Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38161
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義(An-I Yeh)
dc.contributor.authorJui-Ting Hsuen
dc.contributor.author許瑞婷zh_TW
dc.date.accessioned2021-06-13T16:27:14Z-
dc.date.available2006-07-20
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-14
dc.identifier.citation刁秀華,1993,高級氧化預處理對自來水中含氯有機物生成之影響。
國立台灣大學環境工程研究所碩士論文。
江武洲。2004。幾丁寡醣-分子量對臭氧降解之影響。國立台灣大學食品科技研究所碩士論文。
林正雄。1998。粒徑分析儀(上)。科儀新知。20(2):6-20。
林正雄。1998。粒徑分析儀(下)。科儀新知。20(3):41-54。
林屏杰,2001,花生成份對蔗渣纖維分解之定性定量分析。逢甲大學化學工程研究所碩士論文。
林淑珍。2001。以臭氧降解幾丁聚醣製備幾丁寡醣之研究。國立台灣大學食科技研究所碩士論文。
徐敬添。2003。濕式珠磨分散技術在奈米機能性產品之應用。產業奈米技術應用資訊園地-奈米粉體專刊。1:86-99。
翁玉娥,周照仁。1995。添加纖維素及洋菜對煉製品品質之影響。食品科學。22(5): 226-275。
陳佳慶。2002。高溫以臭氧降解幾丁聚醣的製備幾丁寡醣之研究。國立台灣大學食科技研究所碩士論文。
陳仁英。2002。超細研磨技術在奈米科技上之應用。工業材料雜誌。185:171-182。
趙明煜。2004。奈米纖維製備方法之研究。國立台灣大學食科技研究所碩士論文。
鄭福相。2001。以過氧化氫或臭氧降解幾丁聚醣及甲基纖維素之探討
國立海洋大學食科技研究所碩士論文。
謝明安。1998。微晶纖維素之物理性修飾。台北醫學院研究所碩士論文。
謝淑貞。1993。臭氧與次氯酸鈉對家庭水消毒效率以及經驗模式之探討。國立海洋大學食品科學研究所碩士論文。
Alder MG and Hill GR. 1950. The kinetics and mechanism of hydroxide ion catalyzed ozone decomposition in aqueous solution. J. Am. Chem. Soc. 1885-1887.
American Water Works Association, Water Pollution Control Federation. 1998. Standard methods for the examination of water and wastewater. American Public Health Association, 20th edition. New York.
Anderson JW and Akanji AO. 1993Treatment of diabetes with high fiber diets. In dietary fiber in human nutrition, end 2. Ed GA Spiller. Florida: CRC Press, Inc.
Bailey PS. 1978. Ozonation in organic chemistry. Academic Press. Inc., New York.
Bikova T and Treimanis A. 2002. Problems of the MMD analysis of cellulose by SEC using DMA/LiCL: A review. Carbohydr. Res. 48: 23-28.
Blanca Roncero M, Colom JF, Vidal T. 2003. Why oxalic acid protects cellulose during ozone treatment? Carbohydr Polym. 52: 411-422.
Bordes C, Garcia F, Snabre P and Frances C. 2002. On-line characterization of particle size during an ultrafine wet grinding process. Powder technol. 128:218-228.
Chakraborty S, Sahoo B, Teroka I and Gross RA. 2005. Solution properties of starch nanoparticles in water and DMSO as studies by dynamic light scattering. Carbohydr. Polym. 60: 475-481.
Cogo E, Albet J, Malmary G, Coste C, Molinier J. 1999. Effect of raction medium on ozone mass transfer and applications to pulp bleaching. Chem. Eng. J. 73: 23-28.
Dane JR. 1989. In encyclopedia of polymer science and engineering. N.Y.
Dobele G, Rossinskaja G, Telysheva G and Deier D. 1999. Cellulose
dehydration and depolymerizaion reaction during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis. 49: 307-317.
Ebihara K and Kiriyama S. 1982. Comparative effects of water-soluble and water-insoluble dietary fibers on various parameters relating to glucose tolerance in rat. Nutr. rep. int. 26: 193-201.
Eichhorn SJ, Baillie CA, Mwaikambo LY, Dufresne A, Entwistle KM and Groom L. 2001. Review current international research into cellulosic fibers and composites. J. Mater. Sci. 36: 2107-2131.
Fan LT, Gharpuray MM, Lee YH. 1987. Cellulose hydrolysis. Berlin ; New York : Springer-Verlag.
Frances C, Laguérie B, Mazzarotta B and Verccia T. 1996. On the analysis of fine wet grinding in a batch ball mill. Chem. Eng. J. 6: 141-147.
Garcia F, Bolay NL and Frances C. 2002. Change of surface and volume
properties of calcite during a batch wet grinding process. Chem. Engine. J. 85: 177-187.
Hu ZH, Wang G and Yu HQ. 2004. Anaerobic degradation of cellulose by remum microorganisms at various pH values. 21: 59-62. Biochem. Eng. J. 21: 59-62.
Huebner A, Ladisch MR and Tsao GT. 1978. Preparation of cellodextrins: An engineering approach. Biotechnol. Bioeng. 1669-1677.
Kabal’ Nova NN, Murinov KY, Mullagalei IR, Karsnogorskaya NN,
Shereshovets VV, Monakove YB and Zaikov GE. 2001. Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide. J. Appl Polym. Sci. 81: 875-881.
Kobayashi S and Shoda SI. 1995. Chemical synthesis of cellulose and cello-oligomers using a hydrlysis enzyme as a catalyst. Int. J. Biol. Macromol. 17: 373-379
Knill CJ and Kennedy JF. 2003. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 51: 281-300.
Langlais B, Reckhow DA and Brink DR. 1991. Ozone in water treatment: application and engineering: cooperative research report. American Water Works Association Research Foundation. Lewis Publishers Michigan.
Lemeune S, Jameel H, Chang HM and Kadla JF. 2004. Effects of ozone and chlorine dioxide on the chemical properties of cellulose fibers. J. Appl. Polym. Sci. 93: 1219-223
Lind J and Merényi G. 1997. The chemistry of ozone during pulp bleaching. J. Wood. Chem. Technol. 17(3): 297-326.
Malcolm R and Brown JR. 1982. Cellulose and other natural polymer
systems : biogenesis, structure, and degradation. Plenum Press. New York.
Malcolm R and Brown JR. 2003.Cellulose structure and biosynthesis:what is in store for the 21st century? J. Polym. Sci. 42: 487-495.
Merisko-Liversidge E, Liversidge GG and Copper ER. 2003. Nanosizing:a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18: 113-120.
Östenson M and Gatenholm P. 2005. Improvement of the wetting and
absorption properties of lignocelluloseic fibers by means of gas phase ozonation. Langmuir. 21: 160-165.
Pi Y, Schumacher J and Jekel M. 2005. Decomposition of aqueous ozone in the presence of aromatic organic solution. Wat. Res. 39: 83-88.
Piskorz J, Majerski P, Radlein D, Vladars-Usas A and Scott DS. 2000. Flash pyrolysis of cellulose for production of anhydro-oligomers. J. Anal. Appl. Pyro. 56: 145-166.
Picout DR, Ross-Murphy SB, Errington N and Harding SE. 2003. Pressure cell assisted solubilization of xyloglucans: Tamarind seed polysaccharide and detarium gum. Biomacro. 4: 799-807.
Ragnar M, Eriksson T and Reitberger T. 1999. Radical formation in ozone reactions with lignin and carbohydrate model compounds. Horzforschung. 53: 292-298.
Samain E, Chanzy H, Heyraud A and Driguez H. 1995. Phosphorolytic synthesis of cellodxtrins. Carbohydr. Res. 271: 217-226.
Satori J, Potthast A, Ecker A, Sixta H, Rosenau T and Kosma P. 2003. Alkaline degradation kinetics and CE-separation of cello- and xylooligomers. Part I. Carbohydr. Res. 338: 1209-1216.
Schmid G, Biselli M and Wandrey C. 1988. Preparation of cellodextrins and isolation of oligomeric side components and their characterization. 175: 573-583.
Staehelin J, Bühler RE and Hoigné J. 1984. Ozone decomposition in water studied by pulse radiolysis OH and OH4 as chain intermediates. J. Phys. Chem. 88: 5999-6004.
Staehelin J, Bühler RE and Hoigné J. 1985. Decomposition of ozone in water in the presence of organic solution acting as promoters and inhibitors of radical chain reactions. Envir. Sci. Technol. 19: 1206-1213.
Sun XF, Xu F, Sun RC, Fowler R and Baird MS. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 340: 97-106.
Terri T. T. 1997. Crystalline cellulose degradation: New insight into the function of cellobiohydrlases. Trends Biotechnol. 15: 160-166.
Tóth T, Borsa J and Taká E. 2003. Effect of preswelling on radiation degradation of cotton cellulose. Rad. phy. chem. 67: 513-515.
Umeura M, Yuguchi Y and Hirotsu T. 2004. Interaction between cellooligosaccharides in aqueous solution from molecular dynamics simulation comparison of cellotetraose, cellopentaose and cellohexaose. J. Phys. Chem. 108: 7063-7070.
Wakabayashi S, Kishimoto Y and Matsuoka A. 1995. Effects of indigestible dextrin on glucose tolerance in rats. J. Endocrinol. 144: 533-538.
Wang Y, Hollingsworth RI and Kasper DL. 1999. Ozonolytic depolymerizaion of polysaccharides in aqueous solution.Carbohydr. Res. 319: 141-147.
Zhang YP and Lee RL. 2003. Cellodextrin prepatation by mixed-acid
hydrolysis and chromatographic separation. Anal. Biochem. 322: 225-232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38161-
dc.description.abstract纖維素為自然界中存在量最多的碳水化合物,在生物材料及食品的應用上都具有相當的潛力。經生物或化學方法降解,產生的水溶性纖維素與寡醣,為可溶性膳食纖維,具有對人體有益的生理活性,例如預防腸道疾病和降低血中膽固醇等。纖維素經過機械研磨後,平均粒徑下降,表面積提高,應能促進各項反應的進行。本研究探討機械研磨對臭氧降解的影響,不可溶性纖維素、體積平均粒徑為指標,了解纖維素變化的情形;以pH值作為酸性副產物生成的指標。經研磨後纖維素以不同臭氧劑量處理,期望能找到纖維寡醣產量高,副產物產量低的反應條件。
纖維素經研磨0、20、60、100分鐘後,體積平均粒徑分別為27.08μm、10.58μm、5.558 μm、3.562 μm,以臭氧(濃度43 mg/min、86 mg/min)進行反應。結果顯示,研磨時間愈長,不可溶纖維素含量下降愈快,高臭氧濃度使水解率增快。通常研磨纖維素,應促使其與臭氧反應時,葡萄糖和纖維寡醣產量的產生,但100分鐘的研磨,寡醣產量比60分鐘低。研磨後,低臭氧濃度之反應,有助於葡萄糖和纖維寡醣生成,研磨60分鐘的生成量最高。臭氧降纖維素時,pH值會下降,顯示酸性物質的產生,研磨和臭氧濃度皆會影響纖維素水解液之pH值變化,一但經過研磨,於臭氧反應時,pH值下降幅度較大,臭氧濃度愈高,pH值下降幅度愈大。在反應的過程中也發現二氧化碳的產生,可能是酸性物質再氧化所致。纖維素在臭氧降解的過程,體積平均粒徑隨反應時間而下降,高臭氧濃度使其下降速率加快,且發現1 μm以下的粒子逐漸增加,結果顯示,結合研磨與臭氧,可製備小於1 μm的纖維微粒。
zh_TW
dc.description.abstractCellulose is the most abundant carbohydrate on the earth, and it is potential application in food and biomaterial field. The water soluble cellulose and oligomers are the hydrolyzed from cellulose, via biological and chemical methods, have been reported to be beneficial to human body. Milling cellulose reduced the particle size and thus increased the surface area, which would enhance chemical reactions. This was to investigate the effect of mechanical milling on ozonolysis of cellulose. Insoluble fractions and volume mean diameter were used as indexes for the change of cellulose. The pH value was employed as an index for the formation of acidic compound. The purpose of this study was to search a process combing milling and ozonlysis for producing cello-oligomers.
After being milled for 0, 20, 60 and 100 min, volume mean diameter of cellulose were 27.08, 10.58, 5.558 and 3.562 μm, respectively. The particle size was further reduced by ozonolysis. Generally, milling resulted in the formation of glucose and cello-oligomers. However, 100min-milling yield cello-oligomers less than 60 min-milling. In addition to reduce the particle size, ozonolysis induced the formation of cello-oligomers. In this study, the 60 min-milling with low dosage of ozone yielded the most oligomers. Both milling and ozone dosage affected the change in pH value. High dosage of ozone resulted in more pH dropped. Probably due to the further oxidation of acidic compounds, CO2 was fund in the eluting gas. During the ozonolysis, the particles smaller than 1μm was increased, the results indicated that it was feasible to prepare cellulose nanoparticle by milling and ozonolysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:27:14Z (GMT). No. of bitstreams: 1
ntu-94-R92641031-1.pdf: 3120485 bytes, checksum: 00fb6594776a98cece447973b51f470d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要............................I
Abstract............................Ⅱ
表次................................Ⅲ
圖次................................Ⅳ
1.緒論.............................1
1.1 前言...........................1
1.2 實驗目的.......................1
2.文獻整理.........................2
2.1 纖維素與纖維寡醣...............2
2.1.1 纖維素.......................2
2.1.2 纖維寡醣.....................6
2.2 降解纖維素的方法...............8
2.2.1 酵素法.......................8
2.2.2化學法........................9
2.2.3物理法........................10
2.3機械研磨法......................12
2.4臭氧............................14
2.4.1臭氧的基本性質................14
2.4.2 臭氧在水中的自分解機制.......14
2.4.3 臭氧與有機物的反應...........15
2.4.4 臭氧與多醣類的反應...........17
2.4.5 臭氧與纖維素的反應...........17
2.4.6 影響臭氧與多醣作用的因素.....21
3. 材料與方法......................23
3.1 材料...........................23
3.2 試藥...........................23
3.3 標準品.........................23
3.4 其他材料.......................23
3.5 裝置與儀器設備 .................24
3.6 實驗流程.......................25
3.6.1 機械研磨.....................26
3.6.2 臭氧降解.....................28
3.6.3 寡醣分析與定量...............30
3.6.4 臭氧定量.....................31
3.6.5 粒徑分析.....................32
4. 結果與討論......................33
4.1 機械研磨降解纖維素.............33
4.2 臭氧降解纖維素 .................40
4.2.1 不可溶纖維素的變化...........40
4.2.2 機械研磨對臭氧降解纖維素生
成葡萄糖與纖維寡醣的影響...........45
4.2.3 臭氧濃度對葡萄糖和纖維寡
醣總量(G1-G5)生成的影響..........62
4.2.4 pH值之測定...................66
4.2.5研磨對臭氧降解纖維素粒徑
分佈的影響........................71
5.結論............................83
6.參考文獻........................84
dc.language.isozh-TW
dc.title研磨對臭氧降解纖維素的影響zh_TW
dc.titleThe effect of milling on ozonolysis of celluloseen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee牟中原,孫璐西,盧訓,賴喜美
dc.subject.keyword研磨,纖維素,臭氧,降解,zh_TW
dc.subject.keywordmill,cellulose,ozone,degradation,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved