resnik SL, Lozano RD, Chirife J. 1985. Kinetics of deteriorative reaction in model food systems of high water activity: color changes due to nonenzymatic browning. J Food Sci. 50:622-626. Pogorelova SP, Bourenko T, Kharitonov AB, Willner I. 2002. Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst. 127: 1484-1491. Ramsey JC, Young JD, Gorzinski SJ. 1984. Acrylamide toxicodynamics in rats. Unpublished report. Dow Chemical Company, Midland, MI. Raymer JH, Sparacino CM, Velez GR. 1993. Determination of Acrylamide in rat scrum and sciatic nerve by gas chromatography-electron-capture detection. J of chromatography. 619(1): 223-234. Rosen J, Hellenas KE. 2002. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst. 127(2): 880-882. Rydbeog P, Eriksson S, Tareke E, karlsson P, Ehrenbery L, Torngvist M. 2003. Investigations of Factors that Influence the Acrylamide Content of heated foodstuffs. J Agric Food chem. 51(24): 7012-7018. Sanders RA, Zyzak DV, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, 2002. An LC/MS acrylamide method and its use in investigating the role of asparagine. Acrylamide Symposium. 116th Annual AOAC International Meeting, Los Angeles, CA, Sept 26, 2002; AOAC; Gaithersburg, MD Smith EA, Pruen SL, Oehme FW. 1996. Environmental degradation of polyacrylamides. Ecotoxicol. EnViron. Saf. 35(1):121-135. Smith EA, Prues SL, Oehme FW. 1997. Environmental degradation of acrylamides. Ecotoxicol. EnViron. Saf. 37(1): 76-91. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy AP, Robert MC, Riediker S. 2002. Acrylamide from Maillard reaction products. Nature. 419(1): 448-449 SWEDAC. Accreditation SWEDAC Dnr. 01-4262-51.1125; Swedish Board for Accreditation and Conformity Assessment; Stockholm, Sweden, Msy 15, 2002. Swedish National Food Administration, http://www.slv.se Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M. 2000. Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 13:517-522. Tareke E, Rydberg P, Karlsson S, Tornqvist M. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 50(5): 4998-5006. Terada H, Tamura Y. 2003. Determination of acrylamide in process foods by column-switching HPLC with UV. J Food Hyg. Soc. Japan. 44: 303-309. US EPA Assessment of Health Risks from Exposure to Acrylamide, Office of Toxic Substance, Us Environmental Protection Agency, Washington, DC,1990. Whistler RL, Daniel JR. 1985. Carbohydrates. In Food Chemistry, 2nded. Fennena, O.R.(Ed.) Marcel Dekker, Inc., N.Y., NY, U.S.A. White EL, Uhring MS, Johnson TJ, Gordon BM, Hicks RD, Borgerding MF, Coleman WM, Elder JF. 1990. Quantitative determination cigarette smoke by multidimensional gas chromatography and selected ion monitoring-mass spectrometry. J chromatogr sci 28: 393-399. World Health Organization. Healthy Implications of acrylamide in Food; Report of a Joint FAO/WHO Consultation; Department of Protection of the Human Environment, WHO: Geneva, Switzerland, June 25-27, 2002. Yasugara A, Yuuka A, Henger M, Shibamoto T. 2003. Gas chromatographic investigation of acrylamide formation in browning model systems. J Agric Food Chem. 51(5): 3999-4003. Yaylayan VA, Wonorowski A, Locas P. 2003. Why asparagines needs carbohydrates to generate acrylamide. J Agric Food Chem 51: 1753-1757. Zyzak D, Sanders RA, Stojanovic M, Tallmade DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD. 2003. Acrylamide formation mechanism in heated foods. J Agric Food chem.. 51, 4782-4787 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38232 | - |
dc.description.abstract | 自從2002年瑞典國家食品管理局報告中顯示,炸薯條及炸馬鈴薯片中含有高量的丙烯醯胺後,學者相繼探討對其生成機制,就目前所得到的數據顯示,天門冬胺酸和還原醣經過梅納反應會形成丙烯醯胺。本實驗以糖-天門冬醯胺模式系統,探討丙烯醯胺生成的動力學。結果顯示,葡萄糖-天門冬醯胺及果醣-天門冬醯胺模式系統中,丙烯醯胺生成屬於擬二級反應。藉由Arrhenius方程式可知兩系統的活化能分別為10.52、18.79 kcal/mole。於pH 5~8之間,丙烯醯胺的生成量隨著pH值之增加而增加,但當pH =9時,丙烯醯胺的生成量反而呈現降低的趨勢。 | zh_TW |
dc.description.abstract | Sweden National Food Administration revealed the presence of high acrylamide in fried or baked starchy food in 2002. The issue caught the attention of food scientist around the world. It has been proposed that the Maillard reaction of asparagine and reducing sugar played an important role on the formation of acrylamide. This was to investigate the formation kinetics of acrylamide in sugar-asparagine model system. The data showed that both glucose-asparagine and fructose-asparagine exhibited pseudo second order reaction with activation energy of 10.52 and 18.79 kcal/mol, respectively. As pH was raised from 5 to 8, the formation of acrylamide increased. When pH was greater than 8 , raising pH resulted in the reduction of acrylamide. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:28:26Z (GMT). No. of bitstreams: 1 ntu-94-R91641011-1.pdf: 918788 bytes, checksum: 5556438f8e319f793d10abe07c2657b2 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 壹、前言………………………………………………………………1
貳、文獻回顧…………………………………………………………3 一、丙烯醯胺簡介………………………………………………3 二、食品中丙烯醯胺……………………………………………5 三、影響丙烯醯胺生成的因子…………………………………8 四、反應動力學…………………………………………… …10 參、材料與方法…………………………………………………… 24 一、實驗架構………………………………………………… 24 二、實驗材料……………………………………………………… 25 三、分析方法………………………………………………… 26 肆、結果與討論…………………………………………………… 30 一、分析條件之探討………… ………………………………30 二、丙烯醯胺生成動力學…………………………………… 37 三、反應溫度對丙烯醯胺生成之影響………….……………42 四、 pH值對丙烯醯胺生成之影響………………………………… 47 伍、結論…………………………………………………………… 49 陸、參考文獻……………………………………………………… 50 圖次 圖一、丙烯醯胺之結構式……………………………………………14 圖二、老鼠體內丙烯醯胺及glycidamide的代謝途徑…………….15 圖三、實驗室加熱製備之食品與市售食品中丙烯醯胺之含量……16 圖四、產生丙烯醯胺可能的途徑……………………………………17圖五、薯條加熱之溫度與丙烯醯胺生成的關係……………………18 圖六、實驗室加熱製備之食品與市售食品中丙烯醯胺之濃度……19 圖七、天門冬醯胺與葡萄糖於緩衝溶液中經150℃加熱30分鐘,pH 值對丙烯醯胺生成的影響……………………………………………20 圖八、不同種類的胺基酸於丙烯醯胺的生成量……………………21 圖九、以微分法決定反應階數(a)及速率常數(b)…………………22 圖十、零階(a)、一階(b)及二階(c)反應…………………… ……23 圖十一、葡萄糖-天門冬醯胺反應物經150 ℃加熱後之高效能液相層析圖 ………………………………………………………………… 33 圖十二、管柱串聯後之高效能液相層析圖…………………………34 圖十三、丙烯醯胺標準品之標準曲線………………………………35 圖十四、以不同劑量的葡萄糖及天門冬醯胺,觀察丙烯醯胺生成速率………………………………………………………………………40 圖十五、以不同劑量的果糖及天門冬醯胺,觀察丙烯醯胺生成速率………………………………………………………………………41 圖十六、pH 7.0之葡萄糖-天門冬醯胺酸及果醣-天門冬醯胺模式系統 中丙烯醯胺之變化 …………………………………… 43 圖十七、葡萄糖-天門冬醯胺(0.01M/0.01M)和果糖-天冬醯胺(0.01M/0.01M)磷酸緩衝溶液之丙烯醯胺Arrhenius線性迴歸(pH7.0)…………………………………………………………………………45 圖十八、在不同pH的磷酸緩衝溶液,觀察丙烯醯胺生成速率……48 表一、糖-天門冬醯胺模式系統中丙烯醯胺含量…… ……………36 表二、以不同劑量的葡萄糖及天門冬醯胺,丙烯醯胺生成速……38 表三、以不同劑量的果糖及天門冬醯胺,丙烯醯胺生成速率……39 表四、葡萄糖-天門冬醯胺 (0.01M/0.01M)於pH7.0磷酸緩衝溶液中之反應速率常速(K)………………………………………………… 44 表五、果糖-天門冬醯胺 (0.01M/0.01M)於pH7.0磷酸緩衝溶液中之反應速率常速(K)…………………………………………………… 44 表六、葡萄糖-天門冬醯胺(0.01M/0.01M)及果糖-天冬醯胺於pH 7.0磷酸緩衝溶液中反應之Arrhenius方程式與產物之活化能……… 46 | |
dc.language.iso | zh-TW | |
dc.title | 糖-天門冬醯胺系統中丙烯醯胺生成的動力學 | zh_TW |
dc.title | Kinetics of Acrylamide Formation in Sugar-Asparagine model system | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫璐西,周薰修,施養志,呂廷璋 | |
dc.subject.keyword | 丙烯醯胺,反應級數,活化能, | zh_TW |
dc.subject.keyword | acrylamide,reaction order,activation energy, | en |
dc.relation.page | 55 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 897.25 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。